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Scaling

Okay, so we have been looking at Trimmers vertical bracket equation, and here we know that if

we have a scaling for different forces, then you know we can find how the scaling is going to

work for acceleration time and power to volume ratio.
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Trimmers vertical bracket notation okay, so here if we know the scaling for force say force F is

scaling as l1 l2 l3 up to ln, then we can find the scaling for acceleration is going to be l to the

power -2, l to the power -1, l to the power 0, l to the power n-3and similarly the scaling for time

is going to be l to the power 1.5, l to the power 1, l to the power 0.5 to l to the power 4-n square

root.

And the scaling for power to volume ratio is going to be l to the power -2.5, l to the power -1, l to

the power 0.5, up to l to the power n-2 /square root of l to the power 4-1, so that is how the

power to volume ratio is going to vary. Now what we see here is that if force scales as l to the

power 4, then you know the time will scale as l to the power 0, so for centrifugal force magnetic

force where force is scaling as l to the power 4 time will be independent of the length scale okay.



So if you consider example of centrifugal force and magnetic force, so here the force scales as l

to the power 4, and in that case time would scale as l to the power 0, so what it means is that the

times becomes independent of the length scale okay, so this is contrary to our belief that small

things tend to be faster okay. So here we see that you know the time is not going to change with

length scale, so that is one observation here.

So the time is independent of length scale okay, so that is one important observation. The second

observation is that the maximum scaling is going to be for mass moment of inertia, where it is

going to scale as l to the power 5 okay, so for mass moment of inertia going to scale as l to the

power 5 then we can see that time t is going to scale as l to the power-0.5 okay, so what it means

is that you know if you are talking about 2 different motors one is smaller in size, a small size

motor will reach the maximum speed the top speed faster as compared to a larger motor.
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So here we have different forces the intermolecular Van der Waals force will scale as l to the

power -7, the capillary force scales as l, and the electrostatic force scales as l square, and the

force of gravity scales as l to the power 3, the magnetic force without an exterior field scales as l

to the power 4, and the centrifugal force also scales as l to the power 4. Now with that we move

on and talk about how the scaling is going to work for different microsystems.



The first example that we are going to consider is going to be a parallel plate actuator, where we

would have two parallel plates and since there will be oppositely charged there is going to be a

force that is going to be exist between them okay, and that can actuate the 2 parallel plate in a

fashion that can be used for different microsystem applications.
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So we are going to look at parallel plate actuator capacitor, and we will look at how the scaling

law is going to work? Okay, so you know we can draw 2 parallel plates here this is one plate and

this is another plate, let us consider this is y, this is x sorry this is z and this is x, and we say this

is plate 1, and this is plate 2, this is negatively charged plate so we have negative charges here,

this positive okay. So the electric field is going to be in this direction E.

And the separation distance between the plates let us say it is d, and the length of the plate is a,

and width is b okay, so the plate area is a*b okay, so we can write the surface charge density

sigma as total charge/area of cross section right, and if the plates are at potential phi 1 and phi 2

the voltage across the capacitor can be written as phi 1-phi 2 okay. And so we can be written as

E*d E is the electric field okay this is electric field and d is the separation distance.

So we can write this as sigma/epsilon, so this is you know we have we can write electric field as

sigma  charge  density/epsilon  right  *d,  so  we  can  write  V=sigma/you  know  we  can  write

d/epsilon and sigma we can write Q/a so Q/a, so we can write Q=C*V where C is the capacitance



which is given by epsilon a/d okay. So you know we can find the energy stored in the capacitor

energy stored is going to be U=1/2 Q square/C=1/2 C V square.

Now since these 2 plates are oppositely charged there is going to be a force between them, and if

you are going to move one of the plates by a distance delta Z, then we would need an energy

which is F*delta Z.
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So the force between the plates let us call it F, and to increase spacing by delta Z, the energy

required  would  be  F*delta  Z,  so  let  us  call  this  delta  W as  the  energy  required.  Now the

corresponding change in the energy stored, so change in stored energy we can find delta U will

be  1/2  Q  square*change  in  the  capacitance,  because  the  total  charge  is  going  to  remain

unchanged, so the moving the plates would change the capacitance.

