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Okay. So let  us  continue  our  discussion  on Poiseuille  flow. We have derived Navier-Stokes

equation for Poiseuille flow assuming that cross-sections can be arbitrary so we have tried to find

an expression for velocity as well as flow rate then we looked at the expression for the velocity

and the flow rate in case of flow between parallel plates. Now we go on and talk about flow in a

elliptical channel. Okay. 
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Let  us  talk  about  flow in  elliptical  channel  cross-section.  Okay. So elliptical  channel  cross-

sections  can  be  fabricated  using  silicon  substrate  if  we  use  bulk  micromachining  Isotropic

etching without  agitation,  okay then you would be able  to  fabricate  elliptical  channel  cross-

sections, so that is a practical importance, okay. So we can draw the cross-section here, so this is

the elliptical channel, we can say this is y-axis and this is z-axis. 

The origin is at (0,0) and this is a and this point is b and this is the surface which we denote as

del c and the cross-sectional area is c. Okay. So we can write the equation of ellipse which is x

square over a square + you know in this case we are using y and z, so y square over a square plus



z square over b square = 1. So the one cross-section del c becomes 1-y square, this is-- sorry the

boundary, the LC becomes 1- square-z square-b square.

So for this case we can assume a trial solution, okay we can assume a trial solution and make

sure that the boundary condition is satisfied that means the velocity at the wall is 0, okay. So we

can assume a trial solution u(y, z) which is u0*1-y square over a square okay 1-y square a square

– z square over b square. So this equation satisfies No-Slip boundary condition, okay. 
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So now if you substitute this in the general equation so the Navier-Stokes equation for Poiseuille

flow that we derived so that was del square u over del y square + del square over z square is =

-delta p over eta l, so that is the general equation. Now if you substitute this trial solution okay so

this is the trial solution, if you substitute there what you get is this you get -2u0 into 1 over a

square + 1 over b square = -delta p over eta l. 

So you can find u0 to be delta p over 2 eta l*a square b square/a square + b square, okay so that

is the expression for u0 and that can be substituted in this equation to get the expression for the

velocity field okay which satisfies the boundary conditions.
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So from there you can find the volume flow rate, the volume flow rate Q can be found so Q will

be  = integration  over  the  cross-section  area  dy dz*u (y, z)  okay. Now if  you substitute  the

expression for the velocity here, what you would get is Q will be = pi/4*1 over eta l*a cube b

cube/ a square + b square*delta p. So that would the expression for the flow rate in an elliptical

channel cross-section okay.

So now we move onto talk about channel of circular cross-section and as you know circle is a

special case of ellipse when the major access and minor access are equal, okay. 
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So with that let us talk about in circular cross-sections. So here we say that a=b right for the l is if

you write a=b it becomes a circle. So this is a circle; this is let us say y and this is z and origin at

0, 0. For a=b if you substitute in this equation here we can obtain the velocity field. So the

velocity field u(y, z) could be obtained as delta p over 4 eta l*a square - y square – z square.

Okay. 

So basically what you do is you substitute a=b in this situation so get an expression for u0 and

then substitute here to get the velocity field,  so that is what you would get. Okay, so this is

nothing but the expression for velocity field in case of flow through a circular cross-section okay

in Cartesian coordinate. So from here you can also find flow rate, flow rate q = pi a 4/8 eta

l*delta p. So if you substitute a=b in this equation this is what you would get. Okay. 

Now these two expressions can also be obtained by, you know this can be derived from 1st

principle, okay. So we can also do that. 
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So for that we would consider a tube of circular cross-section okay. So this is a circular tube. Let

us say this is the radial direction this is 0 and this is axial direction z, this is r=R, r=R okay. So

this is nothing is called Hagen-Poiseuille flow, okay. Hagen-Poiseuille flow is a special case of

Poiseuille flow where we are talking about flow in circular channel cross-sections. Okay.
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So let us go back to general equation Navier-Stokes equation for the in Poiseuille flow case.  So

if you write in the same Cartesian coordinate the equation in Cartesian coordinate del square u

over del y square + del square u over del z square = –delta p over eta l. If you write in cylindrical

coordinate, okay if you write in cylindrical coordinate it will look like this okay del square u over

del r square + 1 over r del over r will be equal to –delta p over eta l. 

