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Good morning all of you so now we will look into the one of the  last solutions that we can do in
this  course on similarity methods that is on  thermal boundary layer with high speed  flows so
far in the earlier  similarity solutions we had looked at  either momentum equations without any
pressure gradient term.
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That is the  simplest flat plate case and the energy  equation without the viscous dissipation  term
also we had looked at some of the  similarity solutions for flows with  pressure gradient okay but
still the  energy equation was the same throughout  in all of these configurations you know  so
now we want to consider a case where  you can for example apply either Falkner  Skan flows for
wedge or you can take a  simple flat plate boundary layer and you  can see the effect of adding a



viscous  dissipation term so when is this term is  going to be important primarily if you  are
looking at the non-dimensional  variables it turns out. 

To be the ratio  of hat number by Reynolds number so for  high values of this so the viscous
dissipation term is going to be  relatively important so we are looking  at typically what are
called as high  speed flows it  could be incompressible   and somewhat compressible  but not
supersonic so it is relatively high  speed subsonic flows basically that's  why we have this what
we  are  interested   in  we  are  also  making  an  important   assumption  that  the  properties  are
constant even though they are high speed  flows.

Where relatively the temperature  fluctuations could be strong and the  properties also could be
compressible  like density could be compressible we  are ignoring that we are assuming that
density is constant and also all the  other properties are constant and  therefore we are taking all
this  out of  the derivatives  okay so that is  another  constant property assumption is  another
assumption that we are making okay so  these are the boundary conditions so we  are writing this
for the flat plate  right now we can also do the same thing  for Falkner Skan solution okay so the
only the similarity solution for the  momentum will change right.
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Now the  similarity solution for momentum is  still the Blasius solution okay so if  you are doing
this for which flows then  you have to rewrite that with the  similarity solution for Falkner Skan
problem okay so now the modification  will be in terms of the energy equation  so now you have
included the viscous  dissipation therefore the energy is  coupled to the velocity  gradients earlier
in the Falkner Skan  are brushes the energy was completely  decoupled okay  in the sense only
the one once you solve  this you substitute the velocities and  that is it here you also need the
velocity gradients okay so a little bit  more coupling coming out and these are  the corresponding
boundary conditions.  



For the flow it is very straight forward  as far as the temperature is concerned  you can either
have two conditions one  you can have an isothermal wall okay and  in fact this is what we are
going to see  in this particular case we are going to  consider flat plate where the  temperature at
the wall is isothermal  its constant and you have a very high  speed flow you have your boundary
layer  development Δ and Δ T now you  are interested in this case when  you include the viscous
dissipation  and   with  a  is  thermal  wall  what  will  be  the   effect  of  including  the  viscous
dissipation okay so you can consider. 

This problem into two sub problems since  the energy equation is quasi linear you  can actually
split this into two sub  problems with two different boundary  conditions one problem is where
you know  do not take the viscous dissipation term  into account and then you assume purely
isothermal wall in the other you take  the viscous dissipation into account and  you maintain an
adiabatic wall okay so  in the  case even with an adiabatic boundary  condition you have heat
transfer   possible  because of the viscous  dissipation  okay so if  you do that   of  course the
similarity solution for  the flow is still the Blasius solution.  

Now if you substitute for similarity  variables for U and V and D u / dy x  the energy equation
and you do not write  a non-dimensional form of temperature  you just θ in the dimensional form
so  this is the similarity ordinary  differential equation for energy so you  now see compared to
the other case the  Falkner Skan are the flat plate case you  have now this additional term coming
from the viscous dissipation okay if  this term was not there it will reduce  to your earlier more
simpler form and  now this can be subjected to either of  these boundary conditions depending on
the case. 

So what I am saying is rather  than solving this directly so that is  one more way of doing it you
can  directly solve it I mean you can define  a the θ which is t - T wall by T  ∞ - T wall okay plug
it in  you can divide throughout by T ∞  - T wall and you can define this as  your Eckert number
even free T 2 /  CP T wall - T ∞ is your  record number so in that case you can  you will find a
non-dimensional form of  this  okay so this will become your  non-dimensional form in terms of
the θ  defined this way of course you can solve  this by shooting technique just like any  other
OD that you had seen before and  you can get the solution for the θ. 

