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Hello everyone today we will look at the approximate methods of solution so far we have been
looking at  triggered  solutions  /  using similarity  methods  and solving the  resulting  similarity
equation / the odd / the shooting technique and other numerical methods now we will introduce a
approximate  way  of  a  getting  solution  to  different  configurations  may  be  flow  without
pressure gradient like the flat plate case are including the pressure gradient for all of these cases
we  can  get  approximate  solutions  /  making  suitable  approximations  to  the  velocity  and
temperature profile so in the last class we had derived the integral form of the momentum and
the energy equations okay so the generic form including the pressure gradient and finally. 

We   expressed the momentum integral equation in this particular form so where this includes
momentum thickness which is nothing but this is the momentum integral sitting inside this and 

the  displacement  thickness  which  is  which  is  the displacement  integral  here okay so if  you
consider flat plate case where your free stream velocity does not change with the position you
can neglect this complete term right here and therefore this is a more familiar form which you



have been using in your earlier heat transfer class to solve with approximate methods so you will
have only the momentum thickness so this is the rate of change of momentum thickness. 

Along the axial direction will balance the shear stress okay so this is wall shear stress basically
so this is      basically the momentum integral equation very very important equation and why we
are using the integral form here is that we guess some approximations for velocity in terms of
some polynomials may be linear or quadratic cubic forth order whatever we will substitute that
into this and we will integrate it out over the entire boundary layer thickness.

And we will find an expression for calculating he boundary layer thickness � from here the same
way we can also integrate the energy equation across the boundary layer and this is the resulting
energy integral equation that you get and once again we can make an approximation guess a
value of s a   profile for temperature whichever profile that you want to guess substitute here
integrate it out and then you get a resulting equation in terms of the thermal boundary layer
thickness � T. 

So with that we will get an expression for � T therefore with that we can use that to calculate the
wall shear stress skin friction coefficient heat transfer coefficient and your result number okay
so this is how our approach will be okay and yesterday we did this for the flow problem we.

(Refer Slide Time: 03:26) 

Guessed initially a linear profile okay so a linear profile of the form U =a+ B Y and finally when
we plug in the profile comes out very simply as u / u ∞is = Y /�  okay so we we were putting
boundary conditions to satisfy this particular profile and  determine the constants a and B so that
is at y = 0 u = 0 and at y  =  �  u =  ∞  okay and there and when we when we use the linear
profile so that means we have assumed we  assume that now the variation in the boundary layer
is completely like this  okay which is totally unlike the solution what blush has got.



 
(Refer Slide Time: 04:30)
 

Okay this is your � and this varies from 0 to u ∞ okay but even in spite of this big assumption
when you substitute this into the momentum integral and determine and expression         � we got
the expression for ��  to be 3.  � / X is 3.47 / re  x √ okay compare this to the Belasis solution
where  �  / X is 5 /  √of re X okay still this is a reasonable way to get started to get an order of
magnitude of the boundary layer   thickness okay so this is a about 31% less than the exact
solution and so was your local variation of skin friction coefficient which came out to 0.576 /  √

Reynolds number the actual value was 0.664 okay so this is about 13%t > the exact solution okay
so then what we did we improved the profile assumption from a linear profile to a cubic profile.
 
(Refer Slide Time:05:36 ) 



Okay so we assumed a profile something like a + B y + C y2 + dy Q so now that is a higher order
polynomial we need to satisfy more boundary conditions to determine these additional constants
and  apart  from  these  two  boundary  conditions  them  say  this  these  are  the  most  important
boundary conditions in terms of the order of relevance okay so you need to first satisfy no slip at
the wall and the condition at y equal.
 
(Refer Slide Time: 06:16) 

To � and apart from that we have also used that at y = 0 d √ u / dy √ = 0 which comes from
the momentum equation at the wall okay also at y =  �  the condition D u / dy = 0 has to be
satisfied      okay so these four conditions have to be satisfied in this particular order and with
that you will get a profile which is u / u ∞ P is = (Y / �  - y / 3 / 2 y / �  - 1 / 2 y /� ).
(Refer Slide Time: 06:53) 



Right this was what we saw yesterday and if you plug in this velocity profile now instead of the
linear profile into the momentum integral integrate it out across the boundary layer thickness we
found that the resulting boundary layer thickness is actually improving a great deal you know
from 3.47 here we finally reach a value which is 4 point anybody remember 4.64 okay so which
is 7%.
 
