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Approximate method for laminar internal flows

Okay so good morning all of you today  the next two classes we will focus on  the approximate

techniques  applied to  the laminar  internal  forced convection we have seen the use of these

approximate techniques in the case of    external flows very powerful techniques  we can apply

them to flat plate flows  without any pressure gradient as well as  the case where we have a

pressure   gradient so even for the case of  circular cylinder with the when we make  use of the

walls approximation .

So it is a very powerful technique we can very nicely to a great approximation we can get the

profiles of boundary layer  thickness the thermal boundary layer   momentum boundary layer

thickness  the  thermal  boundary layer thickness and also the expression for Nusselt  number

which we obtain from using a higher  order polynomial is very close to the  actual analytical

solution now sometimes    as close as about 10-15 percent error.

 So  this integral techniques or the  approximate methods are very useful    techniques as far as

the external  boundary layer is concerned we will see  whether such techniques can be applied  to

internal flows because in internal  flows the main problem we do not have a  very clear boundary

layer kind of a flow  which we can visualize in an external    flow especially when the flow is in

a  state where it's about to become fully  developed .

So they are definitely the  boundary layer approximations cannot be  used so we can see till what

extent we  can make use of these techniques in the  case of internal flows and what is the  regime

where these approximations can be  valid so this is the topic for the next  two classes before we

wrap up the  laminar internal flows.
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So I am going to be talking about the integral method which is an approximate technique when

applied to the boundary layer flows and we will see how this    can be applied to our internal

flow problems okay so if you consider say a duct flow a plane that flow that is typically the flow

between two parallel plates okay so that is a plane duct so  if you look at the cross-section of a

plane that flow.

 So if we look at the typical cross-section you may seeing that is something like this so  you can

assume that the width of this plate is some W and the length of these plates along the X Direction

is L okay    you can see that the width is towards  the Z direction yeah okay and then you    have

your Y direction perpendicular to X  and Z all right .

 So this is a plane that the plane duct    is nothing but you are not confining it in the Z direction it

is just extended   to a certain width and in fact you can also consider that these parallel plate

case which were seeing in two dimension is a special case of the plane duct flow where the width

can be assumed unity are sometimes you know going extending to ∞.

 So where you do not have any confinement in the lateral directions    whereas if you have a

certain cross section to this suppose you replace this / a rectangular cross section okay so    here

you can see the boundary layers may start growing on this lateral walls also apart from the top

and bottom so then clearly this is not a two-dimensional flow this becomes three dimension same

way with the case of a circular cross section.



Okay the boundary layers start going  simultaneously from all the walls but in  all these cases we

have really not    looked into the three-dimensional nature  of flow whatever we have done so far

with the circular cross section was just  look at the two dimensional  approximation of it okay we

neglected  the radial  and the tangential components.

Okay and the radial  component  was included in the conduction part  of course but when we

looked  at  the  energy  balance  okay  we  neglected  the  dependence  on  the  θ   direction  the

azimuthally  direction  so  therefore  strictly  speaking  there  were  2d  axis  symmetric  what  we

considered so  far okay so this is if you rotate  about the axis of symmetry that is going   to give

you the three-dimensional  profile okay.

 So that is why they are they were called as 2d axis symmetric flows now this is a 2d axis

symmetric flow however this is not a 2d axis symmetric flow this is a clearly three-dimensional

flow so there you cannot rotate it about any axis and get the profile variation okay so therefore

you  have  to  solve  this  in  all  the  three  coordinate  directions  and  the  limiting  case  the  2-

dimensional  case of this duct with a finite  cross-section is your plain duct flow .

 Okay so this is where we consider the  two dimensional approximation of the  plain duct flow

where you look at the 2d flow in varying along the x and y  direction only without looking at the

Z    direction okay .