So now if you integrate twice, if you integrate this equation twice what you get is this, you get

u(r) will be = -delta p over 4 eta l*r square + c1 learn r + C2, okay. So this is the equation that

you get by integrating the Navier equation. 
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Now if you apply the boundary condition,  what are the boundary conditions? One boundary

condition is that the velocity on the wall is 0 that is No-Slip boundary condition and the other

boundary condition is symmetry condition okay so the velocity gradient at the centre vanishes,

okay. So the first one is No-Slip which says that u(r)=r is 0 and the other one is symmetry.

Symmetry boundary condition says del u over del r at r=0 = 0, right. 

So these are two boundary conditions. Now if you look at this equation and try to apply second

boundary condition the symmetry boundary condition so you would see that this should require

that C1 will be 0. Okay, since you have a long turn here if you C1 is not 0 then it is not possible

to obtain a solution. So to obtain solution the C1 is to be 0. Okay. So then you can apply the No-

Slip boundary condition this condition if you apply that you would get C2 to be delta p over 4 eta

l*r square. 

So you can write down the general expression for the velocity so you u(r) would be delta p - 4

eta l*R square - R square okay, right. So while it is not very obvious to know you know the

nature of the curve here the velocity profile here from the cylindrical coordinate you can see that

this is parabolic okay. So you can, the velocity profile is parabolic with the maximum velocity

occurring at the center okay. 
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So this is this is a parabolic velocity profile. You can obtain the volume flow rate Q would be 0

to 2 pi over pi coordinate*0 to R, r dr*u(r), okay. So if you do that you will get Q= pi/8 r/4

divided by eta l*delta p, okay. So that is the expression for the flow rate in a circular channel

cross-section. Now here we have made one assumption okay, in this equation we have made

assumption that u theta is 0 and u-- sorry yeah. 

This is the angle pi u along azimuthal coordinate u phi 0 and u of r=0. Okay. So this we have

made and this u is only a function of r and this is along z direction okay. 
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Now if we go back and we see you know general solution that we obtained yesterday for a

Poiseuille flow case for an arbitrary cross-section the expression we got was Q=1 over gamma

delta p/2 eta l*A cube over perimeter square. So this is the general solution for Poiseuille flow

that we obtained earlier, general solution for Poiseuille flow for arbitrary cross-section, okay.

Now if you apply this to a circular cross-section you would get exactly the same expression as

here. Okay. 

So if you apply to the circular cross-section then you would get Q=pi/8 R4 eta l*delta p okay.

Right. So you know the circular cross-sections are also have practical relevance in Microfluidics,

it can be fabricated in silicon wafer, if you do you know bulk micromachining isotropic etching

with  solvent  agitation  you  would  be  able  to  produce  circular  channel  cross-sections.  Okay.



Actually it is a semi-circle that you will be able to produce and if you (()) (16:51) two such semi-

circle channels you will be able to generate circular channel cross-sections. 

Now another important point I want to discuss here, how do you define Reynolds number in case

of Poiseuille flow, Hagen-Poiseuille flow where we have flow through in circular cross-sections

and the flow is pressure force, okay. So in this case there is no characteristic velocity that is

imposed onto the system. The preserved gradient is actually driving the flow. How do you define

Reynolds number in this case?
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So Reynolds numbers is typically defined as Reynolds number is defined as Re=Rho u lets say

here the diameter will be 2r/et la, so that is how you define Reynolds number. Now here the

average velocity is a function of a pressure gradient okay. So average velocity u can be written as

—if you know the flow rate okay, we know flow rate here and if we divided by the area of cross-

section then we would what would be the average velocity. 