(Refer Slide Time:07:27 )

Less than the exact but it is a very close very close to the exact solution okay the same way
with the skin friction coefficient if you calculate this wall shear stress and therefore the non-
dimensional skin friction coefficient this value comes out to be point 646 okay which is also very
close 3%less and the actual okay therefore you can see the higher order polynomial is definitely
better than using a linear polynomial and. 



You can also see that it is important to satisfy all these four boundary conditions if you want to
get a reasonably accurate solution okay so especially at the wall you have to also satisfy the
curvature = 0 and at y =  � D u / D Y has to be 0 shear stress has to be 0 at the interface so
therefore these are the important things now the question you may ask is whether if you go to
fourth order or fifth order polynomial if you get can we get. 

A more closer solution it need not be ok because these are the four most important boundary
conditions to be satisfied and if you are introducing additional constants and polynomial so you
have to introduce higher order derivatives to be 0 okay nothing more than that for example if
you introduce an additional constant you have to say d √ u / dy √   = 0 and further than d 3u / dy3

at y = 0. 

0 and so on okay so they are relatively less important and therefore you will find you will not get
a  significant  improvement  beyond  this  in  fact  using  quadratic  polynomial  will  in  fact  even
deteriorate the solution okay that is that is also because of the fact in quadratic case you use this.

 (Refer Slide Time: 09:29)

 Boundary condition at y =  �  okay  rather than using this boundary condition because you have
only up to quadratic term you cannot take derivative up to the second order.

You have to take up the first order of plate so therefore you do this before applying this and this
is a very important boundary condition okay so to be      satisfied so which is not applied in the
second-order polynomial case and therefore the second order polynomial will not be as accurate
may be I in my opinion I think if you do the calculations it may come out to be somewhat even
worse than the linear polynomial okay and definitely not when you anyway close.



To the third order polynomial okay so this this is what we did yesterday with the flow solution so
today we will look at such kind of approximations for a temperature for a flat plate case okay so
so now we will look at the thermal  boundary layer on an isothermal flat plate so apart from the.

(Refer Slide Time: 11:00 ) 

Development of the velocity boundary layer now you also maintain a temperature fixed wall
temperature which is uniform and this is your coordinate x and y so your velocity boundary layer
grows and your boundary layer thickness keeps increasing with the axial location now when you
apply this T d T wall is constant it it need not mean that you are heating all the way from the
leading edge okay so you can for as a more generic case you can actually not heat the initial
portion.

Okay so this could be what is called the unheated starting length okay and you can start the
heating  after  some  certain  distance  so  that  distance  will  be  X  0  okay  so  this  X 0 is  your
unheated length okay in order to get a generic solution you know for the case where your X0 = 0
the plate is completely heated right from the beginning okay now in this case the boundary the
velocity boundary layer may grow all the way from the leading edge but the thermal boundary. 

Layer will  not grow unless it sees the wall temperature  okay so therefore it  will  start from
here and it will grow okay so this is your �  T and function of X okay so depending on the case
whether your Prandtl number is > one much > 1 or approximately 1 or much < 1 once it starts
growing so this boundary layer may over take the momentum boundary layer   thickness  okay so
if your parental number is much > one so in that case this will be lower than this okay. 

The momentum boundary layer thickness will be growing at a much faster pace so this will not
be able to catch up okay now for the case when your parent ID number is much < one so then



you will   find that this will rapidly overtake and finally somewhere here your thermal boundary
layer thickness will be greater than exceeding the momentum boundary layer thickness beyond a
certain position okay if you are planting number is = one so they will be both growing at the
same rate however this is already shifted here .

So once again this will never be able to meet meet up to the growth of the momentum boundary
layer okay so these are certain things that you should know very clearly for sure which for which
parental number case how the rates of the growth of the either boundary layers appear okay so
right now we will consider a case where your parental number is > one okay we can also use the
integral method for the other case where your parental number is much < one but we will start
with  this  particular  case  so let  us  now also  assume directly  a  third   degree  polynomial  for
temperature something.