So this is nothing but flow between two parallel  plates or a plain duct so there are different

names  to it they all mean the same thing parallel plates so whatever we did under  internal flows

if you look at the    Cartesian coordinate system they are all  essentially plane duct flows or flow

between two parallel plates so in such a  case if you look at the boundary layer growth if you

assume that first your  velocity boundary layer has fully developed.

 So you can see that the  velocity profile at any axial location  will be fully developed profile

okay it  will  be perfectly  parabolic   and now if  you start  heating your plate   from a certain

location okay so either I  can maintain a constant wall temperature  or flux constant and you can

see that  the thermal boundary layer will start  developing okay so from here you can  take your

coordinate system and you  consider a thermally developing flows  where X starts from the point

where your  heating starts okay.



 So from here you  find the thermal boundary layer growth  happening so this is your ΔT which

is now a  function of X now at the point  when these two merge then this becomes  thermally

fully developed so this is basically your region III here fully  developed most hydro dynamically

and thermally this is your region II where  your velocity profile is fully developed    your thermal

boundary layer is  developing and if you go just   before several distance axial locations  before

you will be in region I where   the hydrodynamic boundary layer also is  still developing okay .
Now the question   is where I can apply the momentum integral method okay. 

In which region I   can apply yeah so if you look at region II if you have the fully developed

velocity profile then you can focus on region II where you have a boundary layer like structure

okay so that is only up to a certain distance downstream if you go further  down you can see

somewhere here it  loses    the boundary layer like structure the  boundary layers the 2 boundary

layers growing from the top and the bottom  walls they come close and then finally.

They are about to merge in such case  your boundary layer approximation will   not be accurate

okay so you cannot  that   therefore  apply  your  momentum integral   or  your  energy integral

approximations  in this region and definitely your boundary layer equations are not valid  once

they fully merged because there is   no boundary layers everywhere it is  dominated / viscous

effects .

So a boundary layer has as the definition  goes it is  a region which is if you look    at the total

length of the plate  compared to that this is very small so  your Δ / L has to be very small and

away from the boundary layer the flow  has to be in viscid okay so once the  viscous effects start

coming then the definition of your actual boundary layer  approximation will not be valid okay.

 So therefore it is clearly you can see within region II it can be applied from  the start of the

boundary layer to a   certain distance downstream okay so  these momentum and energy integral

approximations can be valid same way if you look at the region I if you go  several distances

ahead so you can find  the momentum boundary layer also starts  developing here and once again

you can  apply the momentum integral equations  for the place where the momentum  boundary

layer is growing.
 But once it is about to merge and once it has merged  again the momentum integral equation

loses meaning  okay so therefore when it comes to using  integral method for internal flows you

have to be very careful in which region  you are applying.
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 Okay  as  far  as  the  momentum  integral  is   concerned  okay  so  now  you  start  from  your

momentum equation okay.

 So you said  u Du / DX + V Du / dy = - 1 / p DP / DX + μd 2 u /dy2  so this is your   boundary

layer momentum equation correct  without the viscous dissipation term now  we will integrate

this from 0 to Δ 0  to Δ dy and you get your momentum    integral equation  okay so this can be

applied  for  the   momentum  boundary  layer  when  it  is  still  in  a  developing  state  okay  so

somewhere  here you can find that the boundary layer thickness and the boundary layer  variation

looks somewhat similar to a   flat plate case okay .

So one plate  here at the bottom one plate at the top   but the additional problem that you have  is

this pressure gradient okay so this   makes it a little bit more complicated  so when you have a

pressure gradient    term you should know how the free stream  velocity  is  varying  so for

example in the   external flow case you took free stream  velocity which are varying of this form

this is the Falkner Skan kind of a  profile so you should know what is the   variation and then you

can substitute  for DP / DX as D u   ∞ / DX but    however in the internal flow case it is  not very

clear about this.

 So therefore  one level  of  approximation  will  would be to  directly  neglect  this  because the

pressure gradient terms will not be so much when you look at the initial part  of the boundary

layer growth they will    become more and more dominant when the  two boundary layers start



merging and    once it is fully merged  then only the  pressure gradient term will balance the

viscous terms the inertial terms will  not be there .

