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Good afternoon,  anyway good that at least a few have  turned up otherwise I would have to
reschedule the entire class anyway so  why is there one more small correction  to the previous
class that we that I  just want to bring forward I think one  is one person who observed it  and he
was correct the mean temperature.
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For the high speed flows I had told that it should be 0.5 _   ∞ let us see in - I think it should just
reverse the sign it should be T adiabatic wall _ T wall where C   = to 0.2 so I think I had given
this as C into T wall _ T adiabatic someone has correctly pointed out that since the adiabatic wall
temperature is greater than the wall temperature.  So this has to be positive so that the mean
temperature now is increasing rather than it should not decrease because now with the use of
adiabatic profiles for example if you had plotted Y versus T which we had done this is your T   ∞
from here the profile should start something like this and this is your T wall if you had applied a
isothermal boundary condition.

Without viscous dissipation it would have come something like this okay so therefore you see the
average temperature has to now go up okay earlier the average temperature was between T 1 and
T   ∞ okay now the actual temperature will be like this something like it will go up inside so
therefore the average temperature has to account for this increase.
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In the therefore this has to be positive here if this was T wall - so generally your adiabatic wall
temperature  will  be  greater  than  your  wall  temperature.  okay  so  this  will  be   positive  and
therefore this will  increase your T mean temperature  otherwise it will decrease the T mean
temperature  which  is  not  physically   correct  okay so this  please  incorporate   this  particular
correction.

And now we  will start a new topic  it is the same solution to external  boundary layer flows but
we will use  what is called as an approximate method  of solution okay so far we have been
doing  exact  solution  so-called  exact   solutions  where  we  had  derived  the   similarity  send
equations for the  different configurations and we had  solved it but we cannot solve it exactly
we have to solve it using some numerical  method but nevertheless the solution is  the solution is
for an equation which is  actually an exact equation okay now we  will look at techniques where
we will  approximate the solution by means of  some profiles rather than trying to  solve by a
numerical technique.

That the  way that we were doing till now so we  do not know the profiles how they look so  but
we got that as a solution of the  similarity equation now we will  approximate the profiles as
something  depending on the order of accuracy now  you can use a linear profile or  quadratic or
cubic  or  fourth  order   whatever  polynomial  so  we  will   substitute  that  into  the  governing
equation  once you know the profiles  we  can determine  the expression for  boundary layer
thickness the thermal  boundary layer thickness and therefore  the heat flux nusselt number and
so on  so this kind of technique is also  called the integral method.



(Refer Slide Time: 04:02)

Many people also refer this as the approximate okay so the starting point of this is to start with
essentially  an integral form of why this  is called an integral  method is you operate with the
integral form of the governing equation form of boundary layer momentum and okay so why do
we  use  the  integral  form  is  of  course  the  integral  form  is  more  helpful  when  you  are
approximating some solution putting it inside and integrating.

It out  directly okay so therefore this is more  convenient for the approximate solution  to work
with  an integral  form and I  am  NOT going to  now derive  the integral   form because  if  I
remember correctly I  had already derived a particular version  of the integral form if you may
recall  recollect your earlier notes for the  flat plate  lass a solution we try to find the  expression
for boundary layer thickness  Δ.  

So as something like √   of Nu X by u  ∞ right so this was  derived by integrating the momentum
equation from   0 to Δ and from  there we had solved an OD to get the  expression for Δ. Okay so
in fact at  the time I told that I am not going to  derive it again because we will be using  that as a
starting point so the point  where we left off  so we integrated the X momentum  equations I am
just going to write.



(Refer Slide Time: 05:55)

It  just to show you how it looked  so this is d u by DY, DY  is  = to new  do you my D between
the limits   = to   0 and okay so we just  integrate the boundary layer momentum  equation for a
flat plate okay we could  also include your pressure gradient term  so that will be additionally + u
∞ D u  ∞ by DX and  integrated between 0 to Y DY it is  nothing but  Δ okay so how we got  this
because originally this term was  nothing but _ 1 by Rho DP by DX and  we saw in the boundary
layer that the  pressure gradient along Y is negligible.
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Therefore we can apply this equation to  the invest potential flow outside and  we can directly
find that this is  =  to u  ∞ D u  ∞ by DX okay  and when you when you integrate it  across the
boundary layer so that will  be this will be constant okay for a  particular Y location so you can
directly say that is multiplied by  Δ  okay so if you have a pressure gradient  that term also enters
into this final  expression and after we broke this term we integrated by parts and then we use
the continuity equation to make some  approximations and finally we arrived at  this particular
form 0 to   Δ u D u by  DX especially the left hand side  - you  ∞   0 to   Δ V you by D  X D Y
this is  = to nu D u DY 0 to  Δ + okay.