(Refer Slide Time: 14:31)

This sort now you have to tell  me which are the boundary conditions that can be applied to
satisfy  this  okay y  = 0 T= tw okay this  is  still  dimensional   okay I  am not  going to  non-
dimensional  okay and then y = �  RT okay  so T = T ∞ because if you look at suppose you are
assuming that your T w is > your ∞ so this is your T ∞ this is your T w okay so similarly ∞ T ∞
the same way with the velocity boundary layer also so this is your u ∞ this is 0 so we need two 

more boundary conditions okay so in Y =    �  del T / Del y = 0 so you can see that once this
reaches t ∞ after that the  gradient will be 0 right after the  thermal boundary layer so at the
interface you have to satisfy this  interface continuity condition continuity in temperature and
slope should be continuous okay and then we need one more heat flux at the wall. 



But we do not know this is the case where we have constant wall temperature yeah the same
way if you look at the momentum the same  way that you did for momentum if you look at the
energy equation if you do not include the viscous dissipation term so at wall these are 0 therefore
D √ t / dy √ has to be 0.

(Refer Slide Time: 16:56) 

Okay you so you can you can see that you have four boundary conditions in 4 most important
boundary conditions and if you substitute them into the profile you should be getting a profile
something like t - t w / t ∞ - T w will be 3 / 2 (y /    �  t) - 1/2 (Y / �  T) the whole cube now we
can define  this  as  my non-dimensional  temperature  θ which  I  also defined in  the  similarity
solution so this is  the resulting non-dimensional temperature profile.
 
Just like I have a non dimensional velocity profile exactly the same expression only in terms
rather than boundary layer thickness here you have the thermal boundary layer thickness � t okay
the same cubic    approximation so the next step will be to substitute this into the energy integral
and do the same procedure that we did for the momentum integral just a little bit I am going to
rewrite the      energy integral in terms of non-dimensional temperature θ ok so right now this is
my T. 

(Refer Slide Time: 18:44) 



∞ - T      I can express this in terms of θ as d / DX 1 - θ also I can multiply and divide / u ∞ so u /
u ∞ and I can transform my variables from Y space to  h space where I am going to define a
variable H subscript t as y  /�  T okay so this is not the similarity variable okay it is just some
notation that I  am giving here okay coincidentally  this  is  also for the similarity  solution the
similarity variable exactly related as Y / �  T. 
     
So I am just transforming in terms of  h   so this will be dy / D h   into D h so dy / D h is nothing
but your  � T which will come out and the limits of the integral 0 to  �  T will  now become 0 to 1
so you have D h T all right on the right hand side of   course you multiplied and divided / u      ∞
so that I will take it to the denominator on the right hand side this  will become α / u ∞ and DT  /
dy I will write in terms of θ and.
      
(Refer Slide Time: 21:04) 



H so this I can substitute in terms of   θ so this will be D θ / D h   into D h  / dy okay so D θ / D h

okay so here I have to be yeah I think  it Is fine  so a h = 0 this is  h t = 0 into D h / dy which is
again 1  /  �  T I will keep the  � T here ok so this is the  non-dimensional form of the energy
integral let me call this is number 1ok everybody is clear ok so so now this  is 1 so 1 - θ will be
what t  - T.
 
(Refer Slide Time: 21:23)

∞ / T w / T 1 - T ∞ is that right so I can I can  just substitute for T ∞ - T okay, so that is 1 - of 1 -
θ and on this side DT / dy should be  - D θ / dy ok so  - - cancels on both sides d w is a constant
okay so is that right  see okay so pre ∞ - T now I  can write it as - of 1 - θ   into T 1 - T ∞ okay so
so T w and T ∞ they are constants   so - of T one - T ∞ D /  DX 0 to    �  T into 1 - θ u dy   ok on
this side I have DT / dy is  nothing but - D θ / D Y so this is - α D θ / dy at y e= 0 into you have T
w - T ∞ okay so I think now this cancels alright so now you now the rest  of the things is I am.

(Refer Slide Time: 22:49)



 
Multiplying   dividing /  u ∞ and this  is  u /  u ∞ here and the other  u ∞ I am taking to the
denominator here ok  and I am transforming from Y to   T that is all ok any any doubts I hope
everything is clear so if you have any doubts please let me know I am going a little bit fast
assuming that you could follow all right so with this is the  final expression because we have in
terms  of  θ the  profile  and also u /u  ∞ so therefore  we can directly  substitute  that  into this
expression so  if you do that so now let me erase this so substituting Cubic temperature and
cubic. 

