
Microfluidics
Dr. Ashis Kumar Sen

Department of Mechanical Engineering
Indian Institute of Technology – Madras

Lecture - 04
Micro-Scale Fluid Mechanics (Continued)

The 3 dimensionless parameters the Knudsen number, mach number and Reynolds number

can be related as follows.
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So here we would like to relate Knudsen number, mach number and Reynolds numbers they

are related as follows. So Knudsen number is k which is the specific heat ratio pi/2 square

root*  mach  number/Reynolds  number.  So  this  is  how  the  3  different  dimensionless

parameters are related. We can in fact mathematically show this we can start from the left

hand side, we can write Knudsen number=lambda/L. Lambda is the mean free path and L is

the length scale of the flow.

We can write lambda as 1/2, we can write 2 nu/c bar * 1/L because we know that nu is ½

lambda * c bar. This is what we know. So we can write 2 u/c * nu/uL. This is C bar. So this is

nothing but this term is 1/Reynolds number. So we can write 2 u/c bar * 1/Reynolds number.

Now we can write this as 1/Reynolds number *u/Cs * 2 Cs/c bar. And we can also write this

as u/Cs is the mach number. So this is mach number/Reynolds number * 2 Cs is square root

of k RT K is the specific heat ratio k RT/3 RT.



So this will be written as 4k/3 square root * mach number/Reynolds number. This can be

approximated as k pi/2 * mach number/Reynolds number. So this is how we could prove the

relationship  between 3 different  non dimensional  parameter. The Knudsen number,  mach

number and Reynolds numbers.
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So let us look at this plot that shows how this 3 numbers are related. It also gives you an

overview of what happens to the flows at micro-scale. In the x axis we have the density ratio

n/n0 where n0 is the density at standard conditions standard temperature and pressure. On the

y axis here you have the characteristic dimensions L in meter. On the right hand side you

have L/d ratio L is the characteristics length scale and d is the molecule diameter.

On the top you have delta/d delta is the spacing between molecules and d is the diameter of

the molecular. Now below if you look at this dotted line here this dotted line on the left hand

side  the  gas  is  considered  as  dilute  gas  where  the  delta/d  ratio  is  >1.  Delta  being  the

separation (()) (05:13) giving the size of the molecule is>1 so it is called dilute gas and on the

right hand side we have dense gas here is the dense gas.

If you look at this dotted line here above this line the continuum theory is valid. In the earlier

we looked at the continuum theory we said that for liquid if the characteristics length scale

is> 10 nanometer we can say that the flow is continuum. And if the gas if the characteristics

size  is>  1  micron  we  can  consider  flow to  be  continuum where  do  we  the  flow to  be

continuum first we consider that if we consider the point properties.



We told that let us assume they are 10 to the power 4 molecules in a cubic space, cubic

control volume. There is a sampling volume that we talk about and for both liquid and gas we

know the number density. So we can find out what should be the characteristics length scale

of that point volume the cubic volume so that the fluid will be continuum and for the gas we

found that the characteristics length scale is about 17 nanometer and for liquid we found that

this should be around 10 nanometer.

Then we looked at the transport properties and looking at the transport properties we saw that

for  liquid  the  characteristics  distance  should  be  around  1  micron  and  for  gas  the

characteristics length scale should be 1 micron above which it can be considered continuum.

And for liquid the characteristics length scale should be above 10 nanometer. So above this

dotted line it satisfies that the flow can be treated as continuum above this line and below this

line we consider significant statistical fluctuations.

Now if you look at these lines these are called Knudsen number lines these 3 lines. Now

above  this  line  we  have  the  Navier  Stokes  Equations  applicable  and  the  no  slip  at  the

boundary  can  be  applied.  So  in  which  case  we  have  Knudsen  number<0.001  between

Knudsen number 0.001 and Knudsen number 0.1 we have Navier Stokes Equation applicable,

but with a slip at the boundary.

