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So today we will take up a slightly different problem until yesterday we  were doing looking at
the fundamental grades problem the fundamental grades  problem simply looks at only a slug
velocity profile and then you look at  the thermally developing region and calculate the solution
for the  temperature as well as for the nusselt number and finally for the asymptotic  case where
your  X  goes  to  large  values  you  can  recover  your  nusselt  number  for  the  thermally  fully
developed region okay so the great is profile  originally which was which was done the great
solution done / greats himself  was a simplistic case and it was actually 1954.

When three people you know  sell ours and try bonsai I think I have uploaded the solution from
report original report from 1954 on the model  you can just have a look at it so these three people
sell are said I will have  extended the original grades problem to other cases so the most obvious
case  will be to look at a parabolic profile okay rather than a plug flow which was a  simplistic
case and do the same solution with a constant wall temperature  boundary condition okay so that
is  the  first  extension  they  did  and also they   extended  it  to  other  boundary conditions  like
uniform wall flux and also case  where the wall temperature is linearly varying okay so these are
some  extensions of grades problem so we will try to do a couple of these extensions  the first
extension that we will do today is for the parabolic velocity  profile.
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So I will call this as great solution extended for parabolic  velocity profile now obviously when
the great solution was extended the original  great solution for a plug flow was having Bessel
functions as the  Eigen functions and once the extension was done it  was observed that  the
solution was not as simple as just getting a Bessel function okay so we will look at the nature of
the  Eigen function how it looks and these Eigen functions have to be estimated in  some way or
the other that is when sellers did it they did not  have access to computers in 1954.

So they tried to do a kind of no mix-and-match  approach so they split the problem solution  x
three parts one for small values of R 1 for middle values of R 1 for  large values of R they got
three different asymptotic cases and they had patched up the solutions okay but  nowadays you
can solve the ordinary differential equation numerically directly to get the Eigen functions okay
so anyway so the probably  the  thing is  this  the solution  to  the  Eigen functions   are  not  as
straightforward as what we saw in the original grades problem so  now we know the energy
equation so we will write down the energy equation still  remains the same that is no change 1 / r
d / dr dt.
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Okay so this is the form of  the energy equation will  be still  working will  neglect the axial
conduction with respect to the radial conduction and still you have the  convection term due to
the axial velocity so we assume there are no radial velocity and no variation in the  Θ direction
now the question is earlier we just assumed you to be a  constant and just substituted as some μ
now we have to put the actual parabolic velocity profile coming from the full fully developed
hydro dynamically fully  developed.

Okay to do that first you can also do this in  a dimensional form like what we did for the Crites
problem you can substitute  for you in terms of μ and leave everything in a dimensional form and
then you can proceed to the solution but it  will also be a little bit  simpler to  do it  in non-
dimensional form so we are going to introduce some non-dimensional  variables in the beginning
and then substitute those non-dimensional  variables so I will introduce for temperature Θ like
the way I  introduced before it is T - Tw / Ti-Tw.
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Inlet _ T 1 so that at X is  = 0 you have Θ = 1 and R = R 0 your Θ will be 0 okay  and at R = 0
your Θ should be finite so these are the boundary  conditions for Θ are defined this way and we
will also introduce a  non-dimensional radial coordinate we will use the symbol Η so that will be
R / R 0 that is the radius of the duct okay and we will  introduce another  non dimensional
coordinate for the axial location or axial coordinate so we will  use the symbol Ζ for that and we
will define this as x/ r 0 /Pe so this is the non-dimensional  axial coordinate this is the non-
dimensional radial coordinate Η  okay the way that we have defined this x / r 0 / Pe okay this  is
this is convenient because once you get the solution for variation in the X  you saw that in the
grades problem you had a exponential - you had  something like X /V 0 / brick lane number.
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Right so in order to accommodate this variation and group  this together in one non dimensional
form it is convenient to define this entire group as so this group appears  together okay you do
not find X separately d separately and trickily  number they all come as one single group for
variation along X so  therefore it is wise to define a non-dimensional variables grouping  this
together okay now there is another non-dimensional number named after  grades okay it is called
the grades number and actually 1 over grades number is defined as basically X /B / Pe so this is
basically how the  grades number is defined.

