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Okay, so let us continue our discussion on in a dielectrophoresis for vertical trapping okay, for

the dielectrophoretic force to be effective we said that we need to have a non-uniform electric

field okay and we considered a rectangular channel configuration, where the gap between the

you know; plates  is  much smaller  than the  width of  the  plate,  so you can say that  this  is

equivalent to a flow between 2 infinitely long parallel plates.

And we say that  we had you know 2 asymmetric  electrode  configuration;  1 hemispherical

electrode at the bottom of the channel and 1 flat electrode on the top of the channel, so we

would  be  creating  an  non  uniform  electric  field  okay  and  the  other  requirement  for

dielectrophoresis is that the dielectric constant of the sphere has to be greater than that of the

liquid, okay.

(Refer Slide Time: 01:16)

So, this is the case that we have been considering; we are considering a rectangular channel

with height h and width w, okay and we said that the height is << w and as you can see on the

right, this is the hemispherical electrode at the bottom of the channel okay. The hemispherical

electrode and the top electrode; this is the top electrode which is flat okay.
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So, we were saying that for the trapping for trapping; so there are basically 2 forces that are

acting on the particle as we discussed; one is you know the dielectrophoretic force, which is

acting towards the electrode and the other force is acting is the drag force, which is trying to

carry the particle with the bulk fluid. So, you know for the trapping that the dielectrophoretic

force F DEP has to be > the drag force okay.

(Refer Slide Time: 03:39)

So, we consider you know flow between in a rectangular channel; so we consider flow in a

rectangular channel h < w and we say that you can write the velocity profile uz as 6 * 1 - z over

h * z over h u0; u0 is the average velocity, which is flow rate divided by the cross sectional

area, so u0 is the average velocity, which is Q over wh okay. So, the drag force you can write;

the drag force F drag is 6pi ETA a * the velocity.



Let us say, this ur at any location r, okay this is also a vector; okay, these are all vectors. Now,

we need to; if you look at here before we calculate the dielectrophoretic force, we need to

calculate the electric field and to calculate the electric field; we need to know how the potential

distribution  is.  To  calculate  the  potential  distribution  in  this  case,  since  you  have  1

hemispherical electrode, 1 flat electrode, we need to guess for a mirror electrode about the top

plane okay.

So, we assume that there is another mirror electrode, which is sitting at the top okay. So, this is

the  symmetry  plane  for  the  mirror.  So,  if  we  do  that,  we  can  write  down  the  potential

distribution, so the phi r will be r0/ the position vector r * delta v – r0/ r - 2h, so that is along the

z direction * delta v, so that is the expression for the potential, where r0 is the radius of the

electrode; radius of the hemispherical electrode.
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So, that is going to be the expression for the potential, so we can find out what is going to be

the electric field, so Er is the gradient of phi r, which is; which can be approximated as r0 *

delta v/ r square along the radial direction okay. So, that is the expression for the electric field if

you differentiate  potential  with  respect  to  r.  Now, if  you;  we know the  expression  for  the

dielectrophoretic force.

So, the DEP force is F DEP = 2pi epsilon 1 * epsilon 2 – epsilon 1/ epsilon 2 + 2epsilon 1 * the

gradient of the square of the electric field, so it will be r0 square/ r4 * delta v square, okay *

delta v square. So, we can simplify this to write F DEP is = -8pi * epsilon 2 – epsilon 1/ epsilon

2 + 2epsilon 1 * a cube r0 square, here we are missing a cube here; a cube r0 square, r to the



power 5 * epsilon 1 okay, * delta  v square along radial  direction;  this  is  also along radial

direction, okay.

So, since we are differentiating this with respect to r, we get a negative sign there and this

becomes r to the power 5 okay. Now, we can see from this equation that the dielectrophoretic

force varies as 1 over r to the power 5 okay, so the maximum DEP force would be realized

when r is minimum and the minimum r is going to be the radius of the hemispherical electrode

+ 1/2 of the size of a particle okay.
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So,  that  is  going  to  be  the  minimum radial  distance  from