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It is a very good morning so last week we were looking at the solution the constant heat flux case
which was extended by Sparrow and Greg to the basic solution which was done by Paul Hassan
and the solution which was obtained by awe-struck later on to the constant heat flux case and
here typically we have to define what is called? As a modified   because we do not know upfront
what the  temperature difference is going to be in order to calculate the Gr based on Δ T therefore
we do a simple scaling and convert the Δ T  in terms of heat flux.

 Which is known okay so based on that we have defined a  modified  grand if we look at the
same similarity variable which  were housed in as you okay if you look at the Η = to x times
grashalf  number by four whole power 1/4 so if you substitute the modified  Gr into this you find
that there is no dependence on X okay which cannot be  possible because the similarity variable
has to be a function of both x and y and  therefore Sparrow and Grieg modified the definition of



Η a little bit they just introduced to the power 1 / 5 instead  of 1 / 4 and which is now going to be
that function of both x and y so we will see with this modified definition of  similarity variable
whether we try to successfully reduce this into a similarity differential equation so  before doing
that let us also calculate what is the order of magnitude of the  reference velocity okay so since
we start from the basic assumptions in the similarity solution that u / u reference is actually a
function  of  Η  so  this  is  the  similarity  solution  assumption  that  means  if  you  plot  a   non-
dimensional velocity profile so it should be only a function of Η.

(Refer Slide Time: 02:34)

Correct  so for  this  you need to  know what  the  you references  so how do we estimate  you
reference so this is the same way that we did for the constant w temperature case so there we
equated the order of power of Gr so what did we get there the Gr power half is the same order as
Reynolds number.

(Refer Slide Time: 03:04)



Correct so when we talk about therefore a Reynolds number to the power 1 / 2 this was 1 / 4.

(Refer Slide Time: 03:20)

Okay so therefore  wherever we had a similarity variable in the original Blazes equation if you
remember this was y by x re x power 1/2 this is your blushes similarity variable  so we replaced



re X power half with  Grote the power 1 by 4 here  that is how Paul Luzon started so now in the
present case out with the  modified ration of number we have a modified similarity variable and
now  therefore how do we do the order of magnitude so in terms of Gr star how do  we equate it
this cannot be the same because now we have modified our  similarity variable to be Gr star to
the power 1 / 5 so only so 1 by Phi should be on the order of magnitude of re X to  the power
half  okay according  to  the  current  modification  of  the  definition   of  similarity  variable  the
Sparrow and Greg so this should be the order of  magnitude of your modified  Gr okay so now
can you please substitute our definition of modified   Gr calculate what is the order of magnitude
of u reference.

(Refer Slide Time: 04:44)

Okay  huh that is therefore f of Η here we started off with okay so you use to Jake vita okay fine
use G of Η and then we integrated G of  returns called that as a forfeit okay it's a function of Η
that is all it is  so now by equating these 2 you can find out what is the order of few reference tell
me in terms of  Gr because we have  Gr here okay so you can directly tell me in  terms of  Gr in
terms of modified - of  now what do you get  you get a factor of five here outside  Gr / 5.

(Refer Slide Time: 05:50)



Raised to the power  two by five right x μ / X is that okay  right so this is you are you by this is
your new reference now we can find out  the corresponding transformation of the field from X/Y
to heat up by using side  how size is nothing but integral u d y so which we will substitute from
this as u  reference into we will write this as integral G Η into d y as d y / D Η  x D Η so d y / D
Η will take out x D the and integral G Η D Η is  nothing but what you call as f of Η is another
function okay therefore size is  = to UF x d y / D Η x F of H.

(Refer Slide Time: 08:06)



So we know d y / D Η in terms of   Grand new reference also we have calculated the substitute
and tell  me what will be a function side in terms of Gr the modified Russia  what is d y / D Η  so
X X cancels here so this gives 5 x rash of modified  Gr / 5 the  whole raised to the power 1 /5
into new I will put this new here  okay so therefore once you find out sigh now we know the
transformation between  therefore sigh and so this should be multiplied by a for Peter so we
know the  transformation from XY the flow field in X y coordinate to Η through the  relation
between s y and death okay also we know the basic transformation.

(Refer Slide Time; 09:52)



Through  the similarity  variable  so therefore now we can substitute  this  into the  governing
equation the momentum as well as the energy equation the same way  substitute for U, V, D. U /
D X D u / d y d square u /d y square okay and you will  be able to reduce this partial differential
equations into similarity equations so before doing that also we  need to find out the similarity
variable for the okay so let us assume now  the is a function of Η but we have to find the right
non dimensionalization  here so in the constant w temperature case.