So this particular non-dimensional grouping of X  / D / Pe is referred to as rates number inverse
okay so it  basically tells you about the non-dimensional axial variation is  represented / this non
dimensional number called the Wrights number inverse  and therefore you can see that if I define
X / R 0 / P as one non  dimensional group so this is nothing but a function of grades number
okay so this  comes out as greats number / to exactly okay so this is a this is a  one form of
convenient  form of  grouping okay  so  we will  stick  to  this  particular   def  non dimensional
formulation  for  Η Ζ and Θ and therefore  we will   substitute  this  and we will  see how the
governing equation reduces to we will also  use the parabolic velocity profile.
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So basically that is you buy Μ is = twice 1 _ R / R not the whole  square okay so in terms of non-
dimensional radial coordinate that  is 1 _ Η square okay so X from here this will be already you
know  Pe is what this is Ρ μ or μ D / α okay  so D or D 0 you can use this is the diameter of the
duct so therefore we can  express X in terms of Ζ so this is μ D 0 / α  x Ζ okay so you  have in to
R 0 which I will write it as d 0 / 2 so you have a term  something like this okay or I can express
everything in terms of R so I  can write this as for R 0 square so this becomes 2 R 0 square okay
so  this is the transformation I have to do from I have to substitute for X from  this expression in
so it becomes in terms of Ζ and for our I can use this  transformation so that I can substitute in
terms of Η.
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Okay so if you do that  so you will be ending up with for you have already to Μ  x 1 _ Η  square
if we substitute the non-dimensional variables  let me call this as number equation number 1the
energy equation so  divided / α  x DT / D X so T in terms of Θ that is basically TI  _ T wall D Θ /
now once again X we can write in terms of Ζ from here okay so this will be D Ζ and you have
the other terms you have to Μ are not Square and there is an α coming in  the numerator okay so
that should be = so when you substitute for R in terms of Η so they R0 R 0 cancels between these
two and then you have an R 0 square coming.

 here okay  so you have 1 / R 0 square okay D / D Η  x Η D so I substitute once  again in terms
of Θ so this becomes D Θ / D Η and then I have Ti  _ v1 okay the reason why I use this Θ here
because my inlet temperature  is a constant wall temperature is a constant okay so it is not a
function of  either X or Θ so for the case of constant wall temperature boundary  condition if you
non dimensionalize this way so my Ti _ T h will come out  of all these derivatives and get
cancelled on both sides okay so  therefore this cancels off you have R 0 square which cancels off
here you  have α which cancels off and then to Μ cancels off right away so finally you  are left
with a expression 1 _ Η square  x D Θ / D Ζ which is  = whatever is there on the right hand side
okay one my so okay I left one  / so that should be won / Η here won /  Η Lee / Θ D Θ / let me
call this as equation number 2.
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So  therefore this is the non-dimensional form of the energy equation after I  substitute for the
fully developed velocity profile so this has become a  little more compact then when I work with
the dimensional form right I have  so many terms in terms of U I have μ I have α all those things
appearing  now all those things are eliminated okay so this is a much so I always recommend
that you can if you like to work with a more compact form you can define  non-dimensional
variables in the beginning and then you can use it for  the constant wall flux boundary condition.

However you cannot define a  non-dimensional Θ like this because there your wall temperature
will be vary  and therefore you cannot define so you have to just say t _ TI or something  like
that okay so you have to be careful for the case of constant wall  temperature condition you can
define a non-dimensional for a case of  constant wall flux you cannot do that okay so but still
you can for that case  also you can define your non-dimensional Η and Ζ okay that will save
some  put some save some effort in removing.

