
Lecture 32
Extended Graetz problem with
Wall flux boundary condition

So today we will look at a different kind of a solution to the extended grades problem so the

original  grades  problem was  done as  I  said  for  the  case  of  a  plug  flow with  a  constant  w

temperature and that was extended later by sellers to a parabolic velocity profile and we also saw

the solution to that so now we will quickly visit the last of the extensions that is with a constant

w flux boundary condition okay.
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So  we  will  look  at  the  extender  so  this  is  of  course  the  grades  problem for  the  thermally

bore developing region for the constant w flux boundary condition either it can be with a plug

flow velocity profile or a parabolic flow velocity profile if you take the case of for example a

plug flow kind of a velocity profile you start with your energy equation U DT / DX is = α into 1 /

R into D /   DR of R DT / DR okay.

So  this  is  your  basic  energy  equation  let  us  what  we  will  do  here  is  we  will  not  try  to

non-dimensional the temperature because we have a constant w flux condition and therefore and

any attempt to kind of define a non-dimensional temperature will be futile because if you define

your  something like T - T w / TI - T w so there it was useful and then you had a constant wϑ

temperature okay.

So you could take  out of the differential and little cancel off but in this case your w  temperature

is a function of X so therefore you cannot define your  non-dimensional temperature this way so

it is better to keep it in the  dimensional form okay and then try to solve so what we will do

however is to  non-dimensional the coordinates for X and R okay so we will write that in  terms

of Ζ and so we will define Ζ as X / R 0 divided /  pettily  number and my non-dimensional R is Η

which is R /  R 0.

So if you  substitute this into the given equation energy equation so you get u DT /  D  Ζ so from

here you can write your X as Z into R 0  into pettily  number now pettily number is nothing but

Ro into UM into D /  or you can say UM D /  α okay so this I can substitute in place of X so this



becomes R 0 UM D and the α goes to the numerator here so this is = α 1 /  Η  into D /  D Η into

Η DT /  D Η of course they are not here and here cancel  so I have a hard knot square which I

have to multiply it outside so my α  cancels here.

And I can also cancel off my R 0 so this I can write as  to 2 times R 0 so this becomes R 02 which

also cancels off and  therefore I get.
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U/ UM  into 1 /  2 DT /  D Ζ which is = 1 /  Η  D /  D Ζ  into Η into DT / D Η   okay now come

now comes the velocity profile which you want to use if you want to use a fully  developed

parabolic velocity profile then you substitute for the appropriate  relation so you know that U/

what  is  the  fully  developed  profile  you buy  UM is  =  twice  1  -  Η  2   in  terms  of  the  non

dimensional  coordinates so directly you can substitute for u /  twice um directly as  1 - Η 2here if

you want to go for a parabolic flow okay.

However if  you want to go with the classical how great started with a plug flow then you  can

say that your U is = U N so this is for a parabolic profile and this  is your plug flow or slug flow

whatever you want so therefore let us assume for  the time being that yours is a plug flow so

substituting this you get DT /  D  Ζ is = twice of 1 /  Η into D /  D Η  DT /  DT okay so this is

how your energy equation can be written  and now we have to state the boundary conditions

okay.



So now if you substitute  the parabolic flow you have 1 - Η 2 here okay 2 cancels off you have  1

Η 2so till here it is fine so now we have to state the  boundary conditions for the constant w flux

case okay so T corresponding  to Ζ = 0 and any value of Η TI and coming to  the boundary

conditions with respect to Η here you have a constant w flux  at R = R 0 so therefore you should

rather write DT /  D R or DT/  D  Η at Η = 1 is = Q 4 /  K this is your condition okay.

So this is  your w flux which is K DT /  D R at Η R = R 0 this is  basically DT /  D Η Ζ = 1 so

this is a constant and what is the  other boundary condition at Η = 0 T should be finite R DT /  D

Η at  Η = 0 should be 0 so this implies symmetry in the profile okay R  this also is equivalent to

saying P at Η = 0 should be finite okay so  now you see the problem so you want to define an

high grain  value problem here  however the direction of the high grain value problem you have a

non homogenous  boundary condition.

