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Okay  so  where  we  stopped  yesterday  we  were  looking  at  the  solution  for  heat   transfer  a
similarity solution and this  is also called the pohlhausen and  similarity solution after named
after pohlhausen  and who continued the  velocity boundary layer similarity  solution of Belasis
and we extended that  to thermal boundary layers and we saw  the derivation of this particular
expression subject to these boundary  conditions and of course you know from  they from the 

intuition that for pantal  number equal to 1 the if you replace the  temperature variable non-
dimensional   temperature  η  with  the   non-dimensional  velocity  the  momentum   and  the
temperature  equations  are   identical   exactly  so pohlhausen  got  the idea  that   if  for  pantal
number = 1 they  have the same solution so for other  pantal  numbers there should be some  kind
of a similarity solution possible  so then he intuitively substituted the  same similarity variable 

which was used  for velocity boundary layer and finally  he finds that this falls into the  category
of similarity solutions ok and  of course we have seen direct  integration you can reach to this
particular step where this gives you the  solution of course you need the F from  the solution to



the velocity similarity  similarity and from there you plug it in  and you can numerically integrate
it or  we have also seen the the standard way  of doing all the solving all the ODS  will be 

hereafter by using the shooting  technique so you solve the OD directly  numerically so that also
will give you  the same solution for  η but for all  this the solution for F is required okay  so you
have to solve both of them  simultaneously so all the momentum  similarity solution once you
get the  value of x you substitute into the  energy similarity solution find the  solution for θ so all
this also depends upon  the prantle number therefore your θ is a function of your 

location as well as your prantle number so for a given prantle number you substitute and you
integrate it out and you find a solution so for different values of prantel number you will get
different values of θ as a function of η so therefore if you plot the similarity solution coming out
of this if I plot 1 - θ that is I just convert it as t - T ∞ / T wall - T ∞   as a function of η you 
See for each prantle number the slope of the curve changes higher the prantel number greater is 

the slope so that which means  now now you all know that the slope of a  temperature profile at
the  wall  directly   governs  your  near  wall  heat  transfer   rate  okay so we are  now going to
calculate the heat flux which is carried  away from the wall and we all know that  the heat flux is
directly related to the  the slope of the temperature profile at  the wall so greater the slope greater
will be the heat flux carried away and  therefore your heat transfer coefficient  which is defined 

from this also will  become higher so higher the prantel  number the higher the heat transfer
coefficient okay so now you can probably  once you know the solution you can  convert this in
terms of the θ and  derivative with respect to η and then  plug in those values okay can you have
you know we have defined θ in this  manner t - T w/ T∞ so  this can be written as - K so dt/  dy
will be d θ so T  - T∞  wall into d θ / d η  I am  transforming the variables. 
(Refer Slide Time: 04:05) 

here into dh / dy at y equal to 0 or in fact I  should apply this condition to d θ / d η at  h = 0 okay
now I also  know my similarity variable  η is y  times √ u  ∞  / μ X  ok so I can just substitute this
should  give  - K t  ∞   - T wall  into what is d  Η / dy√ u  ∞  / μ X into D  η / DT at θ   = 0 now d
η / dh η = 0 so this is my D θ / D η if you integrate this  once you end up with this solution for
the slope d θ / d η okay so you  want to evaluate this at θ  =  0 so we will say that my d θ  / d η  

equal  Η = 0 should be  the value of this F double Prime okay at   θ= 0  okay so F double prime
to the power P  at θ=  0 / 0 to   ∞  F double Prime at  θ =  0 to the power P R right since your  F is
a function of η  so the value of  slope from that equation will will be  evaluated exactly at F
double prime b η = 0 okay so I mean when you  are doing this numerically so all you  have to do
is you have to substitute the  value of F double Prime from the Belasis  solution that you got right

so you know  the value of F double Prime at η = 0 so that is nothing but the  curvature okay  you
substitute and then you integrate it  okay so then that should give you the  the value of  these
temperature profile temperature  slope a slope of the temperature at η = 0 okay so when you do



this  numerically once you have a complete  Belasis solution it is just a matter of  substituting the
curvature for in terms  of F and then calculating the slope in  terms of  η okay so once you do this

you will find out in fact this was done  numerically paul Hassan and he has  actually fitted a nice
curve so he gets  different sets of values of d θ  / d η for different values of prantle  number so
depending on the Prantel  number you get different values of this  okay  so now he fitted a nice
curve for  different ranges of prantel number for  each range you know he found the curve  fit
which is sufficiently good enough to  describe it and this is what Paul Hassan  did it so

