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Integral method for thermal entry length problem

okay so let  us quickly go through what we covered last  time so we were looking  at  using
integral methods for thermal entry length region and here we can find  this integral method for
internal flows to only Cartesian coordinate system so  since it is difficult to integrate your energy
equation  in  cylindrical   coordinate  system and  apply  the  integral  technique  so  most  of  the
discussion  related to integral method for internal flows is confined to plane ducts so that  is
basically flow between two parallel plates so we will take up one such  example where we have a
thermally developing region that is basically region two. Where we have the fully developed
velocity profile the parabolic velocity profile.
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And we have applied the constant w flux boundary condition so then when you write the velocity
profile basically you use a coordinate system which is aligned to the center of the channel okay



so that we have to transform to a coordinate system which is starting from the plate because the
integral method is basically integrated from the plate till the edge of the boundary layer.

(Refer Slide Time: 01:27)

So that  is  where  we transform the  coordinates  and  then  this  is  the   velocity  profile  in  the
transformed  coordinate  okay  and  of  course  if  you   integrate  the  energy  equation  it's  very
straightforward integration you directly  get the energy integral which is the equation number
one. 

So all you need to  do is know the velocity profile and the guess some value get some profile for
the temperature the velocity profile here is coming from the exact solution  because you cannot
again use an integral method solution in the fully developed  region okay, so once the boundary
layers merge then the integral method cannot be  applied because these are all boundary layer
equations so therefore we use the fully developed velocity profile from  the analytical solution
but  for  the temperature  profile  in  the  developing  region we just  make a  guess  for  a  cubic
polynomial as usual and these are the  boundary conditions specified w flux at y =  0 and at  y  =

 Δ t.
 
The gradient is 0 and the temperature at the edge of the boundary layer is  =the inlet temperature
okay  so  from  here  we  get  if  you  substitute  all  the  boundary  conditions  you  can  end  up
calculating all the coefficients and this is the resulting. 
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Cubic profile for  temperature that you get so the temperature profile is a function of  your w flux
your thermal boundary layer thickness and of course the  non-dimensional y coordinate so we
will  introduce  certain  non-dimensional   variables  here  your  Β  is  your  non-dimensional  y
coordinate same way  this is the same nomenclature I am using similar to your external boundary
layer  flows so Y / δ T and similar to your external flows where you use the  non-dimensional  ζ
for δ  T by Δ here we do not have any boundary  layer the momentum boundary layer thickness
because they are considering  already fully developed flow therefore instead of Δ we use D here
which is  the half separation distance okay.
 
And we substitute this profile into your  momentum integral you integrate it out and we neglect
all  the  higher-order terms of  ζ since you are looking at  the thermal  entry length you  are
supposed to be looking at region where your δ T is much smaller than  Δ okay so therefore since
your ε < Δ is your  ζ  < 1 we neglect all the higher-order powers of  ζ of the order  of quadratic
powers and higher so if you do that you get a direct expression for  the  ζ which is nothing but
you are non-dimensional thermal boundary layer  thickness okay so from here we have to go on
and get the expression for the heat transfer coefficient.
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So we  define  our  heat  transfer  coefficient  H  of  X.  Which  is  varying  locally  the  thermally
developing region as QX / T w -TM so this is our definition  in internal flows so now we need to
get the denominator which is T w - TN  okay so we can get T w - TI from the profile that we
have this is our  profile let me call this as equation number 2 so t1 -TI here is at y  = 0 okay and
we also need to know what is my t w what is my t mean -T a so once a you know t1 - T It mean -

 t I take the difference I get t w -TL  okay and that will give me the final expression for
heat transfer coefficient  so now we have to determine what is the mean temperature so to do that
how do we  determine mean temperature we integrate our temperature profile this is a mass
weighted average okay so that is t -TI and wait it with the velocity and here  for the channel case
we have to consider only the integration along. 