So therefore the question is how will you convert this into a high grain value problem okay so

here is where we introduce a particular technique to do that I have posted the solution for a

constant w flux but in a Cartesian coordinate that is for a channel flow on the Module I have

worked out  the solution and I  have posted it  you can just  go through it  and a very similar

treatment has to be done for the pipe flow case also.

Just I will give you  the overview I think after that you can go through  the document and it is

very straightforward process okay so what I am going to do is I am going to now  introduce ϑ

here which is of course not non-dimensional but I will say this is T - TI okay so therefore I can

replace this since TI is a constant okay niche in that is the inlet temperature so I can replace this

T with   and the condition here becomes at Ζ = 1 Ζ = 0   will be 1 0 he will become TI okay.ϑ ϑ

So that is the advantage so what I am trying to do is a wherever possible I can introduce zeros I

am doing it and then this thing this will be in terms of  this will also be in terms of  anywayϑ ϑ

TI is a constant so if you differentiate it does not matter now I am going to assume that.
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 of X , Y can be written as independent solutions or sorry here it is X , or  Ζ , Η and weϑ

returned as some capital X which is a function of Ζ  + V which is a function of only Η + the

perturbation which is a function of both  η ϑ so see now  the this assumption works well because

this is a linear operator the equation  is linear and therefore if you assume a linear combination of

solutions that  should also be a solution okay.

So you are assuming that your actual solution consists of two independent of two independent

solutions one which is only a function of Ζ the other which is only a function of Η and of course

you know this is just an assumption on top of it the actual solution can be  obtained if you have a

perturbation to this and that perturbation is you call  it as I which is of course the perturbation

has to  function of Η and Ζ so that brings out the interaction between the Η and  Ζ tours okay.

Whereas this purely talks about an ordinary differential  equation separately an order differential

equation separately and  this is a mixed solution okay so this is this is basically independent

solutions  in terms of Η and Ζ and this is the perturbation to the independent  solutions and since

the patch partial differential equation is linear and the  solution is a linear superposition of all the

solutions till this will be a  solution to the governing equation so now you see the advantage so

once you  substitute this into the governing equation okay.

So you can write this as you can separate this into two problems one where you first look at only

the  independent  solution  and  the  other  where  you look at  the  perturbation  solution  to   the

perturbation and then finally add everything together.
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So first part  will be the solution to independent  variables  okay so first what I say is that I have

a problem now I can substitute X of Z  and Phi of Η separately and it will satisfy this such a way

that you should  have you have DX /  D Ζ = twice one /  Η into D /  D Η into  Η V DV /  D Η

okay so you first assume that your independent variables satisfy this governing equation so you

write in terms of the independent variables so you get this as terms of X  this in terms of V and

this two can be equal if only they are equal to some  constant okay.

So then you can find this is a ordinary differential this is a  ordinary differential equation this is a

first-order second-order OD directly you  can integrate and write the solutions for V and X okay

so therefore you have two independent solutions and the  boundary conditions for this particular

problem in terms of X you assume that  X  corresponding to Ζ = zero is  = zero  okay and

corresponding to fee you assume that your DP /  D Η at Η = 1  is = Q /  K and the other boundary

condition is your DP /  D Η  at Η = zero is = zero  okay.

So you apply these two boundary conditions to this now you get the point why I have written it

that way so once the non homogenous boundary condition goes to this the remaining part which

is the perturbation will have a homogenous  boundary condition okay because once I have found

the solutions to the  independent variables the solution with respect  to fee we will take the non-



homogeneous boundary condition now therefore the  second part  will  be the solution to the

perturbation .

(Refer Slide Time: 15:26)

The second part  will  be solution to  the perturbation  here so if   I  write  the equation for the

perturbation I can just give the  boundary conditions so the boundary conditions for say can be

written as   - X - V of  okay  so now corresponding to this fact of course  when I,  when I lookϑ ϑ

at DC /  D Η at Η = 1 okay so this will be D   /  D Η at Η = 1 - D π /  D Η at Η = 1 so both willϑ

cancel out so therefore this will be 0 because your D  /  D Η is what QR /  K and also D π /  DTϑ

at Η equal  to 1 you have forced it to be QR /  K so therefore the boundary condition one of

them becomes 0 directly.