But  we are not simply interested only in  getting the temperature profile or the  slope of the
temperature in this case at  the wall but we are more interested also  in knowing what if what
happens if you  put an adiabatic boundary condition at  the wall and what will be the value of
this adiabatic temperature okay so this  gives us an opportunity to analyze the  case where you
are DT by dy is 0 and you  have viscous dissipation and what will  be the value of this adiabatic
temperature okay so in order to do that  we want to separate the problems into  two sub problems
as I said do them  separately also know get information  about the adiabatic wall temperature and
combine these two and get the final  solution for the global problem. 



You know  which involves viscous dissipation with  an isothermal boundary condition okay so
this  is  what  we are  going to  see  today  so  the  first  the  sub problem we can  write  as  the
isothermal  flat plate with stout viscous  dissipation that is your case a that I  have drawn on the
figure okay so if you  have a simple profile like this now that  means you do not include the
viscous  dissipation this is nothing but the pole  how since similarity solution okay  so there you
define you are the θ the same  way that.
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I have defined here t - T wall by T ∞ - T wall and you substitute in your energy equation without
the viscous dissipation you give you write the Palau sense equation. Which  is nothing but the
left hand side term  of this so this is d2 the θ by D  Θ 2 + half PRF into D the θ by  D Θ equal to 0
subject to boundary  condition that Θ equal to 0 but the θ  = 0 and Θ R going to ∞  the θ = 1 okay
so this is your  solution which I have already done you  have solved by shooting technique or
whatever  and now the second part  of the  solution so this  is one problem which  you have
considered what will be the  second problem. 

So one we have split this  into two solutions one so this is now  without viscous dissipation with
isothermal  wall  the  other  should  be   including  viscous  dissipation  but   adiabatic  boundary
condition okay so  this is adiabatic  so this is what I call  as case B and if  you look at  the
temperature profile  typically this is how it looks you know  so this has to satisfy the zero flux at
the wall therefore it becomes normal  okay. 

At the wall you are okay so what we  are trying to say I you can solve this  equation as it is okay
so this is for  the case where you have a high so  thermal boundary condition with the  viscous
dissipation okay this  is  what  we  need the solution but we are also  interested to know the
solution for the  adiabatic wall case we want to actually  measure what is the adiabatic wall
temperature so in order to do that I  want to stake a case where I have an  adiabatic boundary



condition with the  viscous dissipation and also the fact  that for this particular problem you can
linearly superpose two solutions it  works out and mean I mean that is what we  are going to
check you can have one  problem. 

Where it is isothermal the  other where you do where you include  this and you make it adiabatic
and the  entire solution to this problem is a is  a linear combination of those two  solutions okay
so we are going by that  method now okay although we could have  directly solve this and got
the   temperature  profile  which  is  nothing  but   this  which  I  have  drawn  here  we  are  also
interested in calculating the adiabatic  boundary they are the adiabatic  temperature okay so in
order to do that  we have to solve case B now it is also  possible that you can solve case a case  B
separately  and keep it  and you can  linearly  combine  and get  the solution  for this  generic
problem so this is what  this is what why I am doing this way  okay. 

So assume that you have two  solutions one for isothermal case the  other for adiabatic case okay
you can  combine them directly we will see how we  are going to combine it and that will  give
your case which is your generic  case isothermal wall with viscous  dissipation  okay otherwise
you could out directly  solve this equation by shooting method  alright so coming to the second
problem  how are we going to define the θ here  because we don't have anything like  fixed wall
temperature okay so now the  first question is how do so I can say  this as something like t - T  ∞
I can define but the  denominator is a problem I do not have  any T wall so what I would like to
do  generally in high speed flows that is a  difference between the static  temperature and the
stagnation  temperature okay. 