This Y now the velocity profile that we have now we  are looking at boundary layer growth from
the top plate and bottom plate okay now we are focusing on only one plate at  a time so for this
the velocity profile we have to consider is from zero to D  okay where you have your velocity
profile that is the maximum velocity  there all right so therefore we will do this integration  from
zero to D because this is a mass weighted average we are taking and  divided by zero to D u dy
okay so we know that I can calculate my mean  velocity based on 1 by D integral 0 to D u dy so I
can define a mean velocity  from 0 till D. 

Because the boundary layer growth at the bottom plate is affected  by the velocity profile from 0
to D and for the top profile it is exactly  symmetric okay so I am looking at the mean velocity
which is basically  affecting the thermal boundary layer growth on the bottom plate okay so
therefore I am concerned only with the region from 0 to D here okay not the  complete 0 to 2 D
okay so if you integrate it out so you get your  relation between your 0 to D u dy as um in two so
therefore you can write this  as 0 to D t -TI x u / u m dy x 1 or D  okay so now I can also express
the relationship between D and the hydraulic  diameter. 



So the hydraulic diameter for the case of plain duct we have seen that  this is basically four times
D so therefore we can replace D by D H by  four okay so this will be the H by four so how we
got this I think all of you  know if you consider a plain duct in the three dimensional sense and
this  is  your  separation between the plates which is  too deep to consider width in the third
direction as W so the equivalent hydraulic diameter here will be for a /  P which will be four
thanks to D x W bikes perimeter will be twice W so that  for D H will be four times B okay so
finally this is my relationship for  calculating the mean temperature.

So I simply have to substitute my temperature  profile into this I know my velocity profile you
buy um okay which is so you are in the case of channel flows again  your centerline profile is 1.5
times your mean velocity okay so this can be  substituted and you can integrate and therefore
determine the expression for T  mean –TI.
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So  we  will  quickly  do  that  so  I  am  just  substituting  my  velocity   profile  as  well  as  the
temperature profile so this becomes 3 /2x3  kdh and I am integrating over non-dimensional Sam I
am converting this  into Β which is y by δ T okay in place of Y so therefore I am  substituting all
of this becomes zero to one essentially and this is two Β ζ  -Β 2 ζ 2  x 2-3 +Β 3 indeed  okay so if
you plug in for a temperature profile which you already have it here  in terms of Β so your Y / δ
T here can be expressed in terms of Β and in case of your velocity profile your Y /D can be
expressed as Β x  ζ right so you plug it in have plug it in terms of Β and  ζ and you  integrate or
the non-dimensional y coordinate that is basically your ζ  between zero and one. 

So this gives my expression for t m- t is 2 Q ″δ T 2 by KD h and I do not now eliminate any
higher order  terms of  ζ okay so unlike the case where I substitute into the momentum  integral
and there the moment the expression for  ζ  ζ 2 is under  the derivative D / DX so there if I make



the  approximation  that  the  higher   order  terms  for   ζ  can  be  eliminated  so  the  differential
equation becomes  easy to solve whereas here I do not have any differential this is an algebraic
equation so I or in all the higher order terms as much as possible okay so  this is my expression
for t m- t I let me call this as equation number 4 and  this is the expression for t w -TI this is
equation number 3. 

So that for  T w -TM can be written as T w -  TI -TN -ta okay so you see there are common terms
here your Q to Q ″δ T by K is common okay so we will just take that out so that I can write my
expression for T 1 -T ms 2  times Q ″D H by K ix  ζ by 12 – β4T +β 4 /192 so in fact the TM -TT I
can also be substituted you can  simplify this a little bit and write it in terms of β  3 10 β 4/ 48 so
here I am using the relation that my  δ T is nothing but  ζ times D so I am substituting for δ T in
terms of  β times T so this becomes β 2 so this multiplies this becomes 8  here power 4 and this is
my D so this is my expression for TM -TI  and this is my expression for T 1 -ta when I subtract
both this is what I  get for T 1 –TM. 