And between 0.1 and 10 we have transitional flow where we cannot use the Navier Stokes

Equation that we normally use it needs to be modified. And if the Knudsen number is>10 we

get into free molecular flow. So that is what we learnt from this plot. Now before we go

ahead I would like to correct something earlier we were talking about the force between 2

molecules and there was a small corrections that needs to be made here.
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So the force expression for the intermolecular force between 2 molecules 1 and 2 can be

correctly written as this is 48*epsilon/sigma *c12* R/sigma to the power -13-d 12/2* r/sigma

to the power -7. So this 2 was missing earlier when we are trying to write the expression for

the force the factor of 2 was missing so that needs to be corrected. Now moving ahead let us

talk about the governing equation for the gas flows. We have talked about the kinetic theory

of gases where we can relate different parameters, different constant to understand how gas is

behaved.

So let us look at the governing equations for the gas flows and we make some assumptions.

We assume that the gas is compressible and we assume that the fluid to be Newtonian and we

say that the Fourier law of heat conduction is valid. So under those assumptions we write

down the governing equations for gas flows.
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So we write down the governing equations for gas flows and we make some assumptions. So

the assumptions are that the fluid is Newtonian and it could be compressible. And the Fourier

conducting  gas.  So  under  those  assumptions,  we  can  write  the  conservation  of  mass,

momentum and energy. Before we do that as we discussed yesterday we were talking about 5

differential equations 3 for momentum, 1 for mass, 1 for energy so it is 17 unknowns so it is

not possible to solve those equation unless we come up with constitutive relationship.

And this constitutive relationship they can only be postulated they cannot be proved. So what

are those constitutive relationship we relate the stress tensor to the velocity field the heat flux

to the temperature field and we related the energy with temperature. So we write down the

stress tensor tau ji. So that can be written as -p* delta ji+ eta * delta ui/delta xj+ delta uj/delta

xi+ lambda delta uk/delta xk *delta ji. So this is the stress tensor.

We know what p is P is pressure this is called Kronecker delta function and this will be 1 only

when i=j and will be 0 if I will be not=j. Eta is viscosity and we know all other parameters

here. Similarly, we can write down the heat flux qi can be –k* delta T/del xi and the third

constitutive relationship will be energy e will be Cv* T specific (()) (13:37) constant volume

* temperature and this is the internal energy.

And if you use this constitutive relationship into the mass, momentum and energy equations.
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We can write the conservation of mass as follows. We can write it as del rho/del t+ del/del xi*

rho ui to be 0 and we can write the momentum equation. Momentum equation will have rho

we have rho will be inside so we will say del/del t* rho ui+ del/del xj* rho uj* ui that will be=

rho * Fi-del p/del xi+ del/del xi* eta del ui/del xj+ del uj/del xi+ lambda *del uk/del xk* delta

ji. So this is the momentum equation.

Similarly, the energy equation can be written the energy equation looks like this rho Cv again

the rho has to go inside so del/del t* rho T+ ui* del rho T/del xi will be= -p* del ui/del xi+

phi is the viscous dissipation +del/del xi * k del T/del xi.
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Where the viscous dissipation phi can be written as follows where phi will be= ½ eta * del ui/

delxj+ del uj/del xi square+ lambda * del uk/del xk square and this is called the viscous



dissipation. So now we have 5 equations and 5 unknowns what are those unknowns. Our

unknowns  are  so  we  have  3  ui  and  we  have  pressure  and  temperature.  So  these  are  5

unknowns so we have 5 equations so we can solve that.

So after that let us move on talk about liquid flows. Liquids flows in micros-scale is more

complex is compared to the gas flows because the molecular theory for liquid flows is not

very well developed. So there is no parameter equivalent to Knudsen number for gas flows in

liquid flows. So the liquid flow is not very well understood and for example if you consider

viscosity of a fluid when a fluid is passing through a micro channel.

It has been observed that in some cases the viscosity in the micro-channel a part in viscosity

is same as the viscosity of the fluid for example in a micro-scale flow situation. In some

cases,  it  has  been  found  that  the  apparent  viscosity  in  micro-scale  flows  is>  the  actual

viscosity in some other cases it has been found that it may be less than the actual velocity so

this is quite debatable.