So  if  you  are  looking  at  compressible  flows  in  fact  what  is  the  relationship  between  the
stagnation and static temperature okay.
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So of course  that low-speed flows the velocities are  so small that you know you can neglect
this and therefore you can approximately  say your static and stagnation  temperature is the same
but high speed  flows you cannot do that okay so I am  going to call something like my δ T
which is your say T 0 - T and  you can say dimensionless quantity will  be something like u ∞
square by 2  CP so this is the δ T that I am  going to use to scale this okay so this  is what I am
going to how I am going to  scale my the θ and of course what I am  going to do is I am going to
define  the θ which is different from this the θ  because this is the isothermal the θ.

So I am going to define the notation a for adiabatic boundary condition okay so I am going to
substitute now for TA into this and write in terms of the θ. 
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So that will give me d 2 θ a so  you have u ∞ 2 CP and  when you substitute there is  u  ∞ 2 / 2 CP
so finally you  will be ending up with what - 2  times prantle number into f   ″ (2)  okay, so the
boundary  condition now at Θ = 0 what  will be the boundary condition θ  equal to 0 why it
should be 0 your  gradient of so d θ a / d Θ should  be equal to 0 and your Θ R going to  ∞ = 0
okay, so now you  have two definitions of θ one for  the isothermal boundary condition the  other
for adiabatic boundary condition  and finally we have to mix these two  solutions ok so now this
again can be  solved by shooting method right so this  is another OD which you can write into
two first order Rody's you have boundary  condition for of course. 

You do not have  the boundary condition here for θ at  Θ = 0 so you can guess that you  have
boundary condition for θ  ″  at Θ = 0 so you can guess the  value of θ at Θ = 0 such  that the data
at some Θ = 10  becomes 0 okay so this is the other way  of doing the guess work so that  you



match this condition so you keep  guessing the value of θ =  0 here okay so anyway so you can
solve  this problem by shooting method this  problem already you have the solution by  shooting
method right so once you  have these  now I have two solutions one for the  adiabatic case ones
one for the  isothermal case I want to now find how  do I combine this how do I propose a
solution. 

Which is a linear superposition  of these two solutions okay θ is still  the same it is silly because
the Θ  here is coming from the flow part okay the  flow similarity variable is still the  same Y by
Δ which is y √  of u ∞ /nu X only because in  that case we consider the viscous  distribution to be
momentum that has  nothing to do with viscous dissipation  viscous dissipation is affecting only
the energy okay as I said the momentum  part is still your Blasius equation ok  so the same thing
applies the same  similarity variable is put into the  energy yes so no okay only possibly  viscous
dissipation is neglected no then  you would not have been able to derive a  similarity variable
cinema similarity  solution here. 

This see the fact that you  are able to reach a similarity equation  shows that this is the right
similarity variable okay I what I meant by when  that was that was the way when Pole  house and
guessed that he could derive a  similarity equation for energy okay  because he found for prantle
number one  u by u ∞ is exactly equal to  θ and they both the equations are  similar but does not
matter that does not  mean that prantle number greater than  one okay the form of Θ will be
different no you use the same meter only  and he found that it still gives a  similarity equation so
here also when  you put all your Θ finally it  comes to this which is still a  similarity equation
okay so therefore  the energy equation does not  care much about the Θ.

So the same Θ  what you use for the momentum is still  rained here this is your boundary  layer
similarity variable that is it okay  once again if you go for the  some kinds of flows like say free
shear  flows there will be a different  similarity variable okay so there you  will be defining
something like Y by Y M  by 2 in the case of jets okay so that is  that is your jet half-width so
this  is   your  maximum  velocity  somewhere  you  get   half  of  the  maximum  velocity  and
corresponding to that is your Y M / 2  so you use that to non-dimensionalize  your Y okay so in
different kinds of  flows as far as boundary layer flow is  concerned this is the similarity  variable
that is it okay. 