Let me call this as equation number 1 so therefore so once you have the denominator here so
directly.
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I can get the expression for H  X so H X will be nothing but Q R ″that is your constant heat flux
applied to the plates divided by this particular expression here for T 1 -TM  so you all ″ cancels
here now I can directly get the  expression for nusselt number you can see that this can be written
as HD by  okay so nusselt number in the terminally developing region which is  based on the
local heat transfer coefficient times the hydraulic diameter  divided by K comes out to be of this
form which is I can also take some terms  common from here I can take write this as 2x4 and I



can make it 1 /2 here  okay so that this becomes 310 and 48 okay so therefore this becomes 1 by
2  and goes to the numerator this becomes 2 by  ζ by 3 -β 3 by 10 +   β 4 / 40 okay. 

Where your  ζ is nothing but we have already derived the expression for  ζ by solving the  energy
integral that is 80 times X /D H divided by recline umber volt power  one-third so this non-
dimensional ratio here quickly number by exploit is  nothing but great cinema ok so you can also
call this as grates number one this  is inverse of grates number so this is peclet number by X pe
okay so once you  basically know your non-dimensional  ζ so this gives you the variation of your
local  nusselt  number with respect to the non-dimensional  axial  location   okay so this  is  the
relation for the case of flat plate. 

Now the question is  whether if you use the asymptotic value whether the asymptotic solution
leads to  the case of thermally fully developed flows that is the question so therefore  if you look
at  the  asymptotic  case  where  your   ζ  goes  to  very  large  value  okay whether  this  particular
solution becomes equivalent  to your solution for fully   developed thermally fully developed
flows okay  so in that case if I substitute since my Z ties in terms of δ T / B what  happens if the
flow is thermally fully double what should be the value of  asymptotic value of z1 okay so if for
large values of  ζ so that should  asymptotically go to one so your nusselt number for  ζ going to
one from this expression comes out to be 7.86. 

Now I think in the last class I have given you a table for flow past  channel and what is the value
of you have apply a constant heat flux in the  fully developed region  8.23 so that is the actual
analytical solution  so compare that with what you are getting from the approximate method so
it is not leading to the correct solution you know it is there is a quite a bit of an error between
these two values  this is because the integral method is not valid for the asymptotic limit okay
why the boundary layer is noise so that  part  the boundary layer approximation is not valid
anymore and the other thing we  have in the energy integral we have neglected the higher order
terms of  ζ correct so in fact for we are looking at  does not Artic case which is for the large
values of  ζ and that we have  neglected here. 

So even if the boundary layer approximations we are assumed to be  valid since we have made
an approximation here so together put  together finally the asymptotic values are not that close to
the exact values  okay so therefore you should consider the integral method when applied to the
internal flow case this is a very approximate method and it is valid only  in the region where your
boundary layer approximation is valid that is the initial part of the thermal entry the  entry length
if you go down downstream to the place where it merges and finally  becomes fully developed
then you cannot apply the approximate methods okay so  this is to just give you an overview one
example how we can use the approximate  method. 

In internal flows and that that is also restricted to a Cartesian system  Cartesian coordinates and
again you use the exact solution for the velocity  profile and you work out the case for thermal
entry length so you can do this  for also a similar analysis can be done with the constant w



temperature  so I am not going to do this in fact I have posted assignment number four on the
Model you can just go and check  that and I left that as an exercise in the assignment for where
you are supposed to sit and work out for the  constant w temperature case it's a very similar
exercise very  straightforward this is the same similar kind of an exercise which you did for  the
external flows okay. 

So I will  just  give you the final solution for that  before we stop the discussion on laminar
internal  flows   so  if  you  consider  that  instead  of  constant  w  flux  you  have  constant   w
temperature boundary condition okay so for the case again. 

(Refer Slide Time: 21:23) 

You  can  assume  a   cubic  polynomial  for  temperature  and  you  should  of  course  use  the
appropriate  boundary conditions in this case so rather than saying the gradient is equal  to - QL
by K u we say that at y =0 where T is =t1 which  is fixed boundary condition and the other
boundary conditions remain the  same you get profile which is something like this t -T w /T w -

 T w 3 / 2 okay so this is this is if  you recollect this is this is the exact cubic profile that
you got for external  flows okay the same profile only the non dimensionalization is a little bit
different you have t -T w / T I instead of T ∞ -  T 1  here  your  free  stream temperature  is
replaced  by your inlet temperature at the edge of the boundary layer. 