We use T_ T ∞ /_  T ∞ / the constant heat flux case we do not know the w temperature and
therefore this has to be somehow  converted in terms of heat flux again so we can again use the
four years heat flux to do a scaling let us say that  this is your Tw this is your T ∞ at the edge of
the boundary layer so what is this distance Δ T this is your thermal boundary layer thickness
therefore if you apply the four years law this will be K times  T w _ T ∞ by Δ T so therefore we
can find a scaling for T  w _ T ∞ as Q double prime Δ T /K.

(Refer Slide Time: 11:40)



That okay so now the order of Δ T is the same as Δ right so we can just substitute this as T_ T ∞
by Q double prime Δ / K and what is Δ now how do you find out Δ hmm η is = to Y / Δ correct so
therefore we can find this as d y by D Η right so I am going to replace this as d y / D Η.

(Refer Slide Time: 12:28)

Okay so substitute this  in terms of crash of number so therefore what will be the of so this will
come  out  to  be  T _  T ∞ /  Q wed by K x  X to  the  power  1  /  5  okay so  just  check  the



transformation whether  you can write it in terms of d y / Dt and tell me so rather than writing it
out separately like this I will ask you to substitute directly in terms of   Gr so what is d y / the Η
in terms of  Gr X x rash of  modified  Gr the 5 power _ 1 / 5  so this is your transformation.

(Refer Slide Time: 13:47)

Is it clear so now you can go ahead substitute this into the momentum and  the energy equations
so you have u Du / DX remember the coordinate this is X is  along the plate length and Y is
perpendicular to that + the D u / D y  is = to new e square u /d y square + Gr be x.

Okay so we are now t _ T ∞ is = to 0 therefore T is = to T  ∞ + the of the x Q all prime by K so X
into modified - of  number verify the whole 4 _ 1 by 5 you can substitute for DT by DX as this
you have D the b y so you have basically DT by DX has functional  dependence on X directly
and also through the ok similarly when you say  DT by d y it is a function of Y only through Η so
like that you have to  substitute for all the terms in the momentum and energy equation so G be T
_ T ∞ will be again G be x Q w / K X  correct so your T _ T ∞ is be substituted through this so
similarly you complete the exercise and I will give you the final solution.

(Refer Slide Time: 16:07)



So you will find that this transforms the equations into a similarity ordinary differential  equation
as a function of only Η therefore the momentum equation becomes  B cube F by D Η cube _ 3
times T up by dieter the whole square + 4 F  into D square F / D Η square _ the = 0.

(Refer Slide Time: 17:06)



This is the similarity  momentum equation and the energy equation is d square the / 2 square  _
Pr x 4 D the / 2  okay so this is how you finally transform so you can try this at home so  the
same way that you did the constant w temperature case substitute and  eliminate the common
terms and this is the final set of equation that you get  now we also have to make sure the
boundary conditions have similarity that  means they should not have dependence on X and Y so
how do we do that so we know that the  set of flow boundary conditions satisfy that at y = to 0
that is at Η  = to 0 both U and V are 0 which indicates that DF by D Η is = to 0 and also F is = to
0 right and at  Η going to ∞ however what should happen you should approach u 0  okay so it is
not like your brushes case okay so you should still approach 0 so therefore your DF by D Η
should also  be 0 what either going to ∞.

(Refer Slide Time: 18:29)



And apart from that what is the condition on  energy equation that Η = to 0 so let us look at Η
going to ∞ so  there data will go to 0  okay now we need one more conditions at Η = to 0 but we
do not know the  temperature at the w therefore four terms of Θ we cannot define but what  we
know is the heat flux so what can you define in terms of D Θ / D Η so  you have to once again
perform the conversion so at the w you know _  Dt / so write this in terms of Η Θ and Η and
therefore tell me what  should be the condition for D Θ by D Η at the w  so what do you get for
D Θ by D Η _ 1 so therefore at Η = to  0 D Θ by Θ is = to _ 1 right.

So you have all the boundary conditions required to solve the bodies here and once again you
have to use the  shooting method you have to start from the w okay and you need boundary
condition at the w for basically both Θ and D Θ by D Η  but at w you have only boundary
condition for D Θ by D Η so you have to therefore guess the value of  Θ at the w and then satisfy
the value of Θ at Θ going to  ∞ same way the iterative method okay so then you will be able to
find  the complete solution set and let me tabulate the final solution so naturally  once again this
is a couple set of hoodies you have to solve them  simultaneously.