So now I am  going to just give you a general  solution and before that let us try to  understand
what how this definition of  θ what it means at Θ =  0 so at Θ = 0 okay so I can  calculate the
value of TA at the wall  okay that is nothing but what the  adiabatic wall temperature right so that
is my TA wall - T ∞ = θ a at Θ = 0 times  u ∞ 2 / 2 CP okay so this  is how I can calculate my
dimensional  value of Fadia by attic wall temperature  once I know the value of θ a at Θ  equal to
0 and how this value  come by guesswork okay so you keep  bitrates of Li guessing the value of
θ and still it matches this and that  final value is your θ at Θ equal  to 0 so this factor is also
called as a  recovery factor although this is a  non-dimensional temperature okay this  relates
basically  your dynamic head to  the adiabatic wall  temperature so this  is also called as the



recovery factor  okay so what you have defined as a  stagnation temperature is what something
like  say T ∞ + u ∞ 2 /2 CP. 

Now T adiabatic wall as T  ∞ + some factor times this  okay so it is not equal to one okay but
less than one so that factor is called  recovery factor okay so therefore you  can you can imagine
that this is  something similar to your stagnation  temperature that you have defined but  may be
of a different factor okay so  that factor comes through this recovery  factor here okay now I am
going to  propose a general solution which is a  combination of the two cases.
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So I am  going to define T as a function of Θ  - T ∞ okay so t - T  ∞ now already for the case be
- T ∞ is defined as θ a  into u ∞2 by two CP that is  one part of the solution okay now I want  to
blend these two solutions there is a  linear combination. I want to propose so  this is one solution
now here I have  defined θ as t - T wall by T  ∞ - T one so if I want to get  to the form of t - T ∞
and  then I will say this is 1 - θ ok  1 - θ into T ∞ - T  wall or so if I say 1 - θ it  becomes  t-- teen
one - θ will be  what t - T ∞ by T wall -  T ∞ is that right the science  will flip okay  so therefore I
can just write this T  - T ∞ as 1 - θ x T  1 - T ∞ okay so this can be  written as T wall - T ∞ into  1
- θ okay  still this is not a linear combination  because I will just simply added it okay  so I have
to propose some factor some  constant which gives a weight edge for  this part of the solution
and this part  of the solution. 

So this is a relative  weight age I am giving a weight age of 1  for this corresponding to that what
is  the weight age to this okay it can be  > 1 < 1 so  this is your final form of the general  solution
ok so what you are saying is  your general solution is a linear  combination of these two solutions
and  how do you know that this is the correct  one so you can simply substitute this  back into
this equation number 1 and you  will check that it satisfies that  equation that means this is the
right  combination okay so I am not going to do  that you can do that yourself and check  simply
substitute this and you will get  you can group into two forms okay. 



So one  form will be of this which is already  satisfied by itself okay, the other form  will be this
which is also satisfied okay  so those two will be perfectly  satisfying the OD  so this solution
satisfies equation 1 okay,  I want you to just check that so  therefore this is the right solution now
one more thing already when we propose  the solution we have satisfied the  boundary condition
that it Θ are going  to ∞ t = t ∞ okay  because the way that we have defined my  θ  so at large
values T will become T  ∞ and this will become one here  and here the value of θ becomes 0 so
this naturally satisfies the boundary  condition that this is this ok but still  I have not come clearly
specified  the   wall  boundary  condition  here  okay, so  this   constant  can  be  determined  by
satisfying  the boundary condition at the wall okay so  to calculate C so the BC should be at  Θ =
0 for the solution. 

Which  involves θ T wall should be T  ∞ and the solution which inverse  θ a so there B DT / D Θ
= 0  okay so if you can you substitute this  boundary condition and tell me what will  be the
expression for C so T at Θ  = 0 - T ∞ okay, so this  is nothing but what T at Θ = 0  is what T wall
ok that is a fixed  boundary condition so T wall - T  ∞ will be =C x T 1  - T ∞ x what will be θ  at
y equal to 0 0 right therefore this  will be just 1 + u ∞ square by  2 CP x θ DT = 0  okay now
from this definition θ a at  Θ = 0 x this is nothing but  P a Val - T ∞ okay  so this will give me C
equal to  what 1 - so I can just take this  common so this will be 1 - C + is  equal to this so C will
be 1 - PA 1  - T ∞ divided by T 1 - T  ∞ okay or I can rewrite this as C  = t1 - T adiabatic wall by
t1 - T ∞ okay so now that I  have written mind C now the solution is  now complete okay. 