Okay so you can  assume this to be a non-dimensional temperature β for the thermal entry  length
problem and your energy integral now so this is your energy integral  this can be rewritten so
your QR can be written as - K DT / dy at y = 0 okay and that is =  D / DX you have 0 to δ T
now I am going to use the non dimensional coordinate for Y  which I define as Β  which is =Y /
δ  T  so  therefore  I  can   integrate  across  the  non  dimensional  coordinates  so  that  limits  of
integration becomes 0 to 1 okay so Ρ CP x u xt -  TI I  can write in terms of β  so  how  do  I



express t -TI in terms  of β1 β  so that becomes 1 β will be t -TI by t1  -clear okay so therefore t1
-TI is constant  because my w temperature is constant inlet  temperature is constant so I can
introduce t1 -  T and both sides. 

It will get cancelled off so this can be  written as u into 1 β x D Y so instead of dy I substitute in
terms  of Β okay and if I convert Y 2 Β how multiply by δ  T okay so there is  a δ T also which
is coming here so once again this K can be written as  α Ρ CP right so Ρ CP cancels on both the
sides and I can convert my Y in terms of β so I have to also multiply by δ T in the denominator
so this  becomes Β=0 okay so this is my modified energy integral slightly  modified form for the
case of constant w temperature so now I have the cubic  profile and of course the velocity profile
is again known the fully developed velocity proof okay parabolic  profile so I substitute and then.

I proceed ahead the same way I did for the  constant heat flux calculate my mean temperature
and then finally I get an  expression for the local variation of the nusselt number I will just give
you  the final expression okay.

 
So the final expression comes out to be a nu X is =2 by ζ by 3 –β3 by 10  +ζ 4 / 48 okay so you
can compare the expressions that  you got from the constant heat flux  they are coming to be the
same here I think you have to do it and check  probably I made a mistake here  okay you please
check in the assignment  when you do that in the I have given this as an assignment problem so
you  please check. 

What is the expression so I am not going to give you this right now  okay so I myself have not
worked it  out so you please do that and check it has  to be of course different so this is to
conclude our discussion on approximate methods in the last  class.  I   have also given you a
tabulation where I have compiled all the fully developed  nusselt number values for different
geometries ,we start from plane duct with  the parabolic velocity profile then circular duct for a
slug flow profile  plug flow profile a parabolic flow profile and also for other cross-sections like
triangular cross  section and the order of decreasing nusselt number starts from your channel
flow the highest value comes for the plug flow case with the constant w  flux. 

Then constant w temperature then your parabolic flow velocity flow so it  goes in that order
starts from to deduct flow and then you are 3d circular ducts and then finally your triangular
cross  section so this is the hierarchy in which you are decreasing nusselt number  follows that
pattern and before. I conclude I just want to talk a little bit about the project that I was thinking
in mind. I also posted another document on Model which you will see it is called project natural
convection in a square cavity. I will just briefly describe the problem and also how you  are
going to solve it and I since you have now more than a month's time with  you. I think you
should probably take it up a little bit seriously and try to do the project you know. 



So for whatever you  learnt in the class they are all based on some theoretical discussion and
deriving some analytical expressions  okay and that is not probably sufficient for you to gain
appreciation of  for subject like convective heat transfer okay a few of you are coming  and
asking  me  in  this  subject  only  dealing  with  deriving  expressions  okay  there  are  so  many
equations and the mathematics is very rigorous and is it  limited to that okay, so in order to
satisfy those kind of people it is the better that you also do a practical  hands-on project take up a
case where you can really feel that you can apply  the concept that you learnt of course. 