So  if  you  look  at  the  initial  part  of  the  boundary  layer  development  you  can  make  an

approximation that this is 0 and this  is like now a flat plate flow  preposterous  the same way

that you did the momentum    integral there the same thing can  be applied but this will be a very

big  crude approximation and you cannot get  an asymptotic solution for the fully  developed

case from this case because the momentum integral is not valid for the fully developed case.

Okay so that  you should keep in mind so this is  basically the structure of the  hydrodynamic

development okay it is not   very different from a flat plate case  however lot of approximations

are    involved  coming to the energy integral .
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So in the 2d plane duct case you can of course write your energy equation which is U DT / DX =

so you can write this  as α D2 t / dy2 we are neglecting the axial conduction term in  comparison

to the radial conduction and  also we are neglecting of course the   radial velocities here okay so

these are  some approximations with which we are   writing the energy equation okay we  wrote

this for the case where we have a   thermally developing region okay .

So this is the energy equation for thermally developing region or thermal entry length region in

the  Cartesian  coordinate  system okay. So  in  the  classes  we  were  doing  this  for  cylindrical

coordinate system for the case of circular duct so right now what I am doing is we are looking at

only Cartesian coordinate system that is for plane ducts okay.



 So in that case you can integrate this and you can integrate   that from 0 to Δ T and once again

this is very similar to your flat plate energy equation in fact even much simpler than that    you

do not have your V DT / DX V DT /  dy so that becomes much easier to    handle rather than the

flat plate case  okay.

 So if you look at the energy    integral as such if you know the fully  developed velocity profile

okay which    you already know from your analytical  solution that can be substituted here    and

then you can directly use the  integral method for calculating the   temperature profile ok so this

is  perfectly valid as far as the thermal  entry length is concerned and once again you should be

careful  that you cannot reach the solution of  region III that is the fully developed  thermally

region as an  asymptotic solution to the integral  method .

Because this is not valid in that particular region the moment the thermal   the energy integral is

not valid in that particular region so this is what we can    say about the an integral method now

once it comes to non Cartesian    coordinates that is the circular coordinate that is the case of

circular duct then you cannot even apply the energy at the momentum integral there why because

you have a complicated.

So  you have here u dt / DX = you  have α 1 / r d / d r (r dt/ d r)   so now if you are integrating

from 0 to Δ t dr so this becomes quite    difficult to evaluate ok so you cannot  just like that say

this is DT / dy at y =0 so this is a function of R  and you have a function of R inside  also so as

such this becomes a little    bit more cumbersome to apply this to a  circular cross section okay.

 So therefore  most of the solutions with using the  integral technique are restricted to  Cartesian

coordinate  system  so  that  is   typically  the  plain  duct  so  when  you  are   looking  at  two-

dimensional flow between  a channel in a channel or between    parallel plates you can look at

either  the mostly they are valid when you look    at the thermal entry length problem  where you

already know the velocity    profile but you do not want to go  through the rigorous analytical

solution    for getting the temperature profile .

So  there we can use the energy integral  okay once again   when it comes to the hydrodynamic

development part there we have to make  some approximations and the profile  will be not as

accurate okay so most of  the textbooks that deal with the  integral method with the internal

flows    they look mainly at only the thermal entry length and that too for a    2d problem okay as



far as I know I  did not come across any literature where    they have extended this to 3d circular

cross-section okay.

So therefore its utility is very much restricted in internal flows it is not as   wide as in external

flows where you used it for almost all the problems where you   had has a similarity solution you

replace that with a approximate solution    and in fact even more than that for  cases where you

had an unheated starting   length for example.

 So there you cannot use the solution from similarity variables and again the cases where you

talked about with the pressure gradient  were much simpler and also the case  where you had a

non-uniform wall  temperature or wall heat flux so you had  a linear variation or some other

variation any variation .