So I think we arrived at  this particular form for the entire left  hand side term after we use the
continuity and we integrated  it out and from here we are going to  start now okay so this is
nothing but  the momentum integral equation but still  not the final form okay so I am just  going
to rearrange some of the terms in  fact what I am going to do here is I can  once again integrate
by parts okay so I  can do this as D of u  ∞ u by DX  _ u into V u  ∞ by DX again I  can just re
express we express that way  and I am going to multiply throughout by  a negative sign and if I
just rewrite  this a little bit so this will be D by  DX 0 to  ∞ 0 to   Δ u  ∞  _ u so u  ∞ into u is
basically this term _ this can be  neatly written as directly.
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 0 to   Δ  D into u by DX right D u square is  nothing but 2 UD u DX okay so I can  just write this
as d by DX so I can take  D by DX out so 0 to   Δ  applying throughout by negative sign  okay so
I can write this as so this is  already negative of negative is  become positive so u  ∞ into u  _ u
ok so that is this particular  term okay  + the other term which I which I have  written this is d u
∞ by DX which  I can take common from here as well as  from the right hand side term okay so
this can be written as D u  ∞ by  DX integral 0 to   Δ okay so here I  might I have a negative sign
here and I  multiply it with a negative sign so this  should become positive okay so this  should
be a positive again I multiplied.

With a negative so that should become  negative and this one is already  negative goes to the left
hand side term  that becomes positive so this becomes u   ∞ _ u DY okay on the right  hand side
now if I integrate this from 0  to Δ so at this at y  = to   Δ  D u by DY should vanish okay so this
becomes _ nu D u by DY with a _  sign so this becomes positive this  becomes µ  D u by DY at y
= to 0. Okay so I have trouble skipped a couple of steps but I think you can understand straight
away how that comes out you want me to explain again or is it okay. So till here you know how
it has come out okay from the previous derivation.

So from here I am just  rewriting this first M as Du by  DX and this I am integrating by parts
again okay so I can write this as u   ∞ u D by DX _ UD u  ∞  by DX so therefore so this term and
this  term can be combined I can take D by DX  out of the integral so 0 to   Δ u   ∞ _ u ok so this
is u   ∞ into u this is you so I  take small u common u  ∞ _ u  DY and the other two terms so here
D u   ∞ by DX is common to this in this  okay so and I can write this as  instead of writing this as



Δ I can  write this as 0 to   Δ DY ok so that  is u  ∞ that is basically this u   ∞ into DY _ there is
again  this u DY okay so which is what I am  writing here together on the right hand  side term
this is 0 to   Δ so at   Δ  D u by DY is 0 right so therefore this  is _ D u by DY at y  = to 0  already
a multiplying throat by _ so  this becomes new d u by DY at y  = to  0 okay so this is my final
expression in  fact I can also rewrite in a more  familiar form so I can write this as d  by DX if I
can take multiply and divide  by u  ∞ square for this particular  term so this will be u  ∞ square
into I will just denote this as  something like   Δ 2 + in this case  I can multiply by multiply and
divided  by u  ∞ okay so I will call  as some   Δ 1 into D u  ∞ by D X  on the right hand side.

I have so where  my Δ 1 will be so multiplied and  divided by u  ∞ so this will be u   ∞ 0 to   Δ so
this is u   ∞ by u  ∞ which is 1  _ u by u  ∞ into okay so , I  am not going to write exactly like
this  I am just rewriting slightly in a  different manner just a minute so  multiplying and dividing
it so that Δ 1 into u  ∞ is here and  Δ 1 is defined in this particular fashion.

