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So today we will take up a problem on the variable w temperature case and we will look at how
to get the expression for the w heat flux variation as well as the heat transfer coefficient so let us
take the example of a linear surface temperature variation that is of the form.
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T w (x) = a  + BX okay so if you  plot the surface temperature as a  function of X so at X is = 0
that  will be = constant an and from  there it varies linearly okay so this is  the value T w at X is
=  0   which  is  =  a  so  if  you  go  back  to   what  we  derived  yesterday  with  the   Duhamel
superposition integral if  you  have a continuous variation of the w  temperature so we have
derived the  expression for the w heat flux  this was 0.33 1 x K / X P R 1 by 3  and you have T w



at θ =  0 - T ∞   + 0 to X 1  - θ by X the whole power 3 by 4  - 1 / 3 DT 1 by D Ζ x okay ,so  this
is our expression you know now if  for the limiting case where you do not  have any slope the
slope is 0 so this  is Steve all - T ∞. 

So this  becomes = your flat plate with a  uniform temperature expression okay so  of course if
you have continuous  variation but also intermediate  temperature jumps okay so there you have
to introduce an additional δ T x  H you know for those temperature jumps  in between okay so
apart from that this  is the expression now we will substitute  for the given temperature profile
whatever we require so for
 
example  in order to evaluate this Duhamel  integral we need to first get the slope  of the w
temperature profile and  since this is a linear profile it is very  simple  so in this case DT w by D
Ζ will  be for this particular profile B right  so we will substitute this x the  equation.

(Refer Slide Time: 03:20)  

Let us call this as equation 1 so this is T wet Ζ = 0 is nothing but a okay so right at X is  = 0 this
is nothing but a so  I'm just substituting for T wet Ζ  = 0 as a - T ∞   +  integral 0 to X 1 - Ζ / X to
the  power 3 by 4 the whole power - 1 /  3 DT w by D Ζ is nothing. But B so  this will be B x D
Ζ okay so now  all we need to do is evaluate this  integral because everything else is  known T ∞
is given for this  problem whatever value it is known as is  a constant B is a constant so we need
to  find this particular integral and this  particular integral  whatever slope that you get and put it
here is of the following form which we  will reduce it to so we can assume a  variable Z which is
= Ζ / X  3 / 4 okay. 

So I am just  going to transform the variables again  so I am saying that θ by X 3 / 4 is = some
other  variable Z so therefore DZ by D Ζ  should be = 3 / 4 Ζ /X 3 by 4 - 1 which is -  1 / 4 x with



respect to D Ζ Ф  so X is a constant so it will be 1 by X  right so this is my derivative okay  so
therefore now I can substitute for D  Ζ in this integral in terms of  DZ okay so this will give me
my DZ is  = 3 by 4 x X power this is X  1 / 4 - 1 so this will be X  -3 /4 okay x ζ -1 by 4 x D Ζ
alright  it is just I am just doing some  algebraic manipulation there so  therefore now I can
substitute for D  Ζ I can transform these variables  from D Ζ 2 DZ okay so I can substitute  for
Ζ / X T2  / 4 s Z  and D Ζ. 

I can substitute in terms of  DZ in fact I can also write this in  terms of Z ok now that is Ζ by X 3

by 4 so Z 1  by 3 I can put it because this is  already so my DZ will be D Ζ 4 by 3  here X 3 by 4 Ζ
1 /4 okay so  θ by X so I can write this as 1 by 4  X -3 by 4 I can take 1 by 4 X  yeah so I can write
this as Ζ by X  the whole power 1 by 4 this one - yeah  right yeah right I can write it like  that
because this is anyway 3 43  / 4 I can write it as X / X  1 /4 okay so now this is nothing  but θ by X
to the power 1 by 4 is  nothing but Z 1 / 3 okay  so this I can rewrite as that to the  power this
entire thing has that to the  power one-third okay so what I am doing  is I am transforming all my
variables  from Ζ plane to Z plane okay. 

So where   ever  I  have  Z that  also  how to  include   that  so  therefore  if  I  substitute  x  this
expression 0.33 1 a/ X P R  1 /3 Rd X to the power so you  have a - T ∞   + so I  haven't
substituting for D Ζ so 4 by  3 is constant 4 by 3 also B is a  constant I can take out and also
inside  the integral this is integrated with  respect to now DZ therefore X also can  be taken out
of the integral now 0 to  this is originally 0 to X here so I can  transform this to 0 to  one okay
because that Ζ = X  this becomes Z = one so therefore  this will be the upper integral will be  one
upper limit of integration so this  will be 1 - Ζ 1 - Z sorry 1  - Z - 1 by 3 and you have this Z  1 /3
here so that will also come  outside and by 3 x DZ okay just check 1  - Z to the power - 1 by 3 x
that to the power 1 /3 DZ okay so now  I have anyway transformed that to this  integral right here
now how should I  integrate so I will just give you the  formula. 