So average velocity will be Q/pi r square okay, so if you divided pi r square here what you get is

you know delta p over delta z okay.  This is nothing but del p over L, okay because pressure is

varying linearly and into R square and 8 eta l, okay so that is the expression for the average

velocity. So if you have to define the Reynolds number or Poiseuille flow the correct way to



define would be Rho*you know you will have R cube term appearing here and delta p over delta

z/4 eta*eta square.  

The flow in triangular channel cross-sections. Triangular channel cross-sections can be obtained

again using you know microfluidic devices fabricated from silicon wafer, if you do an isotropic

etching you will be able to produce channel cross-sections of triangular shape, okay typically in

an isotropic etching you know one who wafer you would get an angle between the you know the

inclined wall and horizontal about 54.74 okay. 
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So let us talk about Flow in triangular channel cross-section. So unfortunately we do not have

analytical solution for flow through triangular cross-section of any triangular shape only for if it

is  three  sides  are  equal  only if  it  is  equilateral  triangular  then we will  be able  to  derive an

expression for the velocity. Okay. So if the analytical solution exists only for equilateral triangle.

Okay? 
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Let us draw an equilateral triangular cross-section which would look like this. So this is our y

and this is our z, this is a/2 and this is –z/2 and the equation of this line is going to be z=square

root of 3y and this line will be z=-square root of 3*y and this line would be z=square root of 3/2*

a and we have the origin here and this is the boundary del c and we are talking about this domain

which is c okay.

So in that case we see that the triangle is bounded by 3 lines okay, 3 lines here. So the you know

we can come up with so there are three planes that is coming the domain one is you know

z=square root of 3/2a okay and the second one is z=-square root of 3*y and z=squarer root of

3*y. So these are three different planes that is forming the domain. Okay. So we can write trial

solution similar to the elliptical case and write you know trial solution u(y)z= u(0)/a cube*z and

say square root of 3/2 into a-z*z-square root of 3y*z + square root of 3y. 

So this is our trial solution okay. So since we are multiplying three different planes here we are

dividing the, a is the side length of each side. So a is length of each side of the triangle. 
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So you know, if you substitute this trial solution in our Poiseuille flow equation so Navier-stoke

equation is del square u over del y square + del square u over del z square is –delta p over eta l. If

you substitute in this equation what you would get is this, you would get is this.
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You would get u0= 1 over 2 square root of 2 into delta p over eta l okay, eta*l* a square. So that

is the expression for u(0) which can be in this equation to get the velocity field. So from there

you can find the flow rate, Q is 2*0 cube square root of 3/2a dz 0 to 1 over square root of 3

dy*u(y,z) okay. So if you do that we can get an expression for Q which looks this square root of

3 or 320 into a4/eta l*delta p.  So that is the expression for the flow rate through a triangular

channel. Okay. 



So  next  move  on  to  talk  about  flow  through  a  rectangular  cross-section.  Flow  through

rectangular cross-sections is very important in Microfluidic is very widely used especially for

polymer best microfluidic devices you know the methods that we fabrication methods that we

normally use in (()) (26:45) to channels that are of rectangular cross-sections. Okay.

(Refer Slide Time: 26:53)

So now let us talk about flow in rectangular cross-section, okay. Unfortunately, in rectangular

cross-section we do not have any exact solution,  okay. The best obtained is a Fourier series

expansion to approximate for the velocity profile, okay. So exact solution not possible here. Best

obtained  is  Fourier  series  expansion.  So  let  us  look  at  a  rectangular  channel.  Let  us  draw

rectangular channel here. 
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So this is let us say z and this is y 0 is here –w/2+w/2 and the height is h, so we are talking about

a rectangular channel which has width w and height h and we assume that the height h is smaller

than w. okay this can always be attained in a case where height is more than w then this is

possible to rotate the channel and obtain the height < w. okay. So we say that w is greater than h.

So this is always possible to maintain. Okay. 