(Refer Slide Time: 15:14)

Okay and   Δ 2 so µ multiplying and  dividing by u  ∞ Square and  divided by u  ∞ square this
will  be 0 to   Δ 1 _ u by u  ∞  into u by u  ∞ DY okay so this is  also another nice form that you
find in  many of the textbooks nevertheless all  the three whether it is this  form or this form this
form they are all  the momentum integral equations or  integral momentum equation  okay I
personally prefer looking at this  form this is almost the final form and  this gives you a lot of



information  because here this Δ one which I have defined here there is a particular name  to it
this is also called the  displacement thickness and  Δ two  here is called the momentum thickness
okay so and this is okay I hope you have a good understanding of what is displacement thickness
and momentum thickness okay from your incompressible flows I am not going to go into an
explanation for that now it is only so this these are not really measurable.

(Refer Slide Time: 16:52)

Okay this is what you have to understand unlike the boundary layer thickness. Which you can
measure at as a location  these are conceptual values which give  you a sense if you suppose
replace the  boundary layer with a potential flow  profile so how µ CH the wall has to  be pushed
up okay  so are displaced in order to satisfy  continuity or satisfy conservation of  momentum
okay so that is this location  so these are all not measurable okay  these are some things you are
conceptualizing and usually these are  µ CH smaller than your actual  boundary layer thickness
okay so this  is your momentum integral equation.

So  you are writing this in terms of the  momentum integral or your displacement integral and so
on for the case of flat  plate without the pressure gradient the  second term will be  0 so you do
not  have anything in terms of the  displacement thickness so for  flat-plate.



(Refer Slide Time: 17:57)

Your d u  ∞ by DX is   = to   0 and this will lead to the  form you can write u  ∞ square d  by DX
0 to Δ  okay so this is the integral momentum equation for flat plate let me call this  is number
one.

(Refer Slide Time: 18:37)



Okay this is the one firm  that we will be using to substitute all  our approximate profiles now
same way we  will derive the integral form of  boundary layer energy equation okay we  start
from the conventional energy  boundary layer equation and then we  integrate it out across the
boundary  layer thickness and we arrive at a  similar integral energy equation okay  so we start
with.

(Refer Slide Time: 19:08)

Our  you  standard energy equation we do not assume any viscous dissipation term here  for flat
plate case without viscous  dissipation this is your equation at y   =  0 it could be either wall
temperature is fixed or your prescribed  heat flux it is constant and at Y going  to  ∞ is  = to t  ∞
at X   = to 0 also the same thing  follows so what we are simply doing is  integrating again now
when we are  integrating now we cannot integrate it  till the boundary layer thickness  because
now we have to integrate it till  the characteristic thickness.

For the  energy which is the thermal boundary layer thickness okay so we integrate it  till  Δ t of
course you know we are  not making any assumption whether   Δ  T is greater than   Δ less than
Δ  whatever extent it may be we are just  integrating till the edge of the thermal  boundary layer



and so we will try to  eliminate V so that we write everything  in terms of U so we will see that
the  second term can be integrated by parts  so this can be written as.

(Refer Slide Time: 20:37)

0 to  Δ T okay I can write this as d by DY of VT  integrate between 0 and   Δ T set that  is
nothing but V into t between the  limits 0 and Δ T okay _ integral  0 to  Δ T into T DV by DY on
the  other side you have α  Δ T by ∇ Y between the limits 0 and Δ T and a  Δ T DT by DY is 0
okay it has to satisfy continuity in slope at the edge  of the boundary layer so therefore so  this
will become _ α  t by DY at y  = to 0 okay so this  is coming because that X is  = to Y  going to
∞ t  = to t  ∞  therefore DT by DY has to be 0 okay.

So now this particular again at y  =  to 0 V Is 0 so this will be valid number only when you look
at y  = to  Δ T so where once again  your P will become t ∞ there okay so a  Δ T this will become
∞ okay so this is at T is it fine so now  what we can do is once again we can  integrate this by
parts you can write  this as   0 to   Δ T into D by DX of  UT DY _  0 to Δ T DU by  DX DY okay
so therefore you can combine  this and this term right here so you can  take T common this is d u
by DX + DV  by DY which is nothing but the  continuity equation alright therefore I  can write
this.
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As 0 to   Δ T D by DX  of UT DY + V T  ∞ - I can take a 0 to  Δ T common d u by DX + DV  by
DY  this is  = to _ α DT by DY at  y  = to 0 so and this also  satisfies continuity so this goes to
okay and also from continuity you know  that my V  = to _ 0 to  integrate from 0 to Δ T the
continuity equation I can write my V  velocity in terms of u velocity so just  the continuity of
integrating okay so I  can substitute I know I can eliminate V  from this equation so if I write this
in  terms of u velocities this will be   0  to  Δ T I can take D by DX out D by  DX u t DY _ I have
T  ∞ into  integral 0 to   Δ T be u by DX _  α DT DY y  = to 0.