So there those  were dealt  with the approximate  methods but here because of the geometry

constraint so we are fixed to only two-dimensional flows and also the fact  that it is valid only in

the region  close to the thermal entry length okay  and you cannot reach an asymptotic  solution

to the fully developed case  from this solution.

 So that so this you    have to be very clear about okay apart  from that the solution method is

very  similar to what we did with the external flows only we will  have a difference in  the

variables that we use okay so any  questions on this so therefore what we  will now do is assume

that we have a fully developed velocity profile and  start with our energy equation and look

into the thermal entry length okay and  get the temperature profiles and the    expression for the

nusselt number all  right .

   So we will have a coordinate system  where we will start from here and at the  center of  the

duct I will use the  coordinate system Y′  and X so the   one which is starting from the bottom

plate I will call the coordinate   system as Y in the one which is starting  from the center of the

plate I will call    this is y′  and from the center of  the plate so this is at a distance of    + D and

this is a distance of - D  this is the locations so the  total height of this separation between the

two plates is 2 D okay .
So this is  basically my coordinate system so what I  am going to do is first I am going to   solve

for  the  case  of  constant  wall  flux   boundary  condition  okay and then  the     constant  wall

temperature is very  similar and you can extend it .



So I am  going to look at uniform and now when we  define my non-dimensional variables

rather I use Reynolds number or nusselt  number I in the case of plain duct flows  it is common

to use in terms of the  hydraulic diameter or the equivalent    diameter although it does not have

any  cross section in the Z direction you can   replace your this is just the spacing  between the

plates so you have to write this in terms of the equivalent diameter .

 Okay so we will use the definition of    hydraulic diameter okay which is 4 A/ P and if you look

at the plain duct    if you imagine the width is very long of  course in the Z direction so that is

nothing but you have 4 XL times W   okay so in this case this will be  2 D X W so 2 D is this

particular  and you have in the Z Direction W  divided  by the perimeter what is the   perimeter

2X W okay.

 So therefore  this becomes 4d so your high equivalent    diameter if you talk in terms of some

cross section so you give some    representative diameter to that so in  similarly you talk in terms

of an    equivalent diameter so that is related  to 4 times the  or 2 times the    separation between

the plates okay so  this is your characteristic dimension with which you define non-dimensional

variables like Reynolds number and nusselt number .

Okay and we can look at  the fully developed parabolic velocity    profile so what we will do is

now we  will first start with this step and  we will integrate it from 0 to the edge  of the boundary

layer so we will look at    the coordinate system of Y when we do  this integral not Y′  okay so

that    is why I have written this as dy .

So I  can express this as d / Dx  integral 0  to Δ T I can write a α as K / ρCP and I can take ρ CP

to the left  ρCPu  (T – Ti) dy should be  = integral D2t  / dy2  so that is basically K DT / dy

between the limits 0 and Δ T so this  is a Δ t - K DT dy at 0  .  so I have just introduced T -Ti on

both the sides because Ti is the inlet  temperature you can assume that  the  profile which is

coming temperature    profile at X = zero is uniform  and this temperature is basically Ti   okay

so there is no harm in just  introducing Ti into the derivative okay .

 So now so this is very similar and in  fact it is simpler than the flat plate    case so there I had a

VD t / dy and I  had to rewrite my V in terms of U and  convert all my derivatives in terms of

derivative with X direction so now I  have directly only a derivative with    respect to X direction

here and this is  of course related to the wall heat flux .



 Okay which is known so what is the value  of this K DT / dy at Δ T zero okay  that is the

boundary layer condition and  - K DT / dy this is nothing but  your given heat flux which is a

constant    okay so therefore in this case your  energy integral simplifies to 0 to  Δ T ρ CP X u (T

– Ti) dy okay so now what do we need to do so we  have the energy integral equation.