Now this is of the form of what is called as a β function okay the β function can be expressed so
generally the problems with the Duhamel integral will be of the form of a β function once you
transform the  variables from Ζ to DZ  okay so you will be ending up with a  function something
like this and you can  express this β function. 
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In terms of constants P and Q 0 to 1 Z P - 1 1 - Z Q - 1 valid okay this is valid for positive values
of P and Q > ∞ okay so this is how your β function is defined okay, now if you compare this with
this expression you can see 1 - Z Q so therefore Q - 1 is = - 1 by 3 and P - 1 is = 1 by 3. Right
therefore Q is = 1 1 -  1 / 3 2 / 3 and P = 1  + 1 /  3 4 / 3 okay so therefore this P and Q  will be
nothing but 4 /3 , 2 / 3  okay, so therefore this entire term can  be written in terms of β function.

(Refer Slide Time: 12:40)  
 

Okay so everything here as it is a - T ∞   + 4 by 3 VX x β function okay this entire integral is β
function the parameters are 4 / 3, 2 / 3 okay so the integral is replaced by the β. And why do we
now  need to write this in terms of β  function because we can the β  functions are tabulated okay
in fact  very specifically the β function  itself can be expressed as a function of  another function



called  the γ  function okay so on γ function  tables  are quite  common you know they  are
tabulated for different values of  the function. 

So therefore we will  express the β function in terms of  γ function as follows this is your  γ
function  β function we are generally your γ  function γ of say some variable s is  represented as
e power - X X S  - 1 DX so this is your γ  function basically ok and this has been  tabulated you
know you can do this  integral numerically also for different  values of s but this have been
tabulated  γ function charts are there so you  can look up for the values that we have  here so
therefore β of 4 / 3 , 2  / 3 will be γ of 4 / 3 x γ  of 2 / 3 / γ of what 6 /3 that  is 2 okay so if you
plug in from the  γ function tables which are  available online. 

You can Google γ  function charts and you will find those  nice charts for different values of this
you know for P and Q so if you plug in  you will get this β of 4 by 3 , 2  by 3 as 1 .2 0 8 7 okay
so this is  the resulting expression for  β 4 by 3 , 2 by 3 so if you  substitute that value x this so
this  is 1 .2 0 8 7 x 4 / 3.

(Refer Slide Time: 15:30)  

Which  comes out as 1 .6 1 2  okay so now we have a complete  expression which gives you the
variation  of heat flux with respect to X okay  provided you know your constant A and B  and
you know the free stream temperature  T ∞  all right so now therefore  from this the heat transfer
coefficient  can be defined okay  so H of X can be defined as Q ″ X /T w of X - T ∞   okay now T
w of X - T ∞   can be written as a  + B X - T  ∞  so therefore you have this  entire 0.33 one a by
X B R to the power  one-third  6 1 2 BX the entire thing / T  w - T ∞  which is nothing  but a  +
BX - T ∞  okay so  therefore for the given constants you can now determine the local  variation
in the heat transfer  coefficient and for the limiting case.  



Where your B = 0 B = 0  gives me a uniform w temperature okay  so for that case how does it
reduce this  becomes a - T ∞  here the  denominator this cancels with a - T  ∞  here B is anyway
0 okay so then  you will what will be the expression  the constant w temperature that is  0.33 1 K
by X P R 1 / 3 re X  1/2 okay so this is your constant  w temperature boundary condition so  for the
limiting case where B = 0  you retrieve your constant w  temperature heat transfer coefficient
okay so it is a very straightforward  method as such you know so what it  finally means that so
you can also solve  this by dividing. 

(Refer Slide Time: 18:40) 

These x piecewise constants  like  we did yesterday you know you can assume that  you can
represent this by piecewise constant like.

(Refer Slide Time: 18:53)  



This  you  right you can divide this x piecewise  constants and instead of the integration  that we
did here we will replace this by  discrete summation okay so if you do  that you can also get
somewhat similar  expression but that will be in a  slightly discrete form  so in that case you will
have something  like point 3 3 1 x K by x re X power  1/2 P R power one-third so this will be  e 1
0 - T ∞  so when you  differentiate it  the original profile you have a fee so  that will be - K DV /
dy at y = 0 this will be nothing but the heat  transfer coefficient H okay.