(Refer Slide Time: 07:44)

polehassan solution was expressed as d θ / d  η at  θ η = 0 for the case where you are  plantle
number was extremely small okay  so I say prantle number approaching 0  okay so for such a
case he found the  curve fit like 0.564 times Prantel  number raised to the power half this was
the best fit which can describe the  approximation for low extremely low  Prenatal numbers okay
for moderate  parental numbers between 0.6 and l< 15 he found 0.33 to into PR power 1  / 3 okay

and for Prenatal number which is very  large 0.339 PR power 1 / 3 in fact  it is very close you
know even this could  have approximated all the way from  prantle number 0.6 to  ∞  it is only
the third decimal point which is just  changing but for grant very small  planted numbers the
functional  dependence on prantel number itself  is  different okay so in fact this is a very  useful
information for us he has  completely covered that entire plantal number regimes okay so in fact 

it  is a good exercise you can when we when  you are solving this for example  shooting method
you can you will you  will be directly solving for D θ /  D  η = 0 right we have  seen this just like
the case of basis  solution where you do not know the  curvature you guess it and try to match
the other boundary condition ok F prime  of  ∞  should be equal to 1 the  same way here you
guess D θ / D η  = 0 you guess this and  you finally match this solution ok so  ultimately when 



you converge finally you  will directly converge to the correct  value of the slope at η  e= 0  okay
and if you probably check with the  pohlhausen since correlation you can get a  good idea how
good this correlation  works ok so you can repeat this four  different prantel numbers right ok for
different parental numbers you solve  this equation you get the slope and then  you substitute and
check whether it  satisfies the polehassan  fit ok so  that is a good way of for you to learn  and 

understand whether this fit is very  accurate or not ok so this is what and got will let us accept it
for  the time being so most of the times we  are interested in fluids in the kind of  intermediate
prantel numbers ok we are  not going into liquid metals or fluid pohlhausen   with the extremely
high viscosity but  with intermediate prantle number between  0.6 and 15 so we will take that
value  and then substitute for D θ  / D η  for calculating the heat flux okay so  therefore 
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my heat flux will become now  0.33 2 ( K times  P wall  - T  ∞)  and just  flipping the signs here
into Prenatal  number power one / third square root of  u  ∞  / μ  X so this is the  equation for the
wall flux I want to now  go one step forward and calculate what  is the heat transfer coefficient
okay so  my heat transfer coefficient as a  function of X will be the wall flux by how do i define
it wall  temperature  - reference temperature  is my free stream temperature okay so  this will be 

0.332k here power 1/2   √  u  ∞  now I will non dimensionalize the heat transfer  coefficient in
terms of nusselt number  local nusselt number which is defined  this way okay so this will be
0.332 to PR  power 1 / 3 so I multiplied / X here  so I will be getting√  u   ∞  X / μ right so which
is  nothing but the Reynolds number okay  where your local Reynolds number is u   ∞  X / the
kinematic viscosity  okay so this is the final expression  that you probably find in the textbooks  



if you are taking a basic heat transfer course you are all straightaway given the final expression
for  flat  plate  on  a  cell  number  okay  so  this  is  how  it  is  coming  out  so  this  is  a  very
straightforward correlation and probably most of you know by heart and this is valid for the
intermediate prantle number range that we are talking about that is Prenatal number  < 0.6 and >
15 okay so we can  also do one more thing rather than into being 
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interested in the local variation  of heat transfer coefficient our nusselt  number we can kind of
calculate an  average value of H for the entire plate  so therefore we can also define an  average
value H over bar which is one  over l0 2x h DX okay so this is the way  I define my average over
the entire  plate length okay so if I substitute you  can probably do that as a nice exercise  you
can substitute and integrate it with  respect to X you will find that the  resulting expression will 