So we again go to the Navier-Stokes equation for Poiseuille flow okay which is L square u over

del y square + del square u over del z square = –delta p over eta l. okay. So this we want to apply

to this domain where –w/2 is < y < w/2 and 0 is < z < z okay so this is the domain that we want

to where we want to apply this equation okay. 
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So and here as you know since it is parallel flow u is a functional y and z only and the boundary

conditions, you can write down the boundary conditions u(y, z) is going to 0 or y=+- w/2 and

z=h. okay. So that is the boundary conditions. Now we will take an approach where you know

the term in that general equation for the Navier-Stokes equation for Poiseuille flow will try to

express both sides in Fourier series okay. 

And we will write Fourier series in the direction of z okay, in the z direction which is the shortest

dimension of the channel okay. So both sides of this  equation both sides of this  equation is

expanded as Fourier series along the short vertical z direction. And since we have to ensure No-

Slip ensured that means u(y, 0) =u(y, h)=0.

So the velocity is vanishing both at the bottom and top walls you know, you ensured that by you

know retaining  terms proportional  to  Sin n pi  z over h,  so these terms are used where n is

positive integer. Okay. So now let us first do the Fourier series expansion for right hand side,

okay. 

(Refer Slide Time: 32:46)



So Fourier series for –delta p over eta l, okay. So if you write –delta p into eta l in Fourier series,

we can write -delta p over eta l will be –delta p over eta l*4/pi summation n, odd, only odd

values of n used infinite, 1 over n*sin n pi z over h. okay. So this is how we can express right

hand side minus delta p over in Fourier series okay, so this summation term will be pi/4 which

will get cancel so you have the same term –delta p over eta l. okay.

So now let us try to write the Fourier series expansion for the left hand side. Okay. 
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So Fourier expansion of u(y, z) okay. So we are not expanding the gradient term but we are

writing for the velocity field. Okay. So the velocity field u(y, z) can be written in Fourier series



as this, so n=1 to infinite fn(y) and into sign n pi z over h. Okay. So this is how we can write

velocity field in Fourier series. So this is a coefficient which is constant in z and function of y.

Okay. Now if you substitute this and this in this equation let us call it equation 1 okay. 

So what we would is this, we would get del square u over del y square + del square u over del z

square, so if you substitute this equation here on the left hand side this is how it will expand.

This  will  be  equal  to  summation  n=1 infinite  fn double dash y –n square pi  square  over  h

square*fn(y) okay, so just we are substituting this in the left hand side, this is what we would

get*sin n pi z over h. right. So let us call it equation 3, let us call this equation 2. 

So now if you compare you know equation 3 and equation 1 okay each and every term must be

equal. Okay. So you know for all values of n the nth term in 1 and equation 3 must be equal

okay. So they must be equal. Now and so what we see here this is the-- we are comparing with

sorry—let us call this equation 2, equation 3 and this to be equation 4. Now this is the right hand

side and that we are comparing with equation 4. 

So we are in fact comparing equation 2 and 4 okay. So equation 2 is the Fourier series for delta p

over eta l and equation 4 is the expression the velocity gradient okay, viscous term. So if you

know-- here n is odd only okay. So what we learn from there is—
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Fn(y) must be 0 if n is even, okay. For any even this term is 0 right so here only n is odd, so in

this equation if n is even since here we are not talking odd or even, if n is even here then the

function must vanish, so fn must be 0 if n is even and if n is odd n is odd then we can say that fn

double dash y- n square y square over h square fn(y) = –delta p over eta l*4/pi*1 over n and this

is when n is odd okay. 

Now if you want to solve this equation this differential equation it is a seconded differential

equation and it is an equation because the constant part is not 0 so this is an inhomogeneous

equation.  To solve  an  inhomogeneous  equation,  we  need  to  divide  the  solution  into  both

homogenous as well as non-homogenous solution okay. So we can write the solution fn(y) to be

fn(y) inhomogeneous. 

Let  us say this  is  inhomogeneous and fn(y) homogenous,  and this  is also called the general

solution and this is particular solution okay. 
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Now to  obtain  the  inhomogeneous  solution  so  fn(y)  inhomogeneous  obtained  that  one  trial

function we can use a trial function you know fn(y) inhomogeneous to be constant. And if this is

constant for the inhomogeneous solution then this term will vanished okay this gradient term will

vanished  so  in  that  case  we  can  find  what  is  fn(y)  okay.  So  the  function  fn(y)  for  the



inhomogeneous  case  would  be  4h  square  into  delta  p/pi  cube  eta  l*n  cube  so  eta  must  be

differentiated from n. 