And the other boundary condition DC /  D Η at Η = 0 anyway both are 0 so that  will also be 0

okay so now  you see that you have reduced your non-homogeneous boundary conditions to the

two you are now  solving actually for the perturbation which has now homogeneous boundary

conditions and now this perturbation sigh can again be solved /  separation  of variables okay so

now you can say that I can assume that my side η  , Η is actually some X of Ζ and some Y of Η

and then I can proceed with my I can I can now proceed with my  regular solution okay.

So what is the remaining boundary condition that is at  X at Ζ = 0 so therefore at Ζ = 0 your side

at Ζ equal  to 0 ,Η will be  Ζ = 0 which is 0 - X of 0 which is  again 0 - you have P of Η soϑ

therefore the boundary condition at Η  = 0 becomes - P of Η okay so these are the boundary



conditions so  you have the boundary condition at Z = 0 then with respect to Η you have two

homogenous  boundary  conditions   so  therefore  if  you  substitute  into  this  you  separate  the

variables so in terms  of Y you will get the high gain value problem okay.

So and that will have two homogenous boundary conditions any guess what will what the high

gain value problem will be here  will that be a vessel equation it will be a Bessel equation and

you already  know the solution to Bessel equations we have to just combine the Bessel  solutions

and then you now the only difference between this and the constant  w temperature case where

the temperature was 0 at R = R 0 here you have both gradient 0 boundary  conditions okay.

So  this  is  this  is  the  difference  and  after  that  the  solution  is  straightforward  so  this  is  an

independent solution that you will get from separation of variables and you  already have the

solution for X and V which is a straightforward PD to integrate and then finally you superpose

all the three solutions and you get the final solution for  okay so this  procedure I have veryϑ

clearly illustrated in that example for  Cartesian coordinate system you please go through that

and in the assignment I  will ask you to do the parallel thing for the duct flows okay.

So only thing  there you have cosine and sine here you will  be getting in terms of the cell

functions so the final solution that  comes out it was done /  sellers and sellers did both the case

of the case  where you have a plug flow as well as the case where you have a parabolic flow  in

the case of parabolic flow you have 1 - Η square which is coming here  okay when you substitute

for the velocity profile you have 1 - Η  Square and there is no 2 here and therefore the  high gain

value problem in this  case will be what stambouli okay.

The stambouli will kind of a problem so sellers did this and the final solution for nusselt number.
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11 / 48 + okay so this our prime here is basically the gradient of the high grain function which is

basically the high grain function comes from the solution of this term Louisville problem okay

and these are coefficients for different values of  N  okay so this is  β η and now he tabulated the

values of β η N and R  prime β η N so this is the case for parabolic velocity profile so this is  the

solution by cell art setup okay.

So for different values of n β η N2 - R prime - β η N2 okay so N 123 the values go as 25 . 639

84.624 and 176.4, 8.854 – 3, 2.062 okay so therefore this is what he has done now you can check

for large values of Ζ okay so  ν large values from this table you substitute and calculate what

should be the ν for large values of Ζ so if you assume large values of Ζ you can say that this is an

exponentially decaying function goes to zero the entire term will be very small it will be simply

48 /  11 which is exactly 4.364 just check that.

That come to 4.364 for anyone has a calculator okay so what was so do you remember this

number  this  was  the  case  there  where  we  proved  very  first  for  fully  developed  both

hydroynamically and thermally and for a constant w flux condition this was the nusselt number

so now this is coming as an asymptotic solution to the sellers pro solution okay so these are the

things and of course  the sellers also did a case with where he did a constant linear temperature

w temperature variation okay.