Okay so I just want to combine these two  terms I can write this as now D by DX  okay   0 to   Δ
T  by _  sign throughout this will be T  ∞  _ T so U is common for both I can  write this as u DY
this is  = to  α DT by DY at y  = to  0 okay  so this is my final form this is V  energy integral
equation  okay  so I can combine these two terms because T ∞ is anyway constant I can take  this
they can write this is D by DX of T  ∞ u so u is common in both the  cases in combines okay so
now we have  both of them so I am going to define my  Θ in fact I can write in terms  of Θ but
let me do it later so just  let me write down the energy equation.
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Energy integral 0 to   Δ T  ∞  _ t DY should be  = to α okay  so this is your equation number two
okay  so the first step is that we derived the  integral form of momentum and energy and  we
have put it in this particular  pattern and next what we are going to do  in the approximate
solution we are going  to make an approximate assumption for  the velocity and temperature has
some polynomial okay so it can be any  order polynomial and we have to see  which boundary
conditions that the  profiles have to satisfy to calculate  the coefficient of these polynomials so
this is the next step so now let us take  the case where we have a linear velocity  profile.
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You know that is the most basic profile that you can start with so for  the laminar flow let us
assume  a linear velocity profile so I am just  saying that my you would be something  like a + B
Y okay this is the linear  form of the velocity profile that I am  assuming so in order to get the
constants a and B I have to satisfy  boundary conditions okay so the most you  have to start with
the most basic  boundary conditions before.

We go  to  satisfying  the  more  higher-order   boundary  conditions  okay  the  most   important
boundary condition start from  the wall at y  = to 0 to e  = to 0  okay and after this what should
be the  second most important boundary condition  so once you have given at y  =  0 you have to
give something at y  =  Δ ok u  = ∞. These are the most  basic boundary conditions which are
which are which have to be satisfied i  cannot directly say d u by DY at y  =  to   Δ is 0 has to be
satisfied then  it does not tell what value it should  reach at y  = to  Δ ok just only  say this slope
is 0 that is it.
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So if you substitute can you tell me what will be the profile that I get  so if you directly substitute
this y = to 0 = to 0 array will be 0 at  y  = to Δ you will become u ∞ therefore B will be u ∞  by
Δ ok so therefore your u will be   =  U ∞ Y by  Δ so u by u  ∞ will be  = to Y by   Δ so  this is my
linear velocity profile so if  I if I plot this profile for a flat  plate.
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 At any location it will show only  something like this a very linear  variation from 0 to u  ∞ but
y   = to 0 U will be 0 and varies  linearly at y  = to Δ u will  become u  ∞ so this will be  Δ
something like a coed flow profile okay.

(Refer Slide Time: 29:55)