So once I finds two  separate solutions one for θ one for  θ a I found out the constant factor
which combines this linearly okay  so therefore I can write my final  solution.
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Term - T ∞ = D w- so - T wall - T ∞  cancels when I substitute this so it  will be T 1 - T adiabatic
wall into  1 - θ + okay so I can still  θ in this as u ∞ 2/ 2 CP  x θ as a function of V time so  this is
my final solution okay, I can also  go one more step I can  non-dimensionalize this with t - T  ∞
by T wall - T ∞ okay  so I can divide throughout by T 1  - T ∞ so that I get a final  expression for
non-dimensional  temperature  and this will be still one – θ. 

This is a function of Θ on frontal  number  now this will be I can write this as if  I divide it by T
one - T ∞  this will be u ∞ 2 / CP T  one - T ∞ is a card number so  Eckhart number by 2 into θ a
now  this part coming to Tw T  adiabatic wall by T wall - T  ∞ okay so that can be written as  you
can just check 1 - θ a at  Θ = 0 into a cot number by 2  okay because θ a into Eckert number  that
is that is basically this term  Eckhart number is u ∞ square CP  δ T into this okay so that will be T
adiabatic wall - T ∞ so you  can you can say 1 - this divided by  T 1 - T ∞ will give you this  final
you can just check that okay so  this is your final non dimensional  solution okay so all that
requires is  your solution for θ okay. 

Which is  coming from K safe and for θ a  coming from case B and you combine this  like this
and you get your final  solution also this is nothing  but your θ right so this was this  could have
been directly obtained by  solving the similarity solution that I  had written before  okay directly
okay the same thing can  also be done by linear combination of  these two fundamental solutions
so let us see how if you plot the  solution for temperature how this  profiles look like okay any
doubts on  this so far so if you plot the  temperature profile first let us look at  case B solution
because case a we  already know how the temperature profile  looks case B if you plot it as non
dimensionalize the adiabatic temperature  has ta - T ∞ by P a w  - T ∞ such that it scales  between
0 and 1 okay. 

So at y = 0  this becomes T adiabatic wall it becomes  1 at Y going to ∞ this becomes 0  okay so
on the x-axis you have Θ so  for large values of Θ so this becomes  0  okay small values at were
Θ = 0  this becomes 1 okay it starts from 1 and  you will see the solution  this is with increasing
parental number  your slope at the wall keeps increasing  this prantle number 0.6 1/3 this is like
300 and this is like thousand okay. 

So  this is your case B solution that is  only for the case with adiabatic  boundary condition at the
wall this is  how the non-dimensional temperature  profile behaves once use once you solve  this
if you want to call this as number  two and number three so if you solve  three by shooting
method this is what  you get finally okay so this is coming  from solution of three by now for the
general solution for this the  combination of these two solutions if  you can plot for a given value
of  prantle number that is my (t)  Θ -  /T w - T ∞ okay as a  function of Θ this will also be
between 0 and 1 and this will show  behavior something like this okay my 0  actually somewhere
here  this is for different values of Eckert  number into θ = 0 this  corresponds to a heated plate
okay.



So in  the case of heated plate your wall  temperature is greater than your T  ∞ in the case of cool
plate wall  temperature is less than T ∞ so  you can get negative values of this when  you plot it
and these are for different  values of Heckert number into θ a  Θ = 0 so you can write this as
something like a cut number into θ = 0 so you if you look at the  solution for this problem 3 and
if you  look at the generic solution here this  depends on θ θ a and a cut  number so you have to
plot this for a  particular value of prantle number for a  particular value of θ a Θ =  0 a cut
number okay so this is could be  for say Prandtl number around 1 okay, so  you have to fix the
Prandtl number here.  