That is because the liquid flows in micro channels the molecular theory is not very well

understood and the other important thing is that we know that if the length scale of the flow is

larger than 10 nanometer we can consider the flows to be continuum, but whether we can

consider the fluid to be continuum, but whether to consider the flow to be continuum is not

very clear.

So and if you consider another example a fluid flowing through a relatively larger length

scale can be considered as Newtonian the same fluid when it flows through a micro channel

and  the  shear  rate  is  too  much  above  a  critical  value  then  the  Newtonian  assumption

breakdown. When it is shear too much the Newtonian fluid assumption will  break down.

There is a critical value of strain which can be written as the strain rate gamma c dot which

is= delta u/delta y.

So here we are talking about liquid flows so delta u/del y is 2/tau when it is> or = 2/tau and

tau  being  the  time  scale  of  molecular  interaction  then  the  assumption  that  a  fluid  is

Newtonian that breaks down. So if let us say between 2 parallel plates if you have a fluid

flowing and we assume a Couette flow situation where one of the plates is stationery and the

other plate is moving at a speed of 10 to the power 6 meter per second.



Then  in  that  situation  a  Newtonian  fluid  will  behave  as  a  non  Newtonian  fluid.  So  the

Newtonian assumption is going to break down. So that happens when the critical standard is

twice the molecular interaction frequency.
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So if we consider 2 parallel plates and 1 is moving at velocity u and say it is a Couette flow

situation. When u is the order of 10 to the power 6 meter per second. Then the Newtonian

assumption breaks down, but such speed is not possible at micro-scale to achieve a velocity

of 10 to the power 6 meter per second is not possible at micro scale. So the conclusion is that

for most micro scale we can assume the fluid to be continuous.

So at micro scale such high velocity not possible. So the conclusion is that micro-scale flow

is continuous. Now having talked about you know the liquid flows let us try to write down

the governing equations for liquid flows and in that case you can assume that the fluid is

Newtonian.  The density  for  the  liquid  does  not  vary that  much we can  assume it  to  be

incompressible and we can also assume that the Fourier law of heat conduction is valid.
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So under those assumptions let  us down the governing equation for liquid.  So governing

equations for liquid flows. So the first is the mass conservation equation our assumptions are

Newtonian, fluid is Newtonian, fluid is incompressible and Fourier conducting. So we write

down the mass conservation equation which will be del ui/del xi will be 0. The momentum

equation will be rho* del ui/del t+ ui del ui/del xj wil be= rho* Fi-del p/del xi+ del/del xi* eta

is the velocity del ui/del xj+ del uj/del xi.

So that is the momentum equation. Similarly, we can write the energy equation which is rho

Cv * del T/del t + ui* del T/del xi= del/del xi *k del T/del xi. So this is the energy equation.

Now if you assume that the fluid remains at constant temperature that means isothermal flow

condition then the energy equation can be decoupled from the momentum equation. So if you

want to solve the flow field where the isothermal flow condition is valid.

Then you can decouple the momentum equation from energy equation and you can just go

ahead and solve the mass and momentum equation. So this equation can be further simplified

when isothermal flow condition is valid. So isothermal flow further simplification possible.
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And the momentum and energy equation can be decoupled. So that is about the governing

equations for the liquid flow. Next let us look at another important concept in the fluid flow

which  is  the  slip  boundary  condition.  So  while  solving  equations  the  mass  momentum

equation for micro scale flow situation many times when you try to solve it analytically we

assume that no slip boundary condition is valid at the wall.

So that means at the wall the fluid takes the same velocity as that of the wall. Similarly, we

have no temperature jump boundary condition the temperature of the fluid are the wall is

same as the wall itself. So we have been using no slip, no temperature boundary conditions

for  analytical  solutions  because  analytically  we  get  the  same  results  that  we  get  using

experiments  so  they  have  been  widely  accepted  no  slip  boundary  conditions  have  been

widely accepted.