 So he did all the 3 so he looked at the parabolic velocity profile and he looked at constant w flux

condition and also linear variation in the water temperature and he has also given the solution I



am not going to give that otherwise it becomes too many correlations so he has done all the

three so I am just going to plot.
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 The variation of the local nusselt number with all the three different boundary conditions as a

function of X /  R 0 /  prickly number or X /   plot it as D not which is 1 /  grades number okay so

he  has  done for  3  different  boundary conditions  constant  w flux   and linear  w temperature

variation which was something like P w is TI  + some ζ constant times Η this was the linear w

temperature  variation and of course your constant w temperature.

So now I have marked  here one two three so you have to tell me which one corresponds to one

okay let  us start with 3out of these 3 which one do you think will be corresponding to number

three which  boundary conditions T w is constant so that is number 3  so between 1 and 2 what

could be number 1 Q w is constant  how about linear variation of all temperature okay so finally

whether it   is linear  variation of all  temperature our Q w is a constant one it becomes both

thermally and  hydroynamically fully developed they reach the same value okay.

That is why  these 2 merge and you see the corresponding value is 4.3  and for the w temperature

you have 3.6 can you explain why the two cases give the same value so when you say q1 is

constant in the fully  developed case we have shown that the w temperature varies linearly okay

so therefore it should approach the first case where your w temperature  is very varying linearly



throughout okay so therefore the two nusselt numbers  will have to be the same in the completely

fully developed green  okay.

So I think this brings to conclusion all our analytical solutions  as far as the internal flow is

concerned and the last part today which I would  like to with which I would like to conclude the

analytical solutions will  be the.
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 Region one that is simultaneous developing or simultaneous entry length so this is your region

in the duct where your hydrodynamic boundary layer is  developing your thermal boundary layer

is also developing okay so this is your region one okay where both are developed  so that is why

it is called simultaneously developing or simultaneous entry length now this is a really tough

problem okay.

So you cannot make any assumption to the velocity profiles so what the only  solution to this is

to solve the momentum equations and get the velocity  profile simultaneously and the velocity

profile will not be a constant it will  also be changing with respect to X okay this is a very

difficult problem and  therefore if you want to solve the complete equations so you have to solve

the complete lavatory  equations now there are some approximations made to  the solution if you

say for a circular tube with axis symmetric assumption okay.



So that you neglect your variation with respect to the   direction so that is your axis  symmetricϑ

assumption you can write your momentum equation in the axial direction that is OU  D U /  DX

+ O V R into D U /  D R will be = - DP /  DX +  1 /  R D /  D R into  R into DU / DR so this

equation which we have written  right here okay so this assumes that there is no variation of

velocity with respect  to  direction and also the  radial momentum is also negligible okay  soϑ

therefore you write only the axial momentum equation neglecting the  variation with respect to

the  direction.ϑ

And this equation is very similar to your boundary layer equation in fact this is your boundary

layer equation right so this is your boundary layer assumptions remember in the flat plate case

we had the same thing UDU /  DX + VD U /  DY is = if  you have a pressure gradient you have 1

/  Ro DP /  DX + ν D2 U /  D DY2 the same way we have constructed the boundary layer equation

in the radial coordinate system okay.

So  this  is  an  assumption  to  the  actual  problem because  what  you  are  doing  here  you  are

neglecting D2 / DX2 okay that could be important okay because if you look at the acceleration   in

the  X direction  is  important  and also  the  higher  order   derivative  D2 /   DX2 also  becomes

important which you are  neglecting here and also it sometimes since its  three-dimensional you

could also have three-dimensional effects if you have a  non circular cross-section okay.

So  these  are  also  not  taken  into  account  so  in  fact  but  you  can  still  get  some  kind  of  an

approximate solution if you solve this equation for the velocity profile and but this boundary

layer  assumption  is valid only when you have close to the entry length if you move far away

once again once the two boundary layers start  to merge then the boundary layer assumption will

not be valid anymore  okay so  this is this is what comes out of it but there was a person called

Langhaar.
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 By  the name Langhaar  what he did was he even neglected defect of radial velocity that means

we neglected this term straight away okay the big assumption and then he took only the  axial

velocity variation into account with respect to X and R he solved this  equation numerically and

so the resulting equation which is always Ro U  D U /  D X = - DP /  DX 1 /  R into D /  DR into

μ DU / DR so the boundary  conditions that he solved at x is = 0 U is = UI.