You know I am not asking you to do  analytical solutions for everything so you can also try some
numerical  solutions okay which are nowadays gaining immense popularity and replacing  the
analytical solutions you should try that and see for yourself as a  fundamental research problem
how you are able to gain your number better your  understanding of what you learnt in the class
so far that I want to know give  this small problem of course they take some coding now you
have  to  write  a  small  code  you  know  based  on  finite   difference  method  it  is  a  very
straightforward technique once you know  that and the document which I posted as all the details
including. 

How to write the finite difference expression for the governing equations  how to apply the
boundary conditions and how are how are you going to solve iteratively and it also gives the
solution so I want you to just simply read the document thoroughly and  understand and try to
implement it may take some time that is why I am  announcing this one month before your final
exams okay so I will just give you  a brief overview any questions on what we have covered I
hope everything is  clear okay so anyway when you do the assignment problems I think things
will  get much more clearer alright okay so coming to your project of course. 

 (Refer Slide Time: 30:23) 



I am being a little bit hasty here before the topic of natural convection  is thought to you I am
giving you the problem but I think most of you have a  basic heat transfer background you will
be able to quickly appreciate what I am explaining here so you can  consider a square cavity just
for geometrical as well as computational  simplicity nothing else it can have any aspect ratio and
you can consider that the left-hand w of this cavity is  given some temperature you know you can
call this as the temperature which is higher than the right side temperature  okay, so this is a
heated cavity and the top and the bottom was are insulated  okay, so in this case you don't have
basically any flow to start with okay. 

So  there is no inflow outflow here it is just cavity which is enclosing a space  and you it is filled
with fluid and now you already know some basics of natural   convection so because of the
temperature  difference  there  is  a  boundary layer   growth which  happens  due  to  the  density
difference and this will start a  convection process okay so this convection process is called the
natural  convection okay so it is also called as a free convection so now for small temperature
differences so in natural  convection we characterize the non-dimensional number which is called
the grashof number also written sometimes as Rayleigh number this is  your G β  x pH -PC into
if you look at the dimension.

 If it is a square  cavity dimension is H cube by kinematic viscosity into thermal diffusivity okay
so this is a non dimensional number which characterizes the ratio of  buoyancy force to the
viscous force and this will give you the strength of the  convection which has happen so now you
can see that that is linked the buoyancy  force is linked to a temperature difference the higher the
temperature  difference the greater is be the density difference and that creates the  convection
patterns to be stronger and stronger so initially for small Δ T's  you  will  find  the   convection
pattern is very a mild and it will be mostly conduction. 

So if you look  at the isotherms you will find that the isotherms go like this almost and there  is a
linear  profile  from the  left  to  the right  that  is  indicating  that  it's   conductive  mode of  heat
transport and as the dial a number increases due to their  temperature increasing temperature
difference so the convection pattern  becomes dominant and you will see non-linearity coming in
the temperature  profiles do not look so good and then you start seeing streamline patterns so
initially your streamline patterns will show a circulation like this later on it  may become more
and more convection dominated okay. 

So you can start from  Rayleigh number of say 10 3 and go up to 10 5 okay so from something
which is close to conduction to something which where you can see the  dominant effects of
convection but still it Is laminar okay so this is what, I want  you to do with the project you take
a small cavity square cavity and you vary  the Rayleigh number from 10 to 10 3 to 10 5  and you
look at  the modes of heat transfer when it  when it  starts from being from  conduction then
transistor transition to convection and then becomes pure natural  convection and to solve this
you do not have to solve the navier-stokes  equations in the true sense you do not solve the
momentum equations but you  solve it. 