We will call this as number 1 so this is my energy integral equation so how do I  proceed from

here  in  the  integral  methods  what  is  the  where  is  the   approximation  so  far  there  is  no

approximation made so this is called an  approximate method why we have to assume  a profile

now that is where the   approximation comes we do not know what  is the nature of the velocity

and the  temperature profile .
So we have to guess   some profile and I mean the best guess  could be something like a cubic

profile    as well as the velocity profile is  concerned we are not going to solve the  momentum

integral because it is now  hydro dynamically fully developed so   therefore we cannot guess any

velocity  profile but we have to take the exact    profile as it is okay because if we had  guessed a

profile there and we applied    the momentum integral that will be valid  only in region I and that

too in the    developing section .

Once it  is  close  to  becoming fully  developed then those   profiles  are  not  valid  and we are

looking at region II   now so therefore  we cannot guess anything for velocity we    have to take

the exact parabolic profile .
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 Okay so that is basically your u / u C    = 1-(y/d)2  I have not derived this ok I have  derived the

velocity profile only for  the circular duct but if you do this for  the Cartesian coordinate system

you will   get a very similar velocity profile  which is like this   so instead of r-not you will now

have  the half  separation distance D coming in the denominator  and this  is your  centerline

velocity and in your channel case your   u c is basically 3 / 2  u  m  okay whereas in your circular

duct your u c  was 2 um okay.

So I have not derived it in class but I think already you have done this in fluid mechanics    and

you should be able to recollect so this is basically the velocity profile    now this is this is written

in terms of what the coordinate system for this is from the center okay so therefore this  is y′

okay so if you look at the  profile at Y′  of D and -D  then  this will be equal to 0.

 Okay   that is only possible if the coordinate system is at the center so therefore we   have to

now convert a coordinate system from Y′  to Y because our energy integral is in y coordinate so

that is because we have we are operating in a    flat plate coordinate system which is attached to

the wall whereas now here it    is somewhere in the center of the duct okay so how do we do that

what is the transformation.

 So I want a system such a way that when  your  y′  =0 then    your Y should be = D and when y

your y′  is - D your Y should be = 0 okay that is  what your y  should be = + D so when your Y   ′

is = 0 Y = D  and when your Y′  is - dy =0 okay so this is basically your  relation so you can

substitute for this  Y′  as Y - D into the profile   correct.

 So therefore this  becomes u / 1-y / D 2 / d 2  which if you expand you get d 2 - y 2 + 2y d -d 2 /
 d 2 or if you so this is d2 and - d2 cancels this can be written as twice of     so here again this is d

so twice of y /  d – (y / D )2 so this   is your velocity profile with the Y  XY coordinate system

attached to the    bottom plate alright so you can again  check so for y =0 this will be 0    and y

=2 D so again so this  becomes 0 so this is 2 X2  4 - 4  0 okay so that satisfies the boundary

conditions of the velocity  .

So now once we know the velocity profile what else so we have we have taken the    exact

analytical solution for velocity profile    so what do we do next still we have not done anything

approximate  here  right  so  next  we  have  to  approximate  the  temperature  here  where  the

approximation comes. So we can assume a cubic temperature profile okay a + b y +cy2 + dy3   so

this is where you approximate or assume now in order to get the coefficients of the polynomial.



 We need to have how many boundary conditions 4 boundary conditions okay so what are the

boundary    conditions at y =0 ∂ T /  ∂ Y at y =0 should be = - Q wall / K this is one boundary

condition and what is the other condition at y = Δ T DT / dy  should be 0.

So two boundary  conditions the third one  okay so at y =0 if you look  at the energy integral

your velocity is  0 therefore d2 t / dy2  has to be 0 right so we need one more  and that should be

nice well you can see  that it should be at y =Δ T second order should be directly give  a second

order condition we will not    given condition for the profile  temperature itself .We should not go

to  higher order derivatives without giving  boundary condition for the temperature .