So that H you  have already substituted as 0.33 1k by x  re X power 1/2 PR power 1 by third x  1
- Ζ by X the whole power -  3 by 2 GJ so what is that can you go  back and revise the expression
for H of  X 0.33 1k by x re X 1/2 P R power  1 third 1 - Ζ by X to the power  what 3 by 4 the
whole power - -  1 / 3  okay so this we had to substitute x  the expression for Q all of X which was
so you had the original expression for T  w - T ∞  that is - T ∞  was T w 0 - T  ∞  x fee of 0 , X ,
Y  + summation of n = 1 to  capital n δ T w and fee of X  , Y so this was what we saw a study
this was for the local variation in  temperature. 

We have super post the  solutions where you have a uniform  temperature okay and one by one
so then  the incremental temperatures so all of  that when we superpose so first you have  this is
the basic solution that you have   + the incremental solutions which is  basically this okay so now
when we want to  calculate the heat flux so we had to say  - K x D Ф / dy at y =  0 which was
nothing but the heat  transfer coefficient H so this we had to  substitute x this expression so
therefore this is taken out as common  you have T w 0 - T ∞   as one of the terms and the second
term  will be the rest of the terms will be in  n = 1 to capital n number of  discreet intervals you
have δ T w  and okay x  1 - Ζ by X (3) / 4  full power – 1/ 3 okay.  

So this is what you will have if you  have a discrete variation if you had a  continuous variation
you will replace  this by an integral okay integral over D  Ζ okay now you have a discrete



variation therefore you just substitute  for δ T as it is and of course the  heat transfer coefficient
for the first  location where Ζ = 0 that  is no unheated starting link so  therefore you don't have
this term for  that for the subsequent boundaries and  conditions you maintain at Ζ =  Ζ 1 Ζ = Ζ 2
so there you  have unheated starting link. 

So there you  have to substitute the values of so this  will be corresponding value of Ζ  θ n okay
so by doing this also you can  calculate your local wall flux variation  instead of using the do
Hamill's  integral method you can just linearly  superpose this is the superposition  method right
so you can divide this  continuous curve x small discreet  intervals where you have no variation
of  temperature like this you can substitute  that x this discreetly and you can  also estimate the w
heat flux okay, so  both will be more or less the same  they are continuous is the more accurate
because you are taking x account the  slope accurately okay so this is to just  give an example
okay how you take a  problem. 

Where  suppose  you have  a  w   temperature  variation  like  this  and  you   can  use  either  the
Duhamel integral or a  simple superposition technique and you  can calculate your local heat
transfer  coefficient and your w heat flux okay  so any questions on this  okay now for more
complex profiles you  know you it's more likely that most of  the ball temperature variation
cannot be  approximated just by a straight line it  will be more complicated profile so for  a more
complicated w temperature  variation what is common practice is  that we can approximate the w
temperature variation as something like  power law series so instead of using an  A  + B X
relationship we can write  this as a  + summation n = 1 to  N B and X okay. 

So this is the  power series expansion  so which is which is K which can be used  to approximate
more complicated nature  of profiles you know if you have a  profile something like this so you
can  you can use power series expansion you  can fit the coefficients to know you can  do a
regression fit the coefficients  such that you can approximate this curve  with the power series
expansion okay so  this is a better way to represent this  than using a straight line right so you
can substitute this now x this  expression here so you had a term here  DT w by D Ζ so now you
have to  calculate  DT w / D Ζ for this  so  what will  be the expression for DT w  by D Ζ
summation n = 1 to n  you have n B and X power n - 1 or  Ζ power and - 1 okay. 

So this has to be now substituted x  the expression where we had DT by DT  w by D Ζ okay and
if you do that  the resulting expression for the heat  flux comes out to be everything is the  same
only you have the summation term 3  3 1k /X so everything up to here is  the same except you
have the summation  term and everything inside the summation  term goes there  so n = 1 to n
you have n be n so  now so this will be X n - 1  x there will be an X which will come  out of the
transformation okay so that  will be giving you X n okay x  the other the β function will be  there
as it is so you will have β now  this β function also will become a  function of n okay so where
this β  function we can be written as γ  function of 4 by 3 originally it was 4  by 3 now it
becomes 4 by 3 n x γ  function of 2 by 3 / γ  function of 4 by 3 n  + 2 by 3 okay so  now



depending on the value of n that you  use ok so the value of β will change  and then you have to
sum them over all  the values of n. 