Because everything there are too many  parameters you have prantle number we  have the Eckert
number here so you fix  the ax-cut number to some value fix the  Prandtl number and then plot
the  variation of this non-dimensional  temperature as a function of b θ and  this is how it looks
now there could be  different values of Eckert number x  θ a for a heated plate you have  profiles
which are like this where the  cool plate you have profiles which are  like this okay, so all this
can be verified  once you solve this equation by shooting  technique okay so for a particular
value  of a cut number you can combine these  two solutions and you can get this kind  of a
temperature profile  okay. 

So finally we are interested in the  calculation of heat transfer  coefficients we will see how that
can be  obtained so if you are confused about  the definition of this your Eckert  number into θ a
at Θ = 0 is  nothing but your T adiabatic wall -  T ∞ / T 1 - T ∞ okay  so because this is the TA w
- T  ∞ so this should be a cot number  is again u ∞ 2 / CP x T  w - T ∞ so this should  lead to
some non-dimensional form of  temperature like this okay so for  different values of this you are
plotting this if you are not  clear about how the account number comes  into picture okay so that
is how the  adiabatic wall temperature enters here  through the occurred number times this.
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Now let me also write down the form of heat flux okay. So now when we write down the heat
flux we look at the temperature profile  which is their general profile here so  therefore I have to
differentiate it  with respect to the general profile so  this will be a - K first you can  write this as
D θ - D θ / D  Θ so - and - - will get  cancelled here so this will be K x T  wall - T adiabatic wall
x D θ  by D Θx D Θ / D Y this is at  θ =0 okay + you have u  ∞ 2 + K x will be a  - here u ∞ 2 / 2
CP  x D θ a / D Θ at Θ =  0x D Θ by D 1 right. 

So this is  coming from the general solution now  what is the value of D θ a by D Θ  D Θ Θ = 0 0
so this entire  term and we knocked off and this can be  written as q wall into DT / dy √ u ∞ / µX
okay into  θ  ′ by DT = 0 okay now  once you determine the value of θ   ′ at Θ equal to 0 that is
for the  pole how since condition this is coming  from the pole houses case so when you  solve
this you naturally determine θ   ′ at Θ = 0 so once you do  that you substitute it and this will  give
you the wall heat flux all right so  we have already done that okay, if you can  perhaps recollect
if you can recollect for prantle number  range. 
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In fact pole house and did this  for small Prandtl numbers for me  intermediate parameter Prandtl
numbers  for large potential numbers okay the  correlation for small pattern do you  remember
what it was - half not for  small point for intermediate prantle  number mask okay so that was .3
2 prantle number raised to the  or 1/3 okay, so this can be  substituted to calculate q all double   ′
and from there you can calculate  heat transfer coefficient you can now  define heat transfer
coefficient how do  you now define it now this can be p  wall- whether you want to use t ∞  here
or T adiabatic one T ∞.

Why  because if you look at this form right  here if you had defined based on T w  - T adiabatic
wall this will get  cancelled straight away okay so  therefore we would like to define my  heat
transfer coefficient based on T 1  - T adiabatic wall so in that case  and therefore my so this will
come out  to be 0.33 2k Prandtl number 1 / 3  √ of µ u ∞ nu X it  will exactly cancel the
temperature  differences and therefore my nope local  nusselt number I can define as HX by K
will be 0.33 2 into Reynolds number  power 1/2 prantle number 1 / 3 okay so  now you see the
nusselt number relation  is exactly identical to the flat plate  case which is isothermal there is no
difference okay but the definition of  heat transfer coefficient is different  okay.

Now you are defining this as T wall  - T adiabatic wall  t w- T ∞ okay now this is  the difference
between the high speed  flows and if you neglect the viscous  dissipation okay apart from this the
final expression for nusselt number is  still the same all right so the  important conclusion here is
that for  non dimensionalizing okay your there are  many temperatures. You have now T ∞ now
you have T wall you have T adiabatic wall so all the three has to be considered some way okay
and to define heat transfer coefficient you have defined based on t w - T ∞ okay so everything is
fine so therefore since you are arriving at the same correlation Jordan all Sinology is still valid
okay.  