(Refer Slide Time: 23:52)  

.
Velocity  profiles into one so d / DX � T 0 to 1 so my  cubic temperature  profile is now 1 - θ so
that is 1 - 3 / 2  t – half  h  T3 ok so I can write it as 1 - 3 / 2  h T and - of - is p++half h  D Q okay
this is my temperature profile 1 - θ and  what is my velocity profile 3 / 2 let me also define the
same way I defined h T let me define H where h equal to Y Y / �  okay so my velocity      profile



can be written as 3 / 2 h  - 1 / 2 h3 ok so into Dh  T so this is integrated over DT ok this is      my
left hand side on the right hand side      yeah on the right hand side now what is      D θ / D h T
okay so this is my θ  D  θ / D h  T at h = 0  3  / 2 that is it okay.

(Refer Slide Time:28:48 ) 

So 3 / 2 into α  / �  T x u ∞ okay so this is therefore the final    expression after we substitute now
we  have to simply integrate it out before   we integrate it we have to write h in    terms of h T
because η and η T are    both connected okay so therefore what we    are going to do is we are
going to      introduce a variable another    non-dimensional variable I will call this as Z h which
is nothing but the  ratio of the thermal boundary layer thickness to the momentum boundary layer
thickness.

So since this is the ratio of      this and this  is this has to be a      function of prandtl number okay
because      this is the ratio of the two boundary      layer thicknesses so therefore since I
define my  h as Y /    �  and h T as      Y /    �  T you can also express this      as the ratio of h T
and H okay so      this will be nothing but  h/ h T      okay so now therefore   I can substitute    h
s the Z h into η T okay so this      can be substituted into this and we can      write this as d / DX. 

So I can write      this as    �  T and this Z h can be      taken out of the integral because it is
fixed for at a particular Y location      okay      so we need not now integrate it but      whereas in
this case h is a function      of Y okay so that therefore that has to      be integrated across the
boundary layer      now Z h is fixed value at a given X      location so therefore it can be taken
out outside the integral so this will be  �  t Z h and inside the integral you have 0 to 1  - 3 / 2 h T. 

Plus 1 / 2h  T cube into 3 / 2 this is      again h t - 1 / 2 H T cube okay      so I am just substituting
as Z into      η T so okay so this should      actually be written as y-a so this is      Z h here this



should be Z h3 okay      so I just keep it one more step okay so      on this side you can r in the
terms as      it is so now you can integrate integrate      it from 0 to one so integrate it with
respect to H T okay      so if you do that I am NOT now going to  do step / step but I will so this.
 
(Refer Slide Time:29:27 ) 

Should come out to be D / DX and � T if Zh  Zh if you take common this      should become
three / 20 - three /      two 80 Z h √ okay so this Zh      cubed term we can write it as Z h
common out and Z h √ inside on this side you have 3 / 2 α / 2   ∞    �  T okay so if you
integrate it you can you can do that      yourself so each of these terms you have      to multiply
and integrate it okay so you have terms here η your η √ here  at T power 4 again again   η  cube η
t  4 η t  6      okay so you have to integrate each of      them between 0 to 1 so finally the  resultant. 

Solution will be in D will be independent of t and this is what      you will get okay so      from
here we can make an approximation      now already I said this is for a case      where prattle
number  is  >  1       if  you make  the  approximation  so  so  far  we have  not  introduced  any
approximation      on the Prandtl number okay so if you now      bring in the approximation that
prattle number is > 1 here if parental      number is > 1 what what      should be    �  T with. 

Respect to    �  less therefore Y or Z  should be less      than 1 okay so for prattle number much  >
1  our zh should be much < 1 ok so if you bring in that approximation      you can neglect the
higher order terms      in terms of zh okay they are very very small so therefore if you do that if
you in only the most important term most      significant term will be the first term      so this will
be 3 / 20 into zh    � t once again I can write    �  t s zh      into    �  so therefore this has become
θ √    �  on this side I am      taking 3 / 20 and factoring it out this  will become 10 okay so this is
this cancels this becomes 10 α / u  ∞ and once again �  T I can write in terms of . �



(Refer Slide Time:32:05 ) 

And    �  so      finally I am reducing the entire      equation to an equation only in terms of         �
and Zh ok so I know now the      expression for    �  coming from the      solution to the
momentum integral      equation which I can substitute into      this and now I will have an
ordinary      differential equation in terms of the      unknown Zh okay so I think with that I
will be able to calculate also my thermal boundary layer thickness  so this is my equation so if I
Substitute for the cubic velocity  profile    �  was 4.64    √ root of u x / u ∞ okay      so if I
substitute this value of    �  into this and if I expand this  particular OD so this will be θ cube.