All this μ and variation in α and  all those terms okay so now the boundary conditions for this in
terms of Θ to  solve this how many boundary conditions we need  3 so inter in directions in ζ
direction how many Θ and how many one  in Ζ and two in Η direction right so therefore Θ now
at any value of  Η corresponding to Ζ = 0 that is basically saying that T at X is  = 0 so the non-
dimensional Θ will be 0  what will happen at if you look at the one so if you look at the problem
configuration so this is your region which you are looking now so this is  your Δ T this is your Δ.
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Okay and in fact what you are doing right here it  is not something exactly like this but you are
starting from a point where it  is fully developed that is your coordinate so you can consider that
your  thermally fully developed region meets somewhere further down okay and this is your
coordinate right here this is your  X this is your R so once the velocity profile is fully developed
then you  start looking at the thermal entry length problem okay so you start  basically heating
from here or maintaining a isothermal condition so in  this particular case.
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At X is = 0 this is where you are calling this as di  a temperature which is entering the thermally
fully developed region okay so  at X is = 0 Θ should be 1 because T u should be here.
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And the other boundary conditions with respect to Η now Η = 0  your D Θ / D Η should be 0 or
Θ  should  be  finite  both  are  equivalent  boundary  conditions  and  the  remaining  boundary
condition at R equal to R 0 so that corresponds to Η = what 1 so at any value of ζ  at Η = 1 what
is the boundary condition 0 okay so therefore now you  have a partial differential equation like
before for the great is problem only  thing you can see earlier you did not have this 1 _ ζ square
that  was  a   constant  plug  flow case  now you have  this  extra  term and the  other  boundary
conditions are all same ok there is no difference so now we have to solve this  PD so the same
method that we use separation of variables will do it here  okay so how do we start we say Θ Ζ Θ
will break up x two parts 1 X which is a function of Ζ and capital R which is a  function of Η.
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So the  actual  solution  is  product  of  two solutions  1  which  is   so  these  are  to  independent
solutions ok one function of only X the other  function of R or Η all right so therefore if you
substitute this  x  your equation number 2 okay assume that this is your solution and  substitute
so you end up getting 1 _ Η square  x DX / D Ζ and / R is constant  on the other side you have 1 /
Η you have X constant D / D / D Η  x  D R / D Η okay.

So I divide both sides / Xx R so this becomes 1 _ Η  square / Xx so I will also take 1 _ Η square
on the right hand side  so this becomes 1 / X DX / D Ζ this is = 1 / r  x 1 _ Η  square  x I have
already a Η here  x D / D Η  x Η D R / D okay  so now I can see that this is a function of Ζ this is



a function of  Η so this both have to be equal and therefore they have to be = a  constant which is
always negative okay so in order to have an exponentially  decaying function along Ζ this has to
be a negative constant okay and this is  the eigenvalue  so now I can write this in true form of
two OD 1 where I can say DX / D  Ζ + Λ square X = 0 I will call this as number three and the
second whoa D I will expand this term right here if I expand it I can write  this as d square R / D
Η square + 1 / Η D R / D Η + you have  Λ square and this entire term I am taking it to the other
side so this is 1  _ Η square  x R this is = 0 I will call this as my so equation  4.
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So this is the first row D with respect to X second row D with respect to capital R so I just
expanded this  term right here so this is e tie  x d square R / DT square plus D R / D Η   x one
okay so that is what I did and I already have Η at the bottom so I  divide everywhere / Η and so
you have this term Λ square  x R  x 1  _ Θ square okay so therefore I use the same boundary
conditions  there   and  with  respect  to  R  now  you  can  see  that  you  have  two  homogenous
boundary  conditions because with respect to Θ you can substitute.