So if you want to generalize the no slip boundary condition or slip boundary conditions at the

interface the fluids are already interface that can be done using Navier boundary conditions.
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So let  us  talk  about  Navier  boundary  conditions  in  slip  theory. So the  Navier  boundary

conditions tells that delta u are the walls will be u velocity of the fluid at y tending to wall-

velocity of the wall. So the velocity of the fluid right at the wall-the velocity of the wall itself.

So that we can write as Ls so for now for just write Ls and we will define it. So delta u

velocity of the fluid/delta y at the wall.

And Ls is known as slip length.  As you can see here in this figure here we are considering a

Couette flow situation and normally and we have no slip boundary conditions valid. So here

we have the top plate moving at velocity u and the bottom plate is stationary. So the velocity

of the fluid at the bottom wall is 0 and at the top wall it obtains the same velocity as the

velocity of the upper plate.

So this is what we have seen in fluid mechanics. This is known as no slip in Couette flow.

Now if you allow partial slip to occur what will happen is at the bottom plate instead of

seeing 0 velocity we will see a finite velocity ub which is>0 and if you extend this profile into

this bottom plate. At some point this velocity would vanish and the distance between the top

surface of the bottom plate and the point at which the velocity vanishes is known as the slip

length for the bottom plate.

Similarly, at the top plate if you allow slip we will get a velocity which is Ut which is smaller

than U and if you extend the same profile into the top wall at some length this velocity is

going to be= to the plate velocity and the length at which this would occur is known as the

slip length for the top wall. So the slip length would depend on the interaction between the



fluid and the surface.

Slip length depends on a particular surface. So with that let us move on and talk about the slip

in gas flows.
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So let  us talk about the slip boundary condition  in gas flows. We know that  the no slip

boundary conditions is valid when the Knudsen number is<0.001 and we can think of using

Navier Stokes Equation where we may need to apply slip when Knudsen number is<0.01. So

between 0.001 and 0.1 we need a theory to know what the value of slip is at the wall. So very

well for gas flows we know if Knudsen number is<0.001 then no slip valid.

So between 0.001< Knudsen number<0.1 we need a slip theory and for gases we can write u

gas-u wall to be lambda * 2-sigma v/sigma v* del u/del y at the wall + ¾ *eta/rho T gas *

delta T/delta x at the wall. And we can write for temperature T gas-T wall will be= 2-sigma

T/sigma T * 2k/k+1. K is the specific heat ratio * lambda/Prandtl number * delta T/ del y at

the wall.

So here most of the constant we recognize eta is the viscosity of the gas and rho is the density

of the gas. Here lambda is the mean free path.
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Here  the  new  constant  are  sigma  v  and  sigma  T  which  are  known  as  the  tangential

momentum and temperature accommodation coefficient. And they can be defined as follows.

We  can  define  the  momentum  accommodation  tangential  momentum  accommodation

coefficient  sigma  v  as  tau  i-  tau  r/  tau  i-tau  w.  Similarly,  sigma  t  the  temperature

accommodation coefficient dEi- dEr/dEi- dEw.

So the Ti term here is the tangential  momentum of the incoming molecules and Tr is the

tangential  component  of  the  reflected  molecules  tau  W is  the  tangential  momentum  of

reemitted molecules which are absorbed to the surface and this term goes to 0 for a stationary

wall. Similarly, in sigma T the dEi is the energy flux of the incoming molecules dEr is the

energy flux of the reflected molecules and dEw is the energy flux of the reemitted molecules

that have been absorbed to the surface.

So  this  is  how  we  defined  the  tangential  momentum  and  temperature  accommodation

coefficient. If you look at you know this equation here the second part of this equation what

do we see is that if the flow is in stationary conditions the velocity is 0. So the first term is 0,

then if we apply a temperature gradient along x direction then we would induce a slip along x

direction and that is known as creeping flow.

So if you look at we call this is the second term.
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And this is the first term and say that for stationary fluids the term one is 0 and term 2 in that

case gives what is called as creeping flow. And it is possible to develop pumping action using

creeping flow which would be known as Knudsen pump. For example, if you consider single

channel here and here the temperature is T c here temperature is T h here pressure is Pc here

pressure is T h and T h is> T c. So you maintain a gradient in the x direction. Let us call this x

direction. So del t/del x is positive.