 
(Refer Slide Time: 33:22)

Plus 4 / 3 X D Zh cube / D X this      should be = 0.92 9 / Prandtl   number where Prandtl number
is =      u / α      this is what you will finally get as the      ordinary differential equation so I am



just expanding this particular term      right here okay so what I am doing is I      am taking this
�  here okay I am      saying this as 1 / 3 into D / DX  �  cube ok if you want me to explain this I
will say so this can be written as 1 /  3 or I can say this is d / DX 1 / 3  cube θ cube    �  is = 10.

α / u ∞ into    �  okay I      think yeah should be right so now I can      expand this into two terms
so one is      Zh cube into D / DX 1 / 3    �  so   �  you can substitute and you can    differentiate it
and the other term will      be 1 / 3    �  into D Zh Zh cube /      D X okay and if you substitute for
�       so you already have    �  you can    multiply the entire left-hand side /    �  4 which      have
the expression for boundary layer    thickness and it will simplify.

On  the   right hand side you will have α / u because you have an expression for      new okay
here which will come and you    will exactly get a factor of nu / α  in the denominator which is
nothing but      the Prandtl number so couple of steps    which you can do yourself you know and
I am just simplifying that once you   simplify you will get this is your final   order differential
equation okay   so this is very straightforward to solve      okay this is a non-homogeneous. 

Body so      you can find two solutions one is your      complementary function which is the
solution to your homogeneous OD and a      particular integral assuming that some  particular
solution exists you substitute so you will get those two      solutions which you can add and that.
(Refer Slide Time: 35:49) 

Solution will be finally Zh cube      should be CX power some constant C X  power - 3 / 4 plus
0.92 9 / P R so      this is your complementary function and      this will be your particular integral
so      this is your solution for Zh okay      so once you determine the solution now      we have to



determine this constant so      therefore we should give a boundary      condition for Zh okay so
that is we      know for the generic case that X is      = X naught Y or Zh should be 0      right.

So if you put that condition at X      is = X naught ma is eight ax equal      to 0 okay so what what
will be the      constant the constant will can you      substitute and let me know what the
constant comes out to be      - 0.9 - 9 / PR and this will be X not      power - 3 / 4 which will go to
the      other side this will become X not power      3 / 4 okay so therefore the final      solution for
Zh can be expressed as      0.9 76 / P R to the power 1 / 3 1      - X / X naught - 3 / 4.

T      whole raised to 1 / 3 okay so I am      substituting for C into this into this      expression
right here and I will get the      final expression for Zh okay so now      this is done therefore we
we now know      the thermal boundary layer thickness      expression because it has nothing but
�  T /    �  and    �  is already      known so we can find the expression for         �  T and to derive
a specific case      okay for the case where you do not have      the unheated length that is you
start      maintaining a wall temperature condition      right from the beginning at X =      0 okay
so far for.

(Refer Slide Time:36:57 ) 

The case where X      not = 0 okay so this is X 0      / X0 to the power 3 / 4 so this will go      to 0
and therefore your Zh will be      simply 0.9 76 divided / rental raised  pr    to the power 1 / 3
okay also for the      case where there is no unheated length      in its heated right from the
beginning      for a given Prandtl number the ratio of         �  T /    �  will be constant      because
panting number is a constant      okay so therefore the ratio of    �  T      /    �  will be constant. 

Therefore you      can see from this expression for a given      Prandtl number      the Zh will be
actually a constant so      if you do not have an unheated length if      you have an unheated length
you can see      zh is also function of the position correct make sense rate because if you      if you



heat it right from the beginning      both the boundary layers grow according      to the Prandtl
number and at any cross      section at any section axial location      the ratio of the boundary. 

Layer      thicknesses will be such that it is a      constant whereas if you maintain a      starting
length heated length and u heated length then you can see at different      locations the ratios will
become      different okay so that is what is coming      out of these expressions so for the case
where you do not have unheated length      this is your expression so with this we      can
calculate the heat flux - K DT      / y = 0 so DT / dy at y      = 0 can be written as of course.