be 0.664  into k PR power 1 / 3√  of u   ∞  / μ L okay which is exactly  2 H (x=l) but here X will
be  = L okay so this is exactly twice of  the heat transfer coefficient  corresponding to X = L okay
now same way if you define an average  nusselt number for the entire plate okay  depending on
the average heat transfer  coefficient and based on the length  instead of the local coordinate so
you  will be getting 0.664 into re based on  the  length and prantle number 1/3  

okay so this is this is exactly twice  that of a new at X = L all right okay so these are some I think
correlations which are familiar to you  so I am not going to spend too much of  time and so in all
these cases you know  that 
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the Prenatal number is a very  important parameter which is the ratio  of μ /  α so which gives the
ratio of  the= momentum diffusivity / thermal  diffusivity okay and you also know from  the
scaling analysis which we did when  we derived the boundary layer equations  the relationship
between prantel number  and δ if we showed that my δ T  / δ is approximately prantle number  to
the power (pr) - 1 / 2 for one  case for higher prantle number this  relationship becomes phantom 

number to  the power (pr)  - 1 / 3 but nevertheless  you can see that the thermal boundary  layer
thickness is inversely  proportional to the Prenatal number okay  so therefore if you are saying
that my  Prenatal number is much <1 so  your thermal boundary layer thickness is  much greater
than your momentum boundary  layer thickness and for prantle number  = 1 both are equal and
vice versa  ok so so this is the kind of observation  for higher parental numbers for parental  

numbers greater than 1 of the order of 1  and greater than 1 you can clearly show  that δ T / δ
scales as Prantel  number to the power (pr)  - 1 / 3 okay so  this something which was concluded
once   you calculate  your  thermal  boundary  layer  thickness  from here  and the   momentum
boundary layer thickness from  the Belasis solution you can simply take  the ratio and you find
exactly scales / this frontal number  power  - 1 / 3 this is something  that which you can observe 

yourself ok  for higher Prenatal number for the low  Prenatal number regime it scales as  Parental
number power (pr) - 1 / 2 so in  fact you can see here itself  ok the slope for the low Prandtl number
regime is of the order of PR power half  here for higher Prandtl number it is PR  power 1 / 3 ok
so these are some some  of the observation that you can make and  most of the times if you are
looking at  oils which are very viscous you are  looking at high Prantel number or if you  

are looking at liquid metals you are  looking at very very small Prantel  numbers most of the
practical fluids air water and so on they fall in this  intermediate prantle number regimes so  that
is why we have specially derived the  expression for nusselt number for those  majority of the



fluids which fall within  that Prenatal number range okay so in  fact this will be also very nice
exercise which I can give you probably  in your homework you can calculate the  thermal 

boundary layer thickness once  you get your balsas profile right so  that is that is the value of y
where your η  corresponding to the η where  your u / u  ∞  goes to one or  .99 or F prime that
you  calculate should be approaching .99 name the corresponding value of y  will be δ the same
way thermal  boundary layer thickness is defined as  the point where you are η goes to 0.99  okay
the corresponding value of y so you  can calculate both you can take the  ratio of that and you 

can see how it  scales you check you check the scaling  with respect to Parental number okay so
you can keep doing this for  different parental numbers and you will  find that it exactly scales in
that  manner  alright so so with this we will move on  to the next topic but but actually what
could have been done I could have  actually started off from the other the  next topic that  I am
going to talk about now rather than  doing the flat plate solution because  the flat plate solution is

a special  case of that particular type of flows  okay so this this type of flows are  called as
Falkner Skan flows okay so let  me just give you an introduction to the  Falkner Skan  type of
flows before  we go into the similarity solution so  any questions so far on the flat plate  flat plate
is a very basic case that is  why I had to start so that you can  understand how the similarity
solution  is obtained how we can solve the  ordinary differential equations and so  on the other 