So this is going to be 1/2 Q square*delta Z/epsilon A right, so this is let us call this as equation 2,

call this has equation 1. Now if we equate 1 and 2 we get F=Q square/2 epsilon A which will be

sigma square A/2 epsilon, so you know for a constant charge density the force between the 2

plates is going to scale as l square okay, so this is electrostatic force electrostatic force which is

going to vary as l square. Now the inertia force scales as l to the power cube.



So if you take a ratio between F electrostatic/F inertia is going to scale as 1/l right, so what we

see here? We see that as we reduce l when you go to microsystems, then the electrostatic force is

going to be more and more dominant okay, so that is the reason why you know electrostatic

actuators that use parallel  plate configuration you know made smaller and smaller, so if you

made the electrostatic  capacitor  based actuators  smaller  the electrostatic  force is  going to be

dominant over the inertia force okay.

So the sensitivity of the actuation can be enhanced, so what do we see here as l reduces the

electrostatic force goes up okay. So what we learn from here is that electrostatic force becomes

more dominant at microscale okay. Now if you compare you know how electromagnetic force is

going to scale, so the electromagnetic force is going to scale as l to the power 4 okay, so let us all

this Fm, so if you Fem, so Fem electromagnetic force/the inertia force is going to scale as l.

So as l reduces electromagnetic force is going to be lesser significant okay less significant, that is

the reason why electrostatic actuators are preferred in micro systems, so electrostatic you know

we  see  here  that  electrostatic  force  increases  as  the  length  scale  reduces,  where  the

electromagnetic force is reduces is reducing as length scale reduces. So what we can conclude is

that is the reason why electrostatic actuators are used in microsystems.
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Next, let us look at how the scaling is going to work for a thermal system okay, so we will look

at scaling in thermal systems, so here we have heat transfer assuming that it is by conduction, so

let us say Q transfer is going to be K A delta T/L, so you are going to scale as K delta T*l, so Q

transfer scales as length scale. Now if we consider volumetric heat generation okay heating is

being done internally, so the volumetric heat generation will be proportional to the volume of the

object.

So we can write volumetric heat generation will be proportional to L to the power cube right, so

this is volumetric heat generation. Now if you take a ratio between Q heat transfer/Q volumetric

heat generation it is going to scale as 1/l square right,  so as l reduces the Q heat transfer/Q

volumetric heat generation reduces okay sorry this is going to increase okay. So what we see

here is that the microsystems are capable of handling internal heat generation in a much better

way as compared to larger system okay.

So what we learn from here is the volumetric heat generation can be better taken care of in

miniaturized systems okay. So next we consider a case where we talk about you know transient

unsteady heat transfer, so you know if you place a hot object in a cold ambient the heat is going

to be dissipated from the object to ambient, as a result the temperature of a hot object is going to

change  with  time,  and  we  see  by  miniaturization  how  the  heat  transfer  the  temperature

characteristics are going to vary as we you know change the length scale.
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So we consider  dynamic  heat  transfer  case,  here  we have a  hot  body let  us  say initially  at

temperature Ti and in an ambient at T infinity, so Ti>T infinity, and the temperature of it is going

to vary as T with time okay, so we can write you know the energy balance we can write rho

density of the object*C specific heat-dT/dt because the temperature is going to reduce with the

time, so there is a negative sign here is going to be h A*T-T infinity.

So we can write a solution for this, if you solve this simple differential equation the solution can

be written in this form T-T infinity/Ti-T infinity, so with the initial condition that temperature at

time T=0 is going to be Ti right so t= 0, so this will be e to the power -hA/rho C V*t okay, so that

is how the temperature is going to vary with the time. So we can write the time constant tau is

going to be rho C V/h*A okay.

So you can write  this  as  rho C/K*V/hl/K*l,  so this  term is  1/alpha,  alpha is  called  thermal

diffusivity, which is a property of material and this is known as Biot number okay which is a

constant, so the time constant is going to vary as V/l or it is going to vary as l square okay. So

what we see here is that you know as the system is reduced in size as l is reduced the time

constant is going to reduce.