So you had some  inlet velocity which is a constant okay so when it approaches the entrance of

the tube you have a inlet velocity which is constant and corresponding to R = R 0 you have u = 0

no  slip boundary condition and at R = 0 the profile has to be symmetric DU / D R at R = 0 has to

be 0  okay so he solved this numerical of course  you cannot find closed form analytical solution

because of all these terms  right here and he got a velocity distribution which was in terms of

Bessel functions okay.

So this has the  Bessel function of the 0th order and this is the second order Bessel function  the

first time Bessel function of the first kind 0th order first kind  second order okay so here γ is

basically some spy into it is a function  of X /  D /  Reynolds number okay and your Η was R / R

0  so  this was his velocity profile this is also called as longer velocity  profile so you see now the

velocity profile is a function of X /  D through  the γ as well as it is a function of Η okay.

So this is the approximate profile that Langhaar got by the numerical solution to this equation

and with the  following boundary conditions of course he neglected lot of things here so you

neglected the radial velocity and things like that so this is not a very good assumption when you



go too close to X is  = zero because here you have strong radial components of velocity  which

are in training okay.

So this is slightly this is valid then somewhere intermediate somewhere maybe from here to here

okay but nevertheless it is a reasonable assumption so using this profile now you can substitute

this into  the energy equation so energy equation can also be solved numerically.
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So of  course you have your energy equation as U /  U M into D  /  DX =Dϑ 2  /  D Ηϑ 2 + one /

Η into D  /  DT yeah there should  be a two here if I define my X as X /  R 0 /  Neglect numberϑ

okay so now this U /  UM you can substitute from the Langhaar velocity profile  okay and once

again now your velocity  profile  is a function of both your x and  y or Z or Ζ and Η okay

therefore okay so I can use the conventional  variables which I used before I will call this is Ζ

just to avoid  confusion okay.

So this cannot be again analytically solved because your velocity profile again is not only a

function of Η but it is also a function of Ζ so therefore this again has to be solved numerically

with  boundary conditions whether it is constant w temperature or constant  w flux and you get

the solution for the temperature and of course the final  nusselt number okay so the solution to

this equation was numerically done by first numerically integrated by case okay.



For different boundary conditions and we will find the solution to all of that one by one okay he

is the same case who wrote the book case and Crawford third Stanford University okay so there

are Lord of solutions to basic fundamental heat transfer problems 1950s and 60s  which were

done by 50 60 70 s which were done by  case and what happened was he  found out of course

solutions but this the person Heusen okay.
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So he comes to a rescue as we saw already that wherever there is a very complicated solution in

terms of Bessel functions or stambouli  high grain functions this  fellow house and was kind

enough to do an empirical curve fitting and then give  a more easier solutions in terms of only

grades number okay  so housing came and he took the profiles which were obtained by case and

then we finally cast them into a simpler form for different boundary  conditions okay.

So the first case was the constant w temperature so all  these were from using the longer velocity

profiles  okay so still  they  are   not  the  most  accurate  but  reasonable  so  the  nusselt  number

variation has expressed as 3.66 +  0.104 RE PR /  X /  D which is nothing but greats number

okay so you  can write this as directly grades number divided /  1 + 0.016 into rights number to

the power point 8 and  constant heat flux case so you see the limiting case where your grades

number  goes to 0 for large values of Ζ so it goes to the fully developed okay.

So  4.36 + 0.036 into bride's number  divided / 1 + 0.00 one grades number or point 8 and  finally

for the you also did for constant temperature difference okay the  constant temperature difference



is basically defined as T w - TM is  constant okay so for this E 4.36 + 0.036 grades number sorry

0.1 into grades number divided /  1 + 0.016 grades number 2 the  PowerPoint 8  okay so constant

temperature difference the simplest profile that you can think  of where you can have a constant

temperature difference is if you have a  linear w temperature variation okay.