cases are little bit more  not that difficult but it is just one  order of approximation higher and the
flat plate case is going to be a special  case of those kind of flows I did  not  want to directly start
off  from there   and  show you the  flat  plate  I  could  have   done that  to  save  the  time  but
nevertheless it would have not been a  very good learning experience for you  okay okay one 

more thing which I  probably will just mention casually  before signing off from this I think all
of you have heard about Reynolds analogy  okay I think in also knowledge is  something which
is taught in any heat  transfer course so you can also show I  mean for the case of prantle number
= 1 okay there is a very good  relationship between the nusselt number  and the skin friction 
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coefficient okay  so it is expressed in terms of standard  number is equal to exactly St= CF / 2
okay  so this was called the Reynolds analogy  because it was discovered by Osborne  Reynolds
and this relationship is very  useful because once you know the skin  friction coefficient you can
directly  calculate the corresponding nusselt  number also okay your Stanton number is  another
non-dimensional number which  which is a non dimensional group which  defined based on the 

nusselt number  Reynolds number and prantel number so  all these are grouped and just another
name is given to that now for prantle  number not equal to one people have  found that still you
can use an analogy  now that that is called as the Reynolds  called burn analogy because it is an
extension of the Reynolds analogy for  Prantel  number one according to that   your Stanton
number into St PR 2 / 3  = PL / 2 so wherever  your Pantone umber is not equal to 1 you  can still 

use  the  Reynolds  Colburn   analogy  to  calculate  the  nusselt  number   from the  skin  friction
coefficient so in  any way I mean already when Pohausen  did it he understood the relationship
between the nusselt number and skin  friction directly for prantle number one  okay for the other
planter numbers it  was extended based on the Reynolds  Colburn analogy and therefore these are
very useful expressions for flat plate  is concerned you do not have to really 

be  bothered about the heat transfer  solution once you get the fluid flow  solution you can apply
the analogy and  calculate the heat transfer solution  especially if we are interested in the  heat
transfer rate at the wall okay so  therefore we are more interested in the  nusselt number and
things like that okay  so with that I think you can show and  derive this yourself it is not that
difficult I think you can do it I am not  going to spend time and therefore with  this we will move
on to the Falkner Falkner Skan type of flows ok so 
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so these are flows with pressure  gradient  okay so so far as you all know in the  flat plate case
we have seen that the  pressure gradient is neglected and  therefore it becomes very simple to
solve now what happens when you have  flows with pressure gradient okay can we  derive a
closed-form analytical solution  or maybe can we find at least a  similarity solution which we can
solve  numerically okay so this was not  addressed till the 1930s  so when Faulkner and skan the 

extended  they studied the similarity solutions  derived for a flat plate and they try to  extend that
for flows with pressure  gradient term also okay so in that that  is why they have been called as
Falkner  Skan solutions at least the flow part  okay the heat transfer part was added to  the flow
part because the heat transfer  equation has nothing to do with the  pressure gradient the eat heat
transfer  already has been solved okay so once you  solve the flow that F that comes out of  the 

flow goes into the similarity  solution for temperature okay so that is  going to be much simpler
so the flow is  the major complication here in fact  Falkner and skan they discovered that  for
flows with adverse pressure gradient  they have in fact you can do this from  the potential flow
theory that is from  the in viscid solution that you can  derive the velocity profile the free  stream
velocity which is a function of x  now it is not it is not a constant  anymore so can be shown to be

a  relationship with respect to xs  cx power M v(x)=cxm okay where c is a constant and m  is also
a constant but it is related to  what is called the wedge angle okay so m= β /2- β and β π is your
red jangle okay now what does it mean by  the wedge angle is if you draw very a  general kind of
a problem with  describing this kind of a free stream  velocity profile okay it will be  something
like this okay so you have a  wedge okay this is a wedge profile okay  so you stick this wedge 