The first preference is for the temperature if you do not have that then you go to the higher order

boundary conditions what will be the value of temperature at y = Δ t TI right because outside the

thermal boundary layer whatever inlet temperature that will be the same it is like your flow past

a flat plate you    have your T   ∞ so outside the boundary layer so instead of that you  have TI

here so therefore you have 4    boundary conditions.

 So if you substitute  these four boundary conditions one after   the other you will get all the four

coefficients and your final profile will  look like this T -Ti = okay so I will call this as I will call

this velocity profile as number 2 and   this is equation number 3 all right  .

So if you substitute these profiles this is your cubic temperature profile that  you will be getting

so now you have your velocity profile and your approximate    temperature profile which you

can directly substitute into the energy  integral.
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So substituting 2 and 3 into energy integral 1 okay so I can write this as Q all double ′  = D / DX

and as far as the velocity profile is concerned so you  have 2 times uc  in two of course  uc X 2

y / D – (y / D )2 I am going to introduce    non-dimensional variables here one I  call as η which

is y / Δ T    similar very similar to the external  flow okay you introduced in terms of η    and you

remember you introduced ξ   there to denote Δ T / Δ right .

 So here we do not have any Δ because    we do not talk about boundary layer  momentum

boundary layer thickness    so rather than Δ what we should use    D okay you look at the profile

it is y  / D whereas in the external flow it is  y / Δ okay so then this will be  replaced  by ρ CP u

so these are the two    non-dimensional variables and now you  can write them in terms of non-

dimensional .

So this is ρ CP x  UC and t- ti  is nothing but Q all ″ Δ T / 3 K so I can  write that as Q what Δ T /

3k which    I can pull out of the integral and now I  can integrate from 0 to 1 so instead of  Δ T

set y = Δ T becomes 1 and you have u x T - Ti and you are you by you have already  written as

you see in this so this will    be 2 times y / y / D can be written as  Η into Ζ okay so this is Η Ζ

minus Η square  Η square this is your velocity profile    into t- t i already you have taken  the

constant out so that will be 2-3 Η +Η Q d η.

 Okay so now you have to simply integrate the resulting equation so if    you what you can do is

you can see  that for the boundary layer    approximation to be valid your Δ T  upon Δ that is your

Ζ should be   small okay  just like in your earlier case where    your prantle number greater than



one  your Δ T / Δ was small in your case for the thermal boundary layer  approximation to be

valid your Ζ   should be small.

 Okay so in that you can  neglect all the higher-order terms of    Ζ of the order two under book so

that  means all these is  multiplied by Ζ 2 and this can be completely  neglected and the resulting

profile with    the first order term can be integrated  out and you should be getting an   equation

which is d / DX.

So when you write in terms of Η here one more  thing so your y was Η into Δ T    so this

becomes Δ T 2 okay so  this becomes Δ T 2 into if you  integrate it out you will get a constant

times your Ζ because you are  integrating with respect to Η so you will still have this Ζ here that

will come out as 15 / 2 and you can  take K / ρ CP you see on the other  side okay so Q wall Q

wall cancels of course the constant .

So this is your  equation for your thermal boundary layer    thickness okay variation of thermal

boundary layer thickness along X so with  this you can now again substitute your Δ T in terms of

Ζ so this becomes    Ζ Q x D    okay so your Δ T Square so that so  when you had basically your

Δ T 2 that will be Ζ square into d2 and  d2  is  a constant I can    take it to the right hand side okay

so I  can now integrate it right away    and the resulting profile will be 15 /  2  K / ρ CP u C into

D 2x + a  constant    okay .

So I can evaluate this constant  with the condition that at X =0 Ζ should be what 0 okay so

therefore this gives the constant is 0 so therefore my Ζ will be 15 / 2  K / ρ CP u C y d 2 x X    the

whole power 1 / 3 okay so now what  I am going to do is just recast it in the    little bit so that I

can construct a non  dimensional variable out of this so my K / ρ CP is α I have u c D /  α so I

know my relationship u c  is basically 3 / 2 u m I can define my  peclet number in this case as um

and what is the diameter I am going to use my  equivalent hydraulic diameter D H / α.