In a stream function verticity method which I have derived in the very  beginning okay so we
introduce a stream function and vorticity and solve the  equation so just to give you an overview
how the equations look for the case of  natural convection ok so anyway if you introduce your
stream function the  advantage is that your continuity is automatically satisfied so you do not
have  to  solve  for  the  continuity  equation  and  now  you  can  eliminate  the  two  momentum
equations by taking for  example to differentiate the X momentum with respect to Y and the Y
momentum with respect to  and you subtract the two therefore you can eliminate the pressure
gradients and  finally you can get a single equation divide of pressure okay so you have one
variable less to solve now okay and therefore the number of equations also  come down so in that
case your vorticity equation finally.
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If you do that can be  written as u be Ω so I am writing this under 2d incompressible and steady
state approximation so you do not have to look at the unsteady or transient patterns you just
directly go to the  steady-state and want to get the steady-state solution okay  so therefore the
steady-state  equations will  be  -  G β would be DT /  dy okay so now you introduce stream
function in terms  of you to replace the velocity in terms of stream functions so I can say my U is
=D side by dy if I assume a stream function and V is =-VC by so I can write this in terms of
stream functions so DC by dy x D  Ω by D X -DC / DX x D Ω /D Y is = the rest of the  things on
the right hand side is the same okay. 

So this term is a body force term which comes in natural convection  and you take the derivative
of the Y momentum equation with respect to Y so  therefore you have a DT by dy and the gravity
is acting downward here so  therefore you it acts only on the Y momentum equation okay if it
was a  inclined cavity then you have gravity acting in both the momentum equations so  therefore



when you take the derivative of the Y momentum with respect to Y and  subtract it so therefore
you get this -G β x  DT / dy okay so now this is your equation for vorticity so  what is a t
transport equation. 

So this is the first equation that you have  to solve and obviously you see to solve this you also
need to solve the energy equation along with it because you need  the information of temperature
gradient so therefore we solve the standard 2d  incompressible energy equation we do not use the
viscous dissipation we neglect the viscous dissipation so and that will  be u DT by DX + VDT
by D where this is the convection term on the right hand  side you have  α D Square t by DX
square +B Square t  by dy  2 so once again for u and V you can write in terms of the stream
function so this becomes this a by dy -D by D. 

So this is the second  equation this is your energy equation so you have your vorticity transport
you  have your energy and what else is required do you have enough equations to  solve for all
the variables  so this is a governing equation for vorticity right and this is the  governing equation
for solving temperature but what is the equation for  getting the stream function so there we use
the definition of vorticity okay you  define your vorticity how do you define participations so
your DV by DX -D  u by dy so there we substitute in terms of stream function for u and V here
okay  so your V is -  DZ by DX okay so therefore this becomes d square y by DX  2+D 2for
you it will be DC / dy this is = -Ω.

So this is  my third equation for stream function so I call  this  as equation  number three so
therefore you have three equations three unknowns okay so one for  stream function one for
vorticity and one for temperature three partial  differential equations and three unknowns which
you can solve by using  finite difference method and that is very clearly explained I think all of
you have some basic understanding of  finite difference in the heat transfer course in the in the
undergraduate  course already I think some of you we have done the finite difference expressions
okay for the 2d conduction  problem. 

And I think all the m-tech students also have taken numerical methods in thermal engineering
this  semester so should be fairly straightforward to express all the  derivatives in terms of the
finite difference expressions so you can  have a look at the document I have posted and that
clearly gives you how to  write the finite difference expression for each of the derivatives the
first   order derivative the second order derivative and so on and you solve these  equations
together I trait if you okay so solution for Ω requires of course  the knowledge of stream form as
well as a temperature solution. 

For  temperature requires a knowledge of stream function solution for stream  function requires a
knowledge of vorticity  so all these three equations have to be solved simultaneously but it can
be  solved iteratively okay that means you do not have to invert a matrix together  so first you
start with the solution to stream function equation where you guess  the value for vorticity field
to begin with that is  the initial  guess value you  solve this  and get  the field for the stream



function once you have the stream  function filled you come to your vorticity equation make use
of the  guessed value for so that is your hydrated value for the stream function  the field that
comes out so that field. 

You make use of you also guess the field for temperature and use this equation to  solve for the
vorticity okay once you have the vorticity field and your stream  function field then directly your
temperature field also can be solved so  like this you keep solving take the newer values the
latest values use that  in the next iteration and so on till the difference between two consecutive
iterations is very small you can use that as sum 1 e power -  5 or 1 e per  mind the same way that
you are using shooting methods okay.