into the free  stream and so initially here your free  stream which is approaching will be  constant
and now once it encounters this  wedge so there is of course the pressure  gradient okay so the
flow will try to  for for example here accelerate okay so  therefore here the local free stream



velocity will be a function of x okay  correct okay and this profile is  described by  this relation
cxm  for this kind of a case what is the  wedge angle so this is your wedge angle β π okay so this 

is  the so this  is  a   general  figure configuration  for which  Falkner  and scan has shown the
similarity solution and you can derive  special cases of this particular  solution okay  now you
can see if my β= 0  what happens what happens to the wedge  it becomes a flat plate okay  so
these two collapse and this is just  simply flow past a flat plate 
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and if my β= 0 what what is the  value of m m = 0 right so  therefore my u  ∞=c  will be constant
so which becomes basically the flat  plate solution so flat plate solution is  a special case of the
wedge solutions  are the falkon scan solutions okay now  if my β= 1 for example  how does this
flow look okay so let me draw the different cases β= 0  as you can see that this will be a  flat
plate okay now if my β= 1 what will happen to em 1 okay so  therefore my u  ∞  of x will be cx u

∞(x)=cx  okay now how does how does the  configuration look if my if my β= 1 the wedge angle
will be what π  so it will be a vertical plate  instead of a horizontal plate but the  flow will be still
coming along the  horizontal direction so this will come  and impinge the flow comes like this it
impinges and it goes this way okay so  this is called a stagnation point  solution because you can
see that the  flow comes hits the velocity has to be 0  so this is a stagnation point okay so  this is 

a stagnation solution stagnation  point okay so this is I mean since it is  2d this is 2d stagnation
flow or  stagnation point flow okay so these are  some special cases of the Falkner Skan  now
what happens if my β is negative  so so far I have been discussing the  case where is β 0 and β is
greater  than 0 so β going up to 1 now what what can have can can also you can  also visualize
another configuration  where  β is negative okay so how could  how could β  be negative so you 



can  for example take this  you can wrap it around inside it becomes  0 when it touches here and
again you  turn it inside so that becomes negative  and when you do that if you do  completely
wrap around this way you will  find this flow cannot flow past the  surface okay but instead this
flow will  have to come and then deviate this way  okay so therefore I am just tilde it  upside
down if you if you tilt it upside  down you can say for β < 0  for example where your M also will

be  negative correct  if  my β >  0 M also will  be negative  so I  can  have a  flow which is
something like this  okay this is my wedge this is how my  wedge becomes okay so I take this
this will be 0 and again I put it this way  and make this way horizontal okay so this  will be
horizontal and like this the  flow will pass like this okay the same  thing I am drawing upside
down okay so  the flow will be like this so what kind  of a pressure gradient here it is is it  

favorable pressure gradient or adverse  pressure gradient this is an adverse  pressure gradient
okay because you are  because why your M > 0 so  your velocity has to decelerate correct  so this
is an adverse pressure gradient  flow all right so where as defer the case  where your  β is <0
what should happen the flow should  accelerate your M is positive okay  so wherever your wet
jungles are  positive like this it is an accelerating  flow where your wedge angle is negative  like 

this  it  is  a decelerating  flow R  it  is  an adverse pressure gradient  flow  in this  case it  is  a
favorable pressure  gradient flow okay so therefore you can  see there is a family of solutions that
can be derived once you have the basic  solution for the free stream this is
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coming from the in viscid this is coming  from the potential flow or the in viscid  solution okay
so  for  this  kind  of  class   of  problems  there  are  different   configurations  that  are  possible
depending on the values of M which  depends on the wedge angle okay β π   and the limiting



cases some of the  limiting cases that we can have a look  at is the case of  β =0  which gives you
the flat plate solution  β =1which gives the  stagnation point solution and negative  values of β 