And if you look at this equation here so that would induce a flow so velocity of the gas with

respect to the wall in the x direction. So you would have a flow occurring in this direction U

of the gas and if you have let say 2 reservoirs and you maintain a temperature gradient in this

direction. So we can induce a pumping action and that pump would be known as Knudsen

pump.

Now if you talk about the tangential you know the momentum accommodation coefficient it

takes  care  of  the  tangential  momentum  of  incoming  and  deflected  molecules  tangential

momentum of incoming and the reemitted molecules.
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If the sigma v goes to 0 what that means is that the tangential momentum of the incoming

molecules is going to be= to the tangential momentum of the reflected molecules. So in other

words what that means is that the molecules do not impart any momentum to the wall. So the

conclusion is that in that case the flow can be considered as inviscid flow. So there is no

effect that is realized by the fluid in presence of the wall whereas if we and this situation can

also be called as specular reflection.

So here if the molecules are coming at some tau i they will be going at tau r. So tau i=tau r.

So this is the case of the specular reflection and this occurs when the surface is very smooth.
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Now if you look at the other extreme where the sigma v is going to be 1 then the reflected the

tangential momentum of the reflected molecules will be 0 and what that will mean is that the



incoming molecules impart all their momentum to the surface. So in that case you can say

that this is the case of diffuse reflection. This is the case of diffuse reflection and where gas

imparts all its momentum.

And if you say that perfect energy exchange taking place between the incoming molecules

and the wall in that case the temperature accommodation coefficient sigma T will become 1.

So for perfect energy exchange sigma T will be 1.
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Now let us some of the surfaces where we can know what are the values of momentum and

the temperature accommodation coefficient. So these are different gases which are interacting

with different surfaces and if you look at the values you can see that the values of the both

momentum and temperature accommodation coefficients are in the range of 0.8 to 0.9 or little

higher. So that are the values of the momentum and temperature accommodation coefficient. 

So with that let us try to look at in the expression for the slip velocity what are the importance

of  different  parameters.  So  in  order  to  do  that  we  need  to  non-dimensionalize  the  slip

equation.
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So let us try to non-dimensionalize slip equation. So we can choose a set of non dimensional

parameters you can define x * as x/L. Y * as y/L. We can define u * as u/some characteristics

velocity u0 and we can define T * as T/T0. If you do that then you can write the expression

for the slip u gas-u wall all are non-dimensionalize now. So this is going to be Knudsen

number * 2-sigma v/sigma v* del u/del y non-dimensionalize del u */del y *.

So this is at the wall+3/2 pi* k-1/k. So this is specific heat ratio * Knudsen number square

Reynolds number this is square/ Eckert number which is the ratio between the kinetic energy

to (()) (46:20) p of the flow * del T */del x * at the wall. We can also write this is one form of

the equation. We can also write as Knudsen number * 2-sigma v/sigma v* del u*/del y * at

the wall +3/4*delta T/T0.

This is the temperature difference between the fluid and wall * 1/Re* del t */del x * at the

wall. So this is the second expression.
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Similarly, we can write for the temperature no temperature jump boundary condition or the

temperature jump boundary conditions in this case. So T gas-T wall which will be= 2-sigma

T/sigma T* 2 k+1* Knudsen number/Prandtl number * del T*/delta y * at the wall. So here K

is the specific heat ratio and Ec is Eckert number which is the ratio of the kinetic energy to

(()) (48:18) Cp delta T and delta T is T gas-T0.

So what we see here if you look at you know the term 1 and term 2. If you look at term 1

what we see that if you are increasing Knudsen number than the thermal creep this term

which represents thermal creep become more significant. So thermal creep more significant if

Knudsen number increases and we also observe from 2 is that the thermal creep increases as

Reynolds number reduces.

From here we can see that thermal creep is going to increase as Reynolds number increase or

the Reynolds number reduces or the delta T for temperature gradient is increasing. So those

are 2 important conclusions that we make from the non-dimensionalization. So with that let

us stop here and next we will be talking about slip flows for liquids. 