So that  is  one case which way where you can think  about  this  and finally  both the nusselt

numbers go to the same asymptotic limits so these were the simplified solutions  by  Hausen and

of  course these are correlations which are much easier to work than the exact  solutions are the

numerical  solutions  which  were  obtained  using  the  Langheer's  velocity  profile  so  just  to

summarize I  do not want to now talk too much about how these illusions came because they  are

all numerical solutions.

And nowadays the more prudent way of doing this is to solve the complete partial differential

equation using computational fluid dynamics and directly get the most  accurate solution okay

rather than putting so much of effort into finding  the numerical solution to this approximate

equations okay so as far as  thermally developing profile has with fully hydroynamically develop

profile  is concerned we can straight get reasonably straightforward solutions  analytically but

simultaneously developing profiles are much difficult and therefore we need to go for  numerical

solutions.

So on a concluding note I will just summarize whatever solutions we developed analytically

okay if you look at the analytical solution  to the problems.
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First is the geometry or the configuration and velocity profile  and the corresponding eigen value

problem or I will say high grain functions  in fact I can also introduce boundary condition so this

is for region  so  hydroynamically fully developed and thermally developing so now look at the

constant w temperature and if you look the case of channel Club that is in  Cartesian coordinate

system and if you assume slug flow at a plug flow velocity profile the high grain functions  will

be in terms of sins and cosines  okay.

When it comes to constant w flux the same thing and slug flow but what is that what will be the

high grain function still it will be the same only thing you have to go by this approach whatever I

describe break up  into two independent solutions and perturbation the perturbation solution will

still be homogenous with a stock flow will be still sins and cosines now T w is constant or Q  w

is constant channel flow but a parabolic or fully developed velocity  profile.

What will be the high grain function what is that what function Bessel function in a Cartesian

coordinate system we do not get a Bessel equation  okay and when it comes to T w is constant or

Q w is constant but for pipe flow with a circular cross section  okay I will say circular cross

section if you have slug flow what will be the  high grain function that is it okay  and the same

boundary conditions circular  duct and if  you have parabolic  fully developed then it will  be

stumped .

So please take note of this so when you solve any kind of problem whether it is a channel flow or

pipe flow depending on  the boundary conditions depending on the velocity profile this you may



alternate between either of these kind of  equations okay so one more last table and with that so

therefore to summarize  all the solutions for fully developed case that is for.
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Region three and thermally fully developed so this is all for laminar flow till now okay and when

Professor Kohler comes he will start  looking at solutions to turbulent flow so geometry velocity

profile w  condition and the corresponding fully developed a self number okay we will  start with

a parallel plate  with a parabolic profile and Q w is constant the value is 8.23 parallel  plate

parabolic and P w is constant 7.60.

Next circular tube slug flow and Q w that is 8.0 circular tube and then you have  slug flow T w

that is 5.75 circular tube but parabolic  and then you have Q w you have 4.36 circular tube

parabolic  T w 3.66  similarly for triangular cross  section triangular duct  if you have a parabolic

velocity profile you have Q w then you have 3.00 triangular parabolic constant w temperature

you have 2.35 okay.

So this is the summary of the region 3 results we  have already done circular tube complete more

or less okay and parallel plate is  much easier than this because you will not have any Bessel

equation will have  straightforward ordinary differential equation for which you can find sins and

cosine functions then you can see the order in which the nusselt number  decreases so it is the

highest for the parallel plate case and compared to the constant w temperature constant  all flux

has always a higher value of nusselt number then comes your circular cross-section okay.



Your  slug  flow always  has  the  highest  myself  number  rather  than  parabolic  flow and  your

triangular  cross section or non circular cross sections will have lower value of nusselt numbers

okay so this is to  summarize all the results so we will stop here and tomorrow and on Saturday

the last two classes we look at the approximate methods there is  the integral method to solving

the thermally developing region. 

Extended Graetz problem with
Wall flux boundary condition

End of lecture 32
Next: Approximate method for laminar internal flows