So you know this  is  a very important  conclusion where the length  scale  l  reduces  the time

constant  reduces,  so  this  is  the  reason why we try  to  make the  thermal  sensor  smaller  and



smaller,  as  the  thermal  sensors  become smaller,  because  of  the  small  length  scale  the  time

constant is going to be reduced for which if you expose a sensor to an ambient it is going to be

very quickly attend the ambient temperature and read it accurately okay. So this used to design

thermal sensors.
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Now let us look at another microsystem, how you know the evaporation of the droplet is going to

scale with the length scale okay. So we look at evaporation of droplets how the scaling is going

to work, so we know that the evaporation of the droplets is going to follow what is called D

Square Law okay, so evaporation of droplet going to use D Square Law okay, what it means is

that d square=d0 square-beta t okay.

So let us say we have a droplet, so this is the initial size of a droplet and this is droplet drop size

at time t, and so this is time, and beta is a constant that is independent of droplet size, so you

know if you want to find the times scale at which the droplets would disappear okay, so in that

case you can say that  you know the time constant  will  be d0 square/beta  okay. So the time

constant is going to scale as l square right.

So what it means is that as l is going to reduce the time constant is also going to reduce, so what

we see here is that miniaturization favors droplet evaporation right, as the droplet size is smaller

and smaller it is going to evaporate very quickly okay, and this is going to be important in case of



applications where we are talking about you know polymer drug delivery for example, so there

we generate you know small size droplets a gloom of small sized droplets.

And we have to when you design a system we have to understand that if the droplet size is going

to be smaller it is going to evaporate very quickly following D Square Law okay. So next we

move on and talk about you know the scaling in fluidics.
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So we talk about scaling effects in fluidics, so here we consider a straight channel of diameter d

let us say this d and the velocity is u, let us say delta x is the length of the channel okay, so you

know we know that in case of laminar flow through a channel or a tube we can apply the Hagen–

Poiseuille law, so if you apply the Hagen–Poiseuille law, we can write delta p/delta x is going to

be 32 eta u/d square.

So here delta p is the pressure drop okay, delta x is the length of tube, eta is dynamic viscosity, u

is the average velocity, d is the diameter. So what we see here is that the pressure drop is scaling

as 1/l square okay, and so now from here we can rearrange the term to write u=delta p/delta x*d

square/32 eta okay, so this what we can write. Now we can write the expression for the flow rate

Q will be the area of the section which is pi d square/4*u which will be delta p/delta x*1/128

eta*pi d to the power 4.



So what we see here is that the flow rate will scale as l to the power 4 right, now if we reduce the

diameter of the channel by let us say 10 times okay, so if d is reduced 10 times then what is

going to happen? The delta p is going to increase by 10 to the power 4 times okay, so if the

channel is going to reduce 10 times the delta P is going to increase by 10 to the power 4 times,

the pressure drop is going to increase which is an undesirable effect.
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On the other hand, the Q is going to reduce by 10 to the power 2 times okay right, this is 10 to

the power 2 times because pressure scales as l square right delta p scales as l square, so you are

going to reduce 100 times as l is reduced 10 times, then Q delta p is going to increase by 100

times when d is reduced 10 times, and the flow rate is going to reduce by 10 to the power 4

times, so both effects are undesirable effects.

When we are talking about scaling down the size of a microchannel okay, if you scale down by

10 times the pressure drop across the channel is going to increase by 100 times, and the flow rate

across the channel is going to reduce by 10 to the power 4 times okay, so you know scaling down

is not helping the pressure drop or the flow rate okay. And this is the case when we are talking

about pressure driven flow, pressure driven flow you know it is basically a volume force okay.

So at microscale you know the volume effects are very small, whereas the surface effects are

dominant, so you know rather than using Poiseuille flow, pressure driven flow at microscale you



know things like electroosmotic west flow or piezoelectric west flow are used, because these are

surface driven forces you know at microscale these effects become more and more dominant. So

because of this region pressure driven flows are not favored at microscale.

And the electrostatic flow electroosmotic flow, piezoelectric or acoustic driven flow, so these are

used, this is because this flows are flows driven by surface forces, so this would require you

know alternate  pumping techniques  at  microscale  in microchannel  okay, so to  drive fluid in

microchannels instead of going for pressure driven flows, we would be using electroosmotic

west flows, acoustic flows, piezoelectric driven flows, which will be discussing in the later part

of the course okay. So with that let us stop here.