which is an adverse  pressure gradient solution now if I  reduce the value of β  so small in  fact if
I make it to negative what will  happen is beyond a certain point the  flow will separate the
adverse pressure  gradient will be so strong that flow  separation will take place and once the
flow separation takes place the boundary  layer theory is not valid anymore  okay the boundary
layer theory is valid  only within the boundary layer once the  flow separates there is no 

boundary  layer there okay therefore you have to  be cautious there is the lowest low there there
is a lower limit for β   till which you can find solutions  okay below that flow separation takes
place and you cannot find a similarity  solution to those problems okay  you 
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so now what we are going to do is for this kind of class of problems we will write down the try to
reduce the partial differential equation to a similarity equation so can you all try to write  down
the governing equations for this  kind of problems okay so for flows with  pressure gradient so
how does the  boundary layer equations look okay the
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continuity is still the same how about  the momentum equation everything is the  same except
only one term which is the  pressure gradient term and we are now  neglecting the okay now
when we are not  still written the energy equation first  we will take the flow solution and then
we will apply that to the energy okay so  this is your governing equation now we  all know how
do we calculate the  pressure pressure gradient okay I  probably mentioned this in the very  third 

or fourth class okay when we  derived the governing equations for  boundary layer so how do we
evaluate the  pressure gradient inside the boundary  layer upstream so since we have shown  that
the pressure is invariant of Y okay  so we can evaluate this outside the  boundary layer and the
same value should  be valid inside also okay so therefore  if you apply the governing equations
outside the boundary layer so you will  get u  ∞  D u  ∞  / DX okay  only your free stream 

velocity is there  your V velocity is 0 so that should  be equal to  - 1 / Rho DP / DX and  there are
no viscous effects also there  ok so you can simply replace your  pressure gradient with your
equivalent  velocity gradient  therefore this term will become u  ∞  /  DX all right so now for the
class of  problems we are looking at the wedge wedge flow problems okay this is the  form of the
velocity profile see X M okay so therefore we know the  functional dependence of u  ∞  on X  we
can just simply substitute it can you  tell me how does it look  since my u  ∞  is equal to Cx  M my
D u  ∞  / DX will be cm x  M  - 1 okay so therefore this  becomes u u DX + V D u dy is =  I can
write again u  ∞  okay I can  say that this C X M is again  nothing but u  ∞  okay so how one u   ∞

here u  ∞  here which I  clubbed together as u  ∞  Square  and apart from that I have M and I have
X power  - 1 okay so I can write this  as M / X plus µ ok so this is the form  of the 

momentum equation that I will be  working with for the Falkner Skan flows  okay now what are
the boundary  conditions at y = 0 u = v = 0 no slip boundary condition and y  going to µ ∞  u
approaches my  free stream velocity now be careful your  free stream velocity is function of X  it



is not a constant anymore ok  so which is actually of the form CX  power M ok so now how do
we reduce this  to an OD  the same approach that we did with the  blushes flow you assume a 

similarity  variable let us assume the same  similarity variable that we got for the  flat plate flows
okay because functional  dependence of boundary layer thickness  on X is going to be the same
whether you  have a pressure gradient term or not  therefore your
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 η which is a function  of Y / δ the functional dependence  of δ is still the same therefore you  can
assume the same similarity variable  holds good okay only thing here u   ∞  is a function of X
okay so  therefore you can write this as Y square  root of C / µ into this is X  M  this is  - 1 X  M  - 1/2

okay  M  - 1 / 2 and also we can define  the stream function and show that stream  function is
related this is a function  of η   the same way that it was there  for the flat plate also so those 

things  remain unchanged where your stream  function is defined such that U is  = VC / dy is
equal to  - ok so till  now this is nothing new  ok this is the same thing we did for the  Belasis
solution so all you need to do  is substitute for the derivatives now ok  in terms of the stream
function now  stream function is a function of F so  therefore you can calculate UV and you  can
substitute all of them here now only  thing is you have this m and u  ∞   is a function of X ok so 