And therefore the flow solution is also a function of Pr for different values of Pr you will have
therefore d square F by D Η square at Η = to 0 and  what do you have for temperature Θ at Η =
to 0 so this will be the  part of solution that you get correct so you know D Θ by DT at Η = to 0
so u therefore guessed ΘD Θ= to 0 until you iteratively satisfy  the condition that Θ going to ∞ =
to 0 right so for  different values of Pr 0.1 this is one point six four three four  this will be two
point seven five 0 seven rental number of one this is point  seven two one point three five seven



four and Prof ten  this is 0.3 0-6  0.76 or for financial number of 100 so point four six five one
two these are  the different values.

(Refer Slide Time: 24:57)

Okay so for a Pr of one for example what  was the subsequent value of d square F by D Η square
for constant w  temperature case if you go back  approximately say we had for 0.72 it was 0.67
six approximately you can say about  0.68 or 0.69 so therefore this case the velocity gradient is
slightly marginally higher than the constant w  temperature case okay so since the flow and the
temperature fields are strongly  coupled you can see that the velocity gradient is also a function
of the boundary condition should be point yeah okay I have reversed it point one two yeah you're
right it cannot increase heaven 0.126 two and this should be 0.465 it is correct it should gradually
decrease.

(Refer Slide Time: 26:13)



With increasing Pr so now having known Θ= to 0  how do you calculate the nusselt number you
have to finally derive an expression  for Nu as a function of the modified  Grand P r so how do
we get the expression for local nusselt number so you have  once again HX by K which is Q w /
T w _ T ∞ x X / K now in this case we know what is Q w but we  do not know T w _ T ∞ okay
so therefore put this in terms of Θ at Η = to 0. Okay  so our definition of Θ is I will write it again
here so Θ= to t _ T ∞ by and this was crash half / 5 _ 1 / 5 and we also had X outside  from this
substitute for T w _ T ∞ that is nothing but Θ = to 0. So you simply get this as crash half number
W i –F i H to the power 1 / 5 into 1 /Θ at Η = to 0.

(Refer Slide Time: 29:04)



Correct so corresponding value of you can again fit a correlation as a function of  Pr and you can
substitute for Θ = to 0 as a  function of Pr so you will get an expression for nusselt number as  a
function of crash half Pr. Okay so now what we will do next  is to look at approximate solutions
so these are the 2 exact solutions  possible in natural convection when you talk about external
natural convection  when you talk about internal natural convection it is in a cavity and so on
you do not have exact solutions then before going to mean numerical full  set  of numerical
solutions we will also look at approximate methods.

Or the integral solution yeah this is all modified Gr correct so all this is star so this the same
thing I am using  this expression and putting this  G r this is all modified so whenever  you talk
about constant w flux case you have to always use modified rush of  them okay so next what we
will do is look at the constant w temperature  case first and try to derive the approximate or the
integral solutions  similar to the external force convection that we did so this is something less
rigorous than the similarity solutions and nevertheless they give you useful  solution which is
kind of close to the exact solution.

 So we will start off with the approximate methods  so we will only focus right now on constant
w  temperature  boundary   conditions  you  can  do  a  similar  exercise  for  constant  heat  flux
boundary  conditionals okay so let us assume that now the w temperature is maintained  constant
you have gravity acting downward and you have a natural  convection boundary layer okay the
first  point  in  deriving  the  approximate  method   is  to  derive  the  integral  equations  for  both
momentum and energy.



(Refer Slide Time: 32:03)

So let us try  to find the integral equations by integrating the momentum equation and  the energy
equation across the boundary layer okay so now this solution was done by person called square
it is called also square solution this approximate method.

(Refer Slide Time: 32:54)



Now when we do the   square solution you should understand that  once we get  the integral
equation  what is the next step we guess the profiles for velocity and temperature  substitute them
into the integral equation convert this into a simple Lodi  which we can straightaway integrate
okay now in doing that we need to know the  reference velocity in the blushes case in the flat
plate case external force convection you know that this is your u  ∞ but in the natural convection
case we do not know the U f okay we do not know precisely u refs.

Therefore what are  all the unknowns here we do not know you rap and then what is the outcome
of  solving the momentum integral equation what do we get an expression for hydrodynamic
boundary layer and then by solving the energy integral Δ T so in your  integral equation applied
to external force convection you have only 2 unknowns Δ and Δ T your reference velocity is your
free  stream   velocity  there  but  now  in  natural  convection  we  have  3  unknowns  okay
unfortunately we still have only 2 equations two integral equations so  therefore what do we do is
in the case of Squire he made a very simple.