As R  x okay since X has to be finite you know it  cannot be trivial therefore the boundary
condition should have should apply to  our right so whatever you say here so your D Θ / DX so
this will be D /  D Η  x you have X of Ζ  x R of / so this should be = 0  at anyway so I can write
this as Η = 0 okay so this can be 0 only if I can say D DX / D Η if you if X  is = 0 also this can



become trivial but the problem is if X =  0 there can be no solution ok therefore this implies that
your D / D Η at our  D / DT or at Η = 0 this can only be 0 okay right because this  can be 0. only
if either of this is 0.
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If x is 0 that means my entire solution  becomes trivial okay whereas our at Η = 0 can be 0 that is
the only  other option okay so therefore this is the boundary condition which falls on  are the
other boundary condition that is Θ at Ζ Η = 1 this is  = 0 the same way so once again I can say
my X of Ζ  x R of Η equal  to 1 is = 0 so once again X cannot be 0 so therefore this indicates  my
R Η = 1 should be 0 so therefore these are the 2 boundary  conditions with respect to so this will
be anyway normal derivative not the  partial one because R is a function of only Η so to solve the
Eigen value problem now you can see that Eigen value  problem has two homogenous boundary
conditions with respect to Η ok so therefore equation number 4 is the Eigen  value problem
which I have to solve and apply the boundary condition now if you  look at equation number 4
what kind of equation is there.
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This is where you have to be a little bit careful you look at the structure of the vessel equation I
have given it is  very deceptive but if you look at it a little bit more carefully if you multiply
everywhere  with Η square okay the first to the second order and the first order  derivatives will
appear to be similar to the Bessel equation but the term the  third term here will have Λ square Η
square  x 1 _ Η square  x  R so that structure is not the same as the Bessel equation okay so the
Bessel  equation has _ some constant term _ some constant number _ nu  square okay does not
have - a function of X right so therefore this is not the actual Bessel equation so what we can
call this as a general form of any eigenvalue problem which is called a  shrm Linville equation.
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Anybody has heard about this equation shrm -Linville problem Sturm and if anybody has taken
partial differential  equation course anything to do with differential equation how many of done
only one so you must be dot term Linville equation because that is the most fundamental part
when you talk about  separation of variables any general eigenvalue problem okay to for which
you can find the Eigen functions it is generally called as a Shrm- Linville  equation that includes
even the Bessel equation.

Okay so this is a generic name  given to any Eigen value problem that includes all kinds of
equations all  kinds of second-order OD is all kinds of Bessel equations whichever that you  have
encountered  okay so that  is  the  general  category  of  Shrm-Linville  problem so  therefore  we
cannot pinpoint this to any particular familiar equation  okay this is not a Bessel equation but it
can be generally called as some shrm- Linville equation okay so and I  will just give you the
generic form of the Shrm Linville  equation and  yourself can see that it  is generally of this
particular form  okay where these are the this is the weight function.
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So any ordinary differential equation which can be cast x this particular form okay form system
level system of equation and  this includes most of the all the eigenvalue problems okay even
this  equation right here we can just cast it in this particular form okay so for this  case you can
put it as _ D / D Η Η dr / + 0 = Λ  square  x 1 _ Η square  x Η  x r so you just expand and see so
this is Η  x d square R / D Η square okay + you have D R / D Η okay so I'm multiplying
everywhere /  Η okay plus you have Λ square 1 _ Η square  x Η right so I can  write that
equation in this particular form so this comes to us term kind of an equation.

So now if you compare the coefficients okay the coefficient here p of x is nothing but Η and Q of
X is  nothing but 0 and of course Λ here is Λ square okay and if you look at  this weighting
function this is a function of X here so that is this has to be a function of Η so this the  entire
thing is the main function or weight function  okay so the property of any Eigen function as I
said yesterday it has  to be orthogonal okay that includes even Bessel functions and any general
Eigen  functions which are of the Shrm Linville type have the orthogonal  property and for this
term Lu will kind of equation set the orthogonal property.