So this is not actually the real profile  right your real profile is for  satisfying and a different
relationship  which we have seen from the  Blasius solution and definitely the  shape does not
look like this  okay that   is  a slope there is  a  curvature terms are all  that  which we are not
accounting  for in this particular ok the slope is constant and there is no curvature so  therefore
this  may not be a very good  profile  but still  this is an approximation okay so why we are
approximating it is once we may give  this kind of an approximate profile we  can substitute for
velocity in this  momentum integral and we can directly  calculate the boundary layer thickness
expression for   Δ can be determined  so what I am going to do now.
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Substitute this profile into one  so if I substitute into one that I will  get u  ∞ square D by DX 0 to
Δ  into 1 _ so u by u  ∞ now will  be Y by   Δ into y by   Δ into DY on  the right hand side I have
new D u by DY  at y  = to 0 so D u by DY now will be what u  ∞ by   Δ okay from the  linear
profile so therefore so anyway  that is a constant slope it does not  matter whether it is at y  = to 0
or  so if this is just linear profile so the  slope is constant so this will be µ  into u  ∞ by okay  so
very simple profile and the equation also looks simple now I am going to  introduce a non-
dimensional variable Η which is  = to Y by Δ.
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Okay do not confuse this with the similarity  variable of course, I am using the same  variable
here because coincidentally in  the similarity solution also Η was the  similarity variable which is
which was  related to Y in   Δ exactly like this  but here I am just using Η to represent any non
dimensional variable so if I do that I can transform Y in  terms of the non-dimensional Η this
will become u  ∞ square d by DX  now integrated from 0 to  Δ will  become 0 to 1 in terms of Η
okay so 1  _ Η into Η into this will be DY  by D Η into D Η ok DY by D Η will  be   Δ so
basically I can I can put  this   Δ here into D Η okay  this will be  = to on the right hand  side new
Infiniti by Δ ok now this Δ has to be with inside D by DX  because Δ is a function of your
position along the flat plate.

So if you do the integral maybe you can take a  couple of minutes and do it but since we  do not
have time I am just going to give  you the final solution so this will come  out to be 1 by 6 okay
so the integral 0 to  1 _ Η into Η D Η should come  out as 1 by 6 okay so in that case this will
become I cannot cancel u  ∞ on both sides  and this will be   Δ will come to this  side so   Δ D   Δ
by DX will  be  = to 6 new by ok so now this  is  a  very simple OD which I  can solve by
separation of variables straight away ok  so this will be  Δ square will be   = to 12 new by u  ∞ X
+  some constant ok this is the solution  for  Δ.

Of course we can find the  constant by applying the boundary  condition that at X is  = to 0   Δ
= to 0 right  the boundary layer thickness is 0 at the  leading edge of the plate and therefore  your
constant will be 0 okay so your  expression for   Δ now reduces to the  form   Δ is  = to √  of 12
µ X by u  ∞ which is nothing but 3.47 √ of Nu X by or Δ by X can be written as 3.47  I can
divide by X on both sides and this   will be u  ∞ X by nu which will  be nothing but √  of
Reynolds  number will be √  of 10 a  number now you can compare this with the  similarity
solution from which we  calculated the expression for  Δ do  you recollect what is the expression
there that was 5 okay so how did we do  that we calculated for different values.
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Of  b η F of f of 0 F prime of 0 and  also at all other values of b η we have  tabulated and we
found out the  corresponding value of Η aware you are  u by u  ∞ or your F prime was 0.99
corresponding to s prime 0.99  we found  the data was  = to exactly 5 and that  that is nothing but
the value of  Δ  okay so this is how we have got it  approximately the actual solution is  Δ by X is
= to 5 by √   of re X so the since we are using an approximate profile this is the  variation you
know so this is about 31%  less than the exact solution.

Okay so there  is an underestimation that we get by  using the linear profile  and we can go ahead
and calculate the wall shear stress local variation which  is µ Du by DY at y  = to   0 okay  so in
this case d u by DY at y  = to  0 is nothing but for the linear profile  u  ∞ by   Δ okay so this is
new  u  ∞ by   Δ so we have already  got the expression for  Δ which we'll  substitute here and if
you do that  you  will  get  0.288 u  ∞ √ of  when you X okay so now if  you define   non-
dimensional local skin friction coefficient as towel by Rho ∞ square so this will come out as
0.576 by  √ of announce number okay so and if you remember the exact solution  was giving
0.664 okay so this is about 13% less than exact solution.

Okay so if  you also go ahead and integrate the  local skin friction coefficient over the  plate and
calculate the average skin  friction coefficient for the entire  plate that is your CFL is  = to 1 by
L 0 to L C of X DX okay so we will end  up with the expression 1.15 2 by √ of re l okay so
finally  the  bottom  line  is  this  you  can  you  can  get  an   approximate  estimate  of  all  these
quantities like boundary layer thickness  your local shear stress in friction  coefficient everything
using some approximate profiles and this is  µ CH  easier as you can see than  doing a rigorous



solution to the  similarity equations okay and in fact if  you use a better profile you will be
amazed to find that the agreement will  be even better okay so just to give an  example if you go
from a lenient profile  to a cubic profile okay which I will  just show you and stop there okay so
if  you assume a cubic velocity profile U is   = to a + B y + C Y square +  DY cube.