Assumption that since we are talking about natural convection for mostly  gases we do not talk
about very high Pr very low Pr but for Pr approximately around 1 so it is  reasonably safe to
make an approximation that Δ is = to Δ T so finally we therefore reduce the number of unknowns
to the number of equations that we have okay so this is a an  approximation that Squire makes
but we will see whether this will impact the  accuracy of the solution much still it will be close to
the exact solution  since we have to solve 2 equations we need to only reduce this to two number
of  unknowns  okay  and  therefore  when  we   integrate  this  irrespective  of  whether  we  are



integrating the momentum or the  energy equation will still go from 0 to Δ on okay so all of you
can now try converting this into an integral equation  also we need to write down the continuity
equation.

(Refer Slide Time: 36:11)

Please do not forget  it we need continuity equations in order to  relate the V velocity okay so this
also will have to integrate so I will split the second integral here VD u by d y d y as the by d y s
of u v _  u x D v / d y okay flit the second integral into these 2 parts so  therefore what do you get
when you integrate d by d y of UV from between the  limits 0 and Δ huh what happens to this
particular integral 0 okay there is no u velocity at y = to 0 and y =  to Δ right that knocks away I
can use continuity to write D v / Dx s D v / d y S d u /D x so now I can therefore combine these
two terms right so I have 2 times0 2 this should be a + here.

So I have missed a sign somewhere  okay so this is - here right so this is + okay therefore two
times 0 to  Δ u D u by D X D Y this is = to new when I say D u by d y between the  limit 0 and Δ
what is the value at y = to Δ 0 okay so this  will be therefore _ T u /d y at y = to 0 and the last
term will  be  as it  is  you cannot  unless you know the temperature profile  okay you cannot
integrate it so we just have to remain  this as 0 to Δ G be x new  okay so this is therefore the
momentum integral equations  so let us call this as your momentum integral equation  right so
similarly if you integrate the energy equation.



(Refer Slide Time: 40:56)

So you have 0 to  Δ Q DT by DX d y and the second term can also be split you can write this as 0
to Δ D by d y of VT d y _  0 to Δ T into DV by d y x d y which we can use the continuity
equation and write it like this is = to  α times once again DT by d y _ α DT by d y at y = to 0 so if
you integrate this between the limits 0  to Δ what do you get at y = to 0 be = to 0 but at y = to  Δ
V is not = to 0 because we have an in Trainmen happening at the edge of the boundary layer for
the  boundary layer to grow okay so that we a Δ is obtained from the continuity  equation so you
can therefore substitute for the continuity here so you have 0  to  Δ u dt by DX d y  Plus becomes
we at Δ times T ∞ okay so I am substituting for V  of Δ as _ integral 0 to Δ into D u by DX d y
into T ∞  slash 0 to Δ into TD u by DX d y okay this is = to _ VT by 0  so they say this can again
be reduced to the form which will be D by DX of 0 to Δ u of t _ T ∞ d y.

Which is = to _ α DT / d y at y = to 0 okay so you can again write this as D/ DX of UT _ T x D u
by DX and that and this will cancel  and therefore finally you will have two terms which you can
combine it so this is the same energy integral like what  you got for the external force convention
okay only the momentum integral is now much simpler the energy integral remains the same and
even the  momentum integral you can just write it you can take the D by DX term out you  can
write it as simply d by DX of U square d y which will be the same as 2 u  x D u by DX okay so
D by DX of U Square D Y so that  now once you substitute the approximate profile for velocity



now this becomes an  ordinary differential equation with respect to X okay  similarly once you
substitute the approximate profile for temperature and integrate it you get a ordinary  differential
equation so you get 2 equations and two unknowns one is your  reference velocity the other is
your Δ okay so you should understand that  in this case we are integrating both with between the
limits 0 to Δ so we  do not distinguish Δ and Δ T right  so therefore once we derived the integral
equation we have to make a  guess for the approximate profiles of velocity and temperature now
what will  be the proper des for velocity can we make a linear approximation because I told you
that  the  peak  can  occur  somewhere  in  between  and  again  drops  to  0  so  we  in  order   to
approximate this kind of a curve what kind of a polynomial should we take at  least we should
have a cubic polynomial.

Whether we take linear or quadratic cannot predict this Maxima here okay so  we have to start
off with a cubic velocity profile and that is what Square  did so he assumed the cubic velocity
profile however for temperature he used  a quadratic profile which is not a bad approximation
and so this is where he  started off by making an assumption that you by your reference is = to a
plus  B x y by Δ is C into y by Δ the whole square plus D into y by Δ  the whole cube you can
make Η is = to Y by Δ so this was the cubic assumption similarly for Θ okay you  can say a1 plus
b1 into y by Δ plus c1 into y by Δ Square.

(Refer Slide Time: 47:51)



Okay so we will stop here tomorrow we will solve the 2 profiles by making the writing the
boundary conditions down substitute them into the integral equations and precede further okay.
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