Will be you have ∫  A to B Y of n  x X Y of M x Xx W of X DX  okay is = Δ MN so this is the
orthogonal T  okay so what it says when M is not = n this Kroc Necker Δ this will be  0 right
when M is not = n this will be 0 therefore they have to be  orthogonal means if m = n then only
this will be = one so in  that case this will be /square  x the weight function DX ∫  should  be = 1
if M is not = n this ∫  will be = 0 just  like what we saw a stood if you multiply Bessel function
JN x  JM y okay if M  is not = n so there will be 0 the ∫  product will be 0 okay so this  is the



principle of orthogonality for any Sturm level problem so here you have  identified what is the
weight function correct so in this particular case what  should be the orthogonality condition  so
if I integrate what should be the limits of the ∫  0 to 1 good and  then instead of why I have my
are RN of / x RM of Η.
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And what is the weighing function here Η x 1 _ Η square x D Η this is nothing but your chronic
adult this is the Δ function I hope all of you know what a Δ function is so it is = 1 at only one
value everywhere else it is 0 so for the case where you are m = n then this is = 1 otherwise it is 0
okay so therefore this is my orthogonality condition which I will use where should I use the
orthogonality condition when we solve.

The OD when I want to calculate one of the constants  right so this I keep it now so therefore you
see that the solution to the Shrm Linville problems can be represented as so you can say in this
case that you can write this as summation of some CN times Rn of Η  where n can go from 0 to
∞  so once you know the Eigen function okay so  you can write this solution for Θ or whatever
you call you can write this as  r prime or whatever so your R of Η can be written as.
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The Eigen function times  the constant summed over all the values of eigenvalues okay now the
question is  how to basically find the eigenvalues  so for that we have to it is not as simple as
solving the Bessel equation  because now this is a general term local problem and you have to
solve the  ordinary differential  equation that is equation number four we have to solve  this
numerically okay you cannot this is not a generic this is not a particular  form of any equation
where you can get a ready-made solution okay so any general  Shrm-Linville problem.

If it is familiar equation then you can get a  solution straight away like the Bessel equation if it is
unfamiliar then you  have to apply these boundary conditions to boundary conditions and you
have to  solve for the Eigen functions which are in terms of are okay so therefore this  is a little
bit rigorous procedure you know I am not asking you to do it  however this sellers they have
done it in a slightly different way they use some approximate methods to patch it up  I do not
think that's a very good technique right.

Now because  we have   access  to  computers  and you can  solve  this  equation  straight  away
numerical  now the question is for solving this you need the Eigen value okay so that  becomes
like a constraint and the Eigen value can be related to the derivative  to heart okay I am not going
to detail but there is something called as  a rally coefficient okay for Shrm Linville problems so
which relates your  Eigen value to the derivatives of r and therefore you can guess the value of



Λ right  just  like your shooting method you guess your value of Λ  and then you apply the
boundary conditions okay and then keep marching  until the other boundary condition is satisfied
and then again you use the  derivative and then check if your Λ is correct okay so this has to be
done i  iteratively till you guess the right value of Λ okay so overall what I  would like to say is
that you have to solve equation 4 numerically to  obtain the Eigen values and the Eigen function
the Eigen function is basically  our variation of R with respect to Η.
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So once you do that so now your final  solution so can be can be expressed now directly as Θ
which is a function of  Ζ and Η now what is the solution to this equation number 3 this is a
straightforward OD X = some constant C e power _ Λ square X  okay so that is a straightforward
solution so therefore your final  solution Θ will be product of X and R ok so as I said you can
have multiple  values of eigenvalues and for each of this you will have a solution okay I can
function so therefore you have two linearly superpose all these multiple solutions so therefore
you use a  summation from n = 0 to ∞  and the constants coming from this C and here you just
go up to Club them  together as one C  x the Eigen function coming out of that that is RN of Η
and  the solution which is coming out of this is basically Ζ here that is e  power _ Λ square Ζ this
is your form of your solution.
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Right the  product of this and this ok so now the thing is finally so now you have to do  it
numerically to solve for the Eigen value and Eigen function the remaining  constant see can be
solved / applying what? Yeah, we you make use of the orthogonality property but we have to use
the remaining condition for Θ okay that is Θ at Ζ = 0 which is 1 okay so that is nothing but
summation n = 0 to ∞ CN are n of Η and for Ζ = 0 that becomes 1 okay so now to get CN out of
this I make use of the orthogonality condition.