once you  substitute into this you will find that  that I will leave as a nice exercise to  you it will
reduce to a ode in terms  of f and  Η without any terms from Y  and X appearing ok so therefore
this  confirms that the similarity solution to  this class of problems is possible  okay  it is not too
difficult  to  show once you  plug in  all  the  velocity  gradients  and  your  velocities  into  this
expression let  me call this as number two your stream  function already satisfies the  continuity 



okay so you have to just plug  it in here and substituting into two you  get your final OD which is
free of x and  y terms it is only function of F and η   okay so therefore this shows that for  this
kind of flows similarity solution  is perfectly possible okay and this is  the Falcon scan similarity
solution so  now you can see now here it is also a  function of M okay now if you put m = 0 okay
what happens this  term completely vanishes you have 1 / 2  F d2 F / D η2 to 0  so this is nothing 

but the Belasis  solution ok  so in fact without even touching the  Belasis solution we can straight
away  started you could have started from  Falkner Skan  and showed Belasis solution as a
limiting case ok so all kinds of  problems can be approached in this  manner you can put any
value of M that  you are interested in for that  particular configuration and get the  similarity
profiles for that particular  configuration so this is a function of M  right here so what are the 

boundary  conditions the same boundary conditions  that that that we have used for Belasis
solution apply here η =0 you  are F = 0 Y you are F = 0  which boundary condition does it satisfy
no sleep correct but exactly which  weather weather does it correspond to u = 0 or V=0 u = 0
what is U in terms of F what is the  relation between U and F u / u  ∞   therefore F = 0 does it
correspond to this so then you equal to  0 should be what F prime should be 0 so  then what what

does it correspond to v = 0 so go back to your the way  that we derived the Belasis solution so
cut the expressions for u and V ok so if  you put F = 0 then you then only  we become 0 because
already from the  condition that u = 0 we know that  F prime = 0 so far we have V to  be 0 then
this has to be 0 okay and what  is the remaining boundary condition heat  are going to  ∞  the
same same  thing that we have done for the flat  plate okay so what is the condition of  θ going to

∞  u / u  ∞   should be 1 or DF / D  Η our F prime  should be = 1 okay so so this  this is this is
called the Falkner Skan  similarity solution  so now how do we solve it  shooting method okay
exactly the same  same technique that you read for Belasis  solution okay you have a boundary
condition for F you have boundary  condition for F Prime but you do not  have a boundary
condition for F double  Prime at η = 0 so you have  to guess something and finally match  this 

satisfy this condition okay you  don't worry about because even if you  have this equation I will
just write  down if you apply the shooting method it  will simply reduce to 3  Ode is which I will
just write and stop  there and maybe I can write it here 

(Refer Slide Time:45:39)      



so the first whoa d will be what f ′  = G right second M odi will be G  prime equal to H and what
is the third  OD  you substitute in terms of F G and H  here okay so that will be H H  ′  will  be
equal to  - you have M + 1 / 2  into F into G G  ′   H d 2F / D   Η2 H okay this has to be f into  h
plus m into 1  - DF / D  Η the  holes this is yeah so this has to be f  ′   square so this has to be G
square  okay so this is my third ODI so these  are the three first-order ode is ok all  i have to do is

match  from  η = 0 till   Η some value of  8 or  10 okay  and the same ball  set  of  boundary
conditions you know you guess  by Newton's method successively you reach  to the better guess
and then check the  condition that at η equal to large  values of η  = 8 or 10 your f  prime which
is nothing but your g should  should be equal to 1 okay so that  equation has to start so till then
you  keep on hydrating by Newton's method you  keep guessing better values and you have  to
solve the set  of  Odie is   for all  the points  in  the domain  okay  the same exactly  the same
technique all  you need to know is the value of M so  which value of which configuration that
you are looking okay so once you know  the configuration the solution procedure  is identical for
different for each  configuration you get a class of  solutions  so we will stop here so tomorrow
we will  complete the heat transfer part of the  Falkner Skan solution  you.

Pohlhausen similarity solution and

Flows including pressure gradient

(Falkner-skan)

End of lecture 14

Next: Falkner skan solutions for heat transfer
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