So this is the inhomogeneous solution and here n is odd. Okay. Now to find the homogeneous

solution or general solution the right hand side must be made 0. 
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So for homogeneous solution we would have the equation Fn double dash y – n square pi square

over h square*fn(y) will be = 0. So we can write the solution fn(y), so this is inhomogeneous and

here we can write is homogeneous will be = a cos hyperbolic*n pi over h*y+b sin hyperbolic*n

pi over h*y. Okay. So this will be the homogeneous solution, so we can write the total solution

here okay. 
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So we can write the total solution fn(y) will be = 4 h square*delta p/pi cube eta l n cube + a cos

hyperbolic n pi over h*y+b sin hyperbolic n pi over h*y. So if you substitute in our in a velocity

equation but before that lets try to apply the boundary condition our fn will vanish on the walls

+- w/2 has to be 0 so this is the boundary condition mostly boundary condition. So if you apply

that boundary condition fn can be written as Fn(y) will be = 4h square delta p/pi cube eta l

cube*1- cos hyperbolic of n pi y over h/cos hyperbolic n pi w over 2 h. 

So that is how we can write for fn(y). 
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Now if you substitute this in our velocity profile, so u(y,z) can be written as, so we have written

how u(y,z) can be written here okay, so this can be written as 4 h square delta p/pi cube eta

l*summation n is odd right this is what we have written here, n must be odd right because for n

even this is vanishing so only n is odd so n odd to infinite*1- cos hyperbolic n pi y over h/cos

hyperbolic n pi w/2h into sin n pi z over h. okay. So this is the expression for the velocity. 

Now if you plot this here if you plot here, okay in this domain what you would get is this. 
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So let us say this is our domain, this is z, this is y, what you get is this so here across this since

the walls are closed to each other the viscous affects make this velocity as parabolic, okay. So

this is you know this is z direction and this y and this is u at y=0 and with z. Similarly, in this

trend if you try to draw the velocity profile it will look like this, it will be parabolic around the

edges then it will look flat and then it will become parabolic. 

So this or you know this our z direction right and this will be u (y, h/2) so this h/2 okay, it is in

the middle plane this becomes flat and this still parabolic around the edges. 

(Refer Slide Time: 48:31)



So now we can derive and expression for the flow rate so you can write flow rate Q will be =

2*02 w/2 dy to the 02 h dz*u(y, z) which will be now this, Q h cube w delta p/12 eta l*1-

summation n, n is odd infinite 1/n 5, 192/pi 5*h over w*tan h hyperbolic n pi w over 2h, okay.

So that is expression for the flow rate that we can calculate during the velocity field. Okay. Now

in the limit h/w tending to 0 okay what you get.
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So in that limit what you get is the this term okay h/w tan h h* n pi w/2h would become h/w*tan

h hyperbolic infinite. So h/2 is 0, so the height is very small compare to width so the width term

will become infinite and so this term will become h over w. So this is the case where the height is



very small as compare to the width, so in that case we can write Q=h cube w/12 eta l*1-0.63 h

over w. Okay. So this is in the limit where h is less than w. 

Now surprisingly this simplified expression for the flow rate where the height is << w is very

accurate, okay. When w is, 
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 So this equation is accurate when h=w the error is about 13% and when h=w/2 the error goes

down to 0.2% okay. So this simplified equation can be used to analyze flow in rectangular cross-

sections when you know if h is little bit < w then also it will give you accurate results. And in the

worst case when the h=w then also the error is about 13%.  Okay. And you know if h is very

small compare to w in that limit it becomes like a flow between parallel plates. Okay. 

So when h over w become 0 then flow between parallel plates, so in this equation if you put this

to be 0 what will happen you get Q to be = h cube w over 12 eta l, so this is the solution we have

seen earlier for flow between parallel plates. So let us stop here today.