(Refer Slide Time: 39:46)

Okay so now you have one, two, three, four coefficients and we have to  satisfy therefore four
boundary  conditions so what are the possible  boundary conditions y  = to 0 u  =  to 0 and at y  =
to   Δ u ∞ so these are the important boundary  conditions and what is the next  important
boundary condition  at y  = to  0.
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You  u by way so if you if you look at  the momentum equation okay so you D you  by DX + B
D u by DY is  = to µ v  square u by DY square at the wall okay  both are 0 so therefore d square
u by DY  square has to be this is the next  important saying the order of importance  i am writing
it okay and then finally  what is the last boundary condition  that you have to give cubic.
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In terms of the order of importance okay so these are most important and then at y = to 0 this is
to be given and then y = to what Δ?  Okay so these are  the four important boundary conditions
so if i substitute these boundary conditions into the profile and you  calculate all the coefficients
finally i  will be able to arrive at an expression  which is like this u by u  ∞ will  be 3 by 2 y by
Δ _ 1 by 2 y by Δ whole cube okay so this is the  cubic velocity profile that you will get  I am
sure most of you are taken the heat  transfer course have done this also in  hand once heat and
mass transfer  incompressible fluid flows also okay.

So  cubic profile is like the accurate  profile that you can do okay so once you  get this and if you
substitute the same  way that we did the linear profile into  the momentum equation so let us see
what  happens to the final expressions the  final expression for   Δ that comes  out with the cubic
profile will be  4.6 for that is a correct  Δ by X  will be 4.6 4 by √  of re X so  you can see
remarkable improvement okay  so this is like 7% less than the exact  solution and when you look
at the skin  friction coefficient so this value comes  up as 0.6 for 6 by √  of Rx  this is like almost
there 3% + okay  so this is 0.66 4.6 for 6 almost there.

So you can see that with a cubic profile  you get a very good approximation very  accurate
solutions ok rather than going  for a very rigorous similarity solution  so nowadays I think many
of the people  they are not so interested in the  similarity solution because you have  numerical
techniques where you can  directly solve the governing equations okay and or you can also resort
to  solutions like approximate methods with  the integral equation where you can make  use of
some approximate polynomials and also get the solution so that that is  why these are more
popular methods okay  which are also workable in a very short  time but you have to be cautious
that  does not mean that if you keep increasing  the polynomial.

l now this accuracy will  become better and better okay so for  example if you go from linear to
quadratic and from quadratic to cubic  you will find that it does not  progressively increase in
terms of  accuracy okay in fact quadratic in fact  spoils  the solution a little bit it  is mainly
because in the case of quadratic   boundary conditions we give this   boundary condition this
boundary  condition and finally this boundary we  do not give this particular boundary  condition
okay so because we have only  up to here.

We do  not  give  up  to  this   boundary  condition  because  of  that  you   will  find  there  is  a
degeneration  in  the  accuracy  the  quadratic  case  again  with   the  cubic  it  satisfies  all  the
fundamental  boundary conditions  and  the  accuracy goes  up and if  you use a  fourth order



polynomial again you may  have to give something like y  = to  Δ D square u by DY square  = to
0 you have to introduce higher  derivatives basically and they may not  be very important so
therefore you may not get on the error may not come  down all the time so that is why maximum
you go to cubic and we can stop there okay  so in the next class tomorrow we will  make an
approximation for the  temperature profile the same way that we  did and we will substitute into
the energy  equation and calculate the thermal  boundary layer thickness and therefore  the heat
transfer coefficient.

Okay so we  will see these aspects in the next class  so quickly we will move from flat plate  so
flat plate I am sure many of you have  familiar with the heat transfer course  so we are not going
to spend much time  we will do this analysis for flows with  pressure gradient similarity flows
that  is that dealt with in the other courses  or know where you have done similarity  solution for
adverse pressure gradient  flows or pressure gradient flows I am  sure something must have been
done in  incompressible flows the slides method and Carmen pole house and  method okay so
maybe we will cover those  aspects in the future next four or five lectures of you.
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