(Refer Slide Time: 40:17)      

You  are if you remember your definition      of θ t - T wall / T ∞      okay so you can you can
write this as D      θ / dy at y = 0 and      multiplied / T ∞ - T wall      okay so this will be - of
course so      - I am going to write this in terms of T      wall - okay again you can make a
transformation so D θ / D H into      D H / D Y okay so you can run this is      H T it at = .
 
So in D H /      D Y so what is D H / D Y your H T      is = Y /    �  T so 1 /    �  T      so that will
be 1    �  T in the      denominator here okay and D θ / D      H H T at H = 0 this is      nothing but
3 / 2 okay so therefore      this can be written as      quall double-prime as 3 / 2 k /    �  T      into T
1 - T ∞ okay so from      this everything else follows you can      define your local heat transfer.

(Refer Slide Time:41:51 )
    



Coefficient as Q 1 / T 1 - T      ∞ which will be 3 / 2 K /    �       T and therefore you can define
your      nusselt number locally as H X / K okay   which will be 3 / 2 X /    �  T okay,     so finally
you can substitute the      expression for    �  T and    �  so      already you know that    �  / X is
= 4.76 / √      root of Reynolds number and this is      nothing but    �  T /    �  so finally      for    �
T if you substitute this      should come come out as 0.33 1 into re X      to the power half Prandtl
number to the    power 1 / 3 okay so I think this should     come out and in terms of the unheated
starting lengths this will also add come      as a factor 1 - X / X naught to the.      

Power - 3 / 4 the power - 1 /      3 so this will be the expression for the      local variation of the
nusselt number      okay so far then for the heated length      for the heated case right from the
beginning it  is not = 0 so a      new X will become 0.33 one re x over      half and mantle number
four was unworthy      now you compare this with the polish and      solution similarity solution
that was      what 0.332 so it is very very close okay so here I am skipping couple of      steps you

Can just do that yourself okay   because you have this is your    �  t /       �  you can write this    �
T as Zh      into    �  and    �  you already have      the expression you can just substitute      that
into this and finally you will get      a very neat expression in terms of      Reynolds  number and
prandtl number okay      so for the case where you are heating      right from the beginning this is
your      polasancase since case now you remember when we      did the similarity solution.

We cannot make the assumption that you have an unheated length and then get the similarity
solution  okay the  similarity    solution  was  derived based on the    assumption  that  the  Val
temperature is      uniformly applied through the entire      length of the plate otherwise we cannot
derive the similarity solution    so therefore the approximate method the    integral method gives
us a choice to also impose this condition of unheated length okay. 

See not only it makes our      derivation simpler relatively compared      to the similarity solution
but also it      gives some flexibility in terms of      applying variable boundary conditions      for



example we will see later on down      the line in a few classes three to four      classes that we
can solve use the      similarities use the approximate      solution method to to take a case where
the temperature is varying along the      wall not just      something like this you know it could be.

Linearly varying it could be some      piecewise constant variation whatever      may be that can
be handled with the      approximate solution okay which which is      which is quite difficult in
which cannot      be done in fact with the similarity      solution so therefore although this also
looks quite tedious but this can be      worked out with the hand and unlike the      similarity
solution which needs      programming to solve the ordinary      differential equation okay. 

So relatively    in terms of the total effort this is   much better than doing complete   similarity
procedure and finally you      also get a very accurate result in terms      of the heat transfer so we
Will  stop  here  today  and  I  just  want  to  also  tell   you  we  can  we  can  also  do  a  similar
approximate solution for Prandtl number  less than one which I am not  going to do  but we can
make an approximation there since for prattle number much lesser than one your your thermal
boundary layer thickness is going to be far   > your momentum boundary layer thickness so
therefore you can make a uniform velocity approximation  rather than. 

Substituting a profile okay so the velocities boundary layer is so  small that most of the thermal
boundary layer will be looking at a uniform  velocity okay so that is a much simpler  case to deal
with and I will give you that as a homework assignment so in the   next class on Tuesday we will
look at flows with pressure gradients where we  can apply the approximate solution you.

Integral method for laminar external thermal
Boundary layer over isothermal surface

End of lecture 19
Next:  Integral method for flows with pressure gradient
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