You have a  convergence criteria and then finally stop and then when you plot these  contours in
mat lab or wherever tech plot or mat lab and you will find this nice convective patterns in terms
of a stream  function if you plot you can directly find out the convective patterns and  isotherms
also can be plotted so and they are coming to the boundary conditions to solve this you need
boundary conditions okay so the boundary conditions here as far as the  temperature is concerned
these two left and the right was are fixed  temperature so you know the temperature at those
points you do not have to solve them the top and bottom have adiabatic  conditions. 

So in the simplest case will be extrapolation from the inner point so  you divide the domain into
of course your grid which you all know and you  have your locations where you are solving for
the governing equations and then at the  boundary at the top and bottom you simply extrapolate
from the interior  point okay and for as far as the boundary condition for stream function is
concerned you have to apply the no  slip condition at the was u =  0 and V =  0 what does it
mean in  terms of stream function it means my DC by dy =  0 and DC / DX = 0 so if I take the
value of stream function say at this bottom left corner as sum 0 I can take any value. 

So the  thing is the boundary condition for stream function is in terms of gradients  so it doesn't
depend on the value as long as the gradient condition is  satisfied so if you take for example the
value here as 0 then you can look at  this isothermal w you can apply DC by dy 0 so therefore the
stream function  has to be 0 everywhere ok so if it is 0 here again for this w you can apply  DC
by DX 0 right so therefore it has to be 0 here even here so therefore in all  the ws you can
directly put stream function as 0 ok and for vorticity you  can use the remaining condition for
example for the left w you have used  DC / dy as 0 but you have not used DC by DX is =  0.

So this can be used  in the vorticity condition so you have you have the expression for vorticity
here so for the left boundary your DC by dy is = 0 therefore your d square  by dy 2 is 0 so this
will be 0 for the left bond ok so therefore your what  is it is d square Y by DX 2 you can write as
simple Taylor series expression  for the boundary in terms of the interior point and you can
express this  in terms of the vorticity at the ball the stream function at the boundary so  therefore
you can directly calculate your vorticity at the boundaries so all  these is very clearly explained
the document okay so please read through  the document. 



If you have any questions you can ask me okay but it is very  straight forward and just you have
to construct the finite difference expressions and you will be therefore  converting the partial
differential equation into an a set of algebraic  equations so that is the method how you have to
numerically solve differential  equations finally you get a resulting set of algebraic equations
which you  solve by any method whether you have to consider this as a matrix and use inversion
methods or do iteratively  okay so here you can do a very iterative  solution which is going to
take only a few lines of code do loops. 

Where you  just iteratively keep doing it till the convergence criteria satisfied and then you can
plot it plot the results for  streamlines already in the document for ten power three I think has
given the  streamlines and also for 10 4 and you should also plot the nusselt number  that you get
okay as a function of the Rally number I think in the document he  has also given that you have
four you start with say 10 3 and then say  10 4 10 5 and then so you can stop the 10 5  you know
this  just a representative and you can you can see the computed values which is  given there and
your computations you compare both of them on the same plot.  

For nusselt number apart from the nusselt number you also have your stream  function which you
have to plot and compare with this stream function and  you also have your isotherms which you
can plot ok so this gives you a very  good idea practically how you solve the navier-stokes
equation in two-dimensional case so there you have  the gift of basically reducing that in terms
of stream function verticity and you can get a direct solution through  differences and I think that
will hopefully give you a better appreciation  of subject when you go to the research  level okay
in the search level we need not do everything by similarity solution  so that gives you also an
exposure to using some numerical methods okay. 

So  that the deadline for the submission of the project will be on the last day of the class or
maybe if required if  required you feel some difficulty then we will have it on the day of the final
exam okay and my suggestion is that if  you feel that individually you have problem working
with that you can also  discuss with your colleagues you know there is no harm in discussion but
whatever code that you write should be individual it should not be copied and  you have to
submit your code along with your report.
 

Integral method for thermal entry length problem
End of Lecture 34

Next: Introduction to turbulent heat transfer
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