So the Reynolds analogy which says that  Stanton number = CF by two for  prantle number of
one okay four  otherwise there Stanton number 2/3 = CF /2 so this is  still valid for high speed
flows also  because for prantle number equal to one  you will still θ in the same  expression for
between Stanton number  and CF so therefore the nonce analogy is  still valid now one thing is
for  calculation of properties so far for low  speed flows how did we define the  property how did
we calculate the  properties we calculated them at some  mean temperature which we also call as
film temperature okay so this is called  the film temperature which is the  average between the
wall temperature and  the free stream temperature  okay so if .
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You if you can also extend  this and write like T ∞ + okay  so you can write this in this form
okay  now the  same way in  the  case  of   high  speed  flows  we have  to  define  some  mean
temperature  to  calculate  the   properties  okay  so  now  we  have  as  I  said   three  different
temperatures to  non-dimensionalize  okay. Now so already you have 0.5x T  1 - T ∞ now you
also want to  account the adiabatic wall temperature  somehow so therefore we define +  another
constant into Tw - T  adiabatic wall okay so this constant  generally is empirical it  is taken
somewhat something like 0.2 - okay so we  calculate mean temperature or film  temperature this
way in the case of  heights high speed flows and then we  calculate all the properties based on. 

At  this value of property at this  temperature okay now for the limiting  case where you do not
have viscous  dissipation the T w will become equal  to exactly T adiabatic wall okay so it  will
reduce to the form of your earlier  case that is your film temperature okay  so you have to be
careful that the  definition of heat transfer coefficient  is different but finally the form of  muscle
camber is exactly the same and  the properties where you calculate the  property corresponding
to the  temperature the temperature has to be  calculated in this particular fashion  okay so this is
a very important  thing that so with this we have  completed all the similarity solutions  for
external boundary layer flows if you  want I can just quickly summer summarize. 



(Refer Slide Time: 45:31) 

The similarity solutions that that we  did before we stop okay so summary of  similar  solution
just two more minutes  so for velocity I am just writing the  global similarity solution which is
nothing but the Falkner Skan from there  all the other special cases can be  derived so for the
Falkner Skan you have  F triple  ′  okay the boundary conditions are for the  similarity problem
you are F of 0 F   ′ of 0 should be 0 F  ′ at  ∞ should be equal to 1 now what  is the condition
most general condition  for F of 0 do you remember from our  transpiration problem. 

This is -  glowing ratio times 2 by M + 1 okay  the blowing ratio is a constant value  okay then
when you blow blowing - equal  to 0 that becomes the case without  transpiration where F of 0
equal to 0 ok  now we in all these cases we are we have  made the assumption that your u ∞  is of
the form CX power M okay and your  blowing ratio is essentially a constant  and the similarity
variable is  right so these are some of the  assumptions under which you get a  similarity solution
once you get it you  can calculate your skin friction  coefficient as two times f double  ′  of zero
divided by √ of local  Reynolds number so same way for  temperature the most general similarity
solution is θ this is your most  general form okay including high speed  flows okay if your
account number is  small you can neglect the right hand  side terms and it reduces. 

To your follow  sins equation  okay the boundary conditions θ 0  equal to 1 θ at ∞ equal to  how
did we define θ in the earlier  case it was we remember was at t - T  ∞ by T 1 - T ∞ can you  just
check how we defined it then you  may have to flip the  for the general problem t - T  ∞ by T one
- T ∞ that  is how I think I defined it so in that  case the boundary conditions flip okay  so θ at the
wall now will become  equal to one okay  θ free stream will become zero if I  define as t - T wall
by T ∞  - T 1 it will be 0 and 1 okay so  here my definition of θ =  t - T ∞ by T 1 - T  ∞ so only
then I can write in  terms of a cut number here that is why I  did like this okay so for this the
nusselt number relation finally will be  my - θ  ′ at 0 into re X  √ of rx or RX / 1/2  okay. 



So these are the most general  similarity solutions of course for  particular cases we have derived
and  also we have derived for the general  case from which we can get those  specific cases so we
will stop here  today and in the next class we will look  at the integral method solution  you.

Thermal boundary layer in high speed flows

End of Leture 17

Next: Approximate(Integral)
methods for laminar external flow and heat transfer
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