 Okay where my um = 2 /  3 u c and my D H =4 times   D okay and so I have ρ CP um so um x D

/ α that is my peclet number    and I have another D which I can write  as X / D    okay so of

course I have these  multiplication factors which come up so  finally this will come out as 80 the

multiplication factors X / D h by  peclet  number the whole power one-third  okay so peclet

number  by  X / D is  nothing but the grades number .



So you can  you can now directly  say that  you are  Ζ which is  nothing but  your   thermal

boundary layer thickness this is  directly a function of the grades number    okay so once you get

this the rest of  the problem is a little bit    straightforward that is you have to so  once you got

your thermal boundary layer    thickness you can calculate your mean  temperature and the wall

temperature and   from there you can get an expression for  the inertial number .

So I can calculate my of course I   think I stuck off my T - TL I will    write it again so this was

my temperature profile cubic temperature    profile now from here I can calculate T wall minus

TI that is at y = 0 2    / 3 Q all ″ Δ T / K  right the other two terms are 0 and.
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I  can also calculate  my mean temperature.  Okay I  can so now if  you look at  this  particular

expression right here this is still not complete we have to get the mean temperature to finally

calculate the heat transfer coefficient because my local heat transfer coefficient is defined as Q

all / T wall - T mean so I need to get another expression for T mean -TI and then subtract both

that will give me T wall - T mean.

So  how do I get my Tm -Ti how do I get my mean temperature that is  basically integral (T -Ti)

x u dy correct now this is the case of  Cartesian duct so you are ρ u x dy    will be the flow rate so

divided  by integral 0 dy and from the definition of    mean velocity you know that um is equal

to integral u dy 1 / D so in this case it is 2d  okay so I have to integrate to get my    mean



temperature from 0 to Δ T  and I can actually replace this as 1 over D and my D will be D H / 4

so  therefore my u m will be 4 / D H    integral 0 to Δ T x u dy .

So that  can be this can be written as um xd H / 4 okay so now you get an  expression where you

have 4 / D H and    you have u by um here  so u by um I already have an   expression so I also

have an expression  for T -Ti which is this so I can    substitute both of them into this  expression

and get an expression for Tm -Ti so this will be 3 / 2 x 4 x Q all Δ T 2 / 3 K x D  H and within the

integral 0 to 1 the  velocity profile was 2 η  -    η 2 into the  temperature profile was 2 - 3 η    + η 3

x d η okay.

 So this was your if you integrate it once again   you already did it but now we are not  going to

neglect any higher order terms    will keep that as it is so your  temperature profile Tm -Ti comes

out to be    1 / 2 x Q 1 ″ D H / K  x  θ cube / 10  ε power    4 / 48 okay so this is the  relationship

for Tm -Ti .

So   therefore from this we can we know T  - T wall - Ti and Tm -Ti we  can take the difference

between these    two and that will give me T wall -  Tm okay so I will continue on Saturday  and

complete this so we can just   substitute here and finally you will get  an expression for your

local  heat   transfer  coefficient  as  a  function  of   your  Ζ.  Okay and Ζ you already have  the

expression in terms of the glides  number.  

 So finally everything you will    get in terms of writes numbers okay so  these are all just straight

forward you    know you have to just go step by  step  and you have to do the integration there

is nothing much to explain here  very similar to what we did in the case the only thing in the

internal flows you  do not use T   ∞ so therefore  additionally you need to calculate your  mean

temperature which is not required  in your external flow case okay so we    will stop here today

and Saturday we  will finish the last part of this and we   look at the result for the constant wall

temperature case also  .

Approximate method for laminar internal flows
End of Lecture 33

Next: Integral method for thermal entry length problem
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