So I  multiply both sides / the weighting function times some RM of Η ok both  sides and
integrate so from 0 to 1 so the weighting function is Η  x 1  _ Η square  x some RM of Η  x D Η
okay I multiply this from  both sides so I have ∫  0 to 1 summation Η = n = 0 to  ∞  e turn  x 1 _
Η square I have R M of Η R n of Η  x CN so  CN will be here in 2d  right so now you can see
that based on the orthogonality property if M is not  = n then this entire thing will be 0 okay only
for m = n this  will be one okay so therefore we can say this is ∫  0 to 1 this there  would not be
any summation.

Because for any value of n which is not = M this  summation will be any way leading to 0 so this
will be CN  x Η  x 1 _ Η square  x R and Square D Η  so if I say 0 to 1 Η  x 1 _ Η square  x RN
square of Η D Η will  be actually _ 1 / this is the actual value if you know the  Eigen function
you have to take the derivative with respect to Η and this will be at Η = 1 and this is  the value of
this complete product and integrate ok so this is the property.
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So this is also property of the Shrrm Linville system of equations so therefore you can calculate
your C so your CN comes out as ∫ 0 to 1 e tie x 1 _ Η square x RN of Η D Η divided / so the
summation is gone you have ∫ 0 to 1 x Η   x 1 _ Η square x RN square of Η DT.
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Right for m = n so this  becomes our n square otherwise this is 0 so basically we will stop with
the fact that you can calculate your CNE here I  will give you the actual calculation of these ∫ s 2
of them I have to  check whether with whether this is with respect to Η or whether this respect  to
Λ so let  me just  hold on for  that  in  the  next  class  so I  will  give  you the  expressions  for
evaluating these 2 ∫ s and then from there it is  mere substitution okay so once you get your
constant CN there for your solution.

So for Θ is known once you know your  Eigen functions and your eigenvalues okay so this
people cell are set all they  have with some approximate method they have evaluated the values
of eigenvalues  and the corresponding constants I will give those tables also in the next class
when we do the solution and from there you can asymptotically reach the case of large values of
X and you can recover  your earlier result for nusselt number that was some 3.6 for  constant
water temperature with a parabolic profile so you can exactly  reach that as emphatic well so in
the next class on Tuesday we will complete.

This  solution  and so we will  look at  very briefly  the extension  of  the   greatest  problem to
uniform wall flux boundary condition there I have posted  already in the Module a solution for
channel flow where I assume a plug flow  velocity distribution and constant wall flux boundary
condition and have posted  the form of solution I will like plane very briefly how to do it and you
can look at that solution and you can very easily understand it for the case  of constant wall flux
boundary  condition  you  have  to  tweak  in  such  a  way  that  the   eigenvalue  problem  has
homogenous boundary conditions whereas if you have  a constant wall flux boundary condition



that is not homogeneous okay so  therefore we play around with the solution in such a way you
reach a homogenous boundary condition and that  is explained in the derivation which I posted
on Module and you can do a  similar kind of a derivation for the duct flow so what I have done is
for a channel a very similar procedure for  duct flow can be done so that will be a extension
which will be useful  to you and that will go towards the ∫  solution the approximate  solutions to
internal flow problems okay it is very similar to your external flow  ∫  method okay that will be
the last topic and with that we will wrap  the internal flows laminar internal  you okay.
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