So suppose you are using  five terms you have to sum them for each  value of n and for all the 5
times you  have to sum them together so then  that that will give you the variation if  you have a
more complicated profile you  know you can approximate that with the  power series expansion
and you can use this expression to  calculate the local heat flux variation  okay now the question
is given local  variation in the temperature profile we  can use this to calculate the local heat  flux
but what about the other way  suppose your w boundary condition is  a locally varying w heat
flux  okay   so  how do  you  calculate  the  local  w   temperature  as  well  as  the  heat  transfer
coefficient okay so that is also a  little bit more complicated derivation. 

I am not going to do that I will just only give you the final solution for the for  the w temperature
variations. 

(Refer Slide Time: 30:35)  

Okay for a non-uniform w flux so for  this case you can calculate the w  temperature variation
can express it as  follows  .6 to three by K P R  - 1 / 3 re X - 1/2 you  have 0 to X 1 - Ζ by X 3 / 4 the
whole raised to the  power - 2/3 x Q  okay so this is the local variation in  the w flux whatever
you have so that  can be substituted x this and you can  get the corresponding w temperature
variation okay so this is this given in  your textbook case in Crawford okay he  has also not
derived it. 

But I think  there is a reference to some literature  where they have done it and they have  shown
that shown this kind of an  expression anyway so this is beyond the  scope of your this thing but
you should  understand that you can do either of  these in when using the approximate  solutions
given non-uniform w  temperature how do you calculate the  variation in the w heat flux or given



a non-uniform w heat flux how can you  calculate the variation in the w  temperature so both are
possible by  using the approximate methods so I think  with that we will kind of wrap up the
external laminar external flows external  boundary layer flows. 

So we have  covered quite  a bit  you know we have got  almost  covered whatever  possible
similarity solutions under external  boundary layers and also the approximate  methods we know
whatever external  laminar similarity solutions they have a  complimentary integral methods also
integral solutions also like we have  seen if you have the Falkner Skan  solutions for which
problem you have  similar foreign Carman pool house and  solution when you use the integral
methods okay of course like the blusher  solution there you have you can  approximate some
velocity profile and  very easily find out the expression for  say nacelle local nusselt number
okay.

So  whatever is possible in fact you can  also use the approximate solution for  example a flow
with transpiration  you have boundary where you have porous  boundary with suction or blowing
so we  have derived the similarity solution for  that in fact we have we have identified  the
condition for the variation of the  suction profile velocity profile so that  you can get a similarity
solution okay  so the same way we can derive an  approximate by using approximate method
you can we can derive expressions for  the local skin friction coefficient as  well as the nusselt
number variation  with transpiration so every similarity  solution has a counterpart. 

In the  approximate methods and more than that  you can also derive some special cases  such as
the unheated starting length  which you cannot derive by similarity  solutions and also cases such
as these  where you have non-uniform w  temperature variation of any of any  given profile
which you can approximate  as a power series expansion or a non  uniform w heat flux okay so
for these  kind of boundary conditions you know it  will the similarity solutions are not  possible
or it becomes very rigorous so  their approximate solutions are much  easier okay so this is in a
nutshell  giving you an idea what we covered so  from the next week onwards. 

We will look  at internal laminar internal boundary  layer flows okay so they are actually  strictly
speaking the boundary layer  concept doesn't have a meaning that the  way that laminar external
flows has okay  the strict definition of boundary layer  flow does not hold for internal flows
okay because once  you have a  fully   developed flow both  the boundary layers   merge  and
everywhere you have viscous  effects there is no place where you can  use potential flow and
approximate that  with the potential theory and somewhere  you can solve with the solving the
full  navier-stokes okay  so therefore we have to resort to a  complete solution of the navier
stokes  equations in some cases. 

In some cases we  can make approximation to the velocity  gradients or the temperature gradients
okay so there we can obtain exact  solutions of reduced form of the  navier-stokes equations okay
so that is  also very important and interesting  because most of  your practical problems in heat
transfer  okay although there are many external  flow problems you will find most of the  heat



exchangers they are encountered you  will be encountering internal flows  there and in those
cases you should  understand the approximations that you  can make and how you can get the
expressions for local variation in the  nusselt number and in a fully developed  case how the
nusselt number variation  there is no variation in the nusselt  number and so on okay. 

So that we will  cover in the next 9 to 10 classes  starting from next weeks in about three  weeks
I think we should be able to cover  the laminar internal flows and then from  the following we
converts that is about  the fourth week of March professor  Koehler will start turbulent flows so
that will be for about seven lectures or  so and or seven or eight lectures and  maybe natural
convection for another  seven or eight lectures  you.

Laminar External heat transfer with
non uniform surface temperature

End of Lecture 24

Next: Laminar internal Forced convection -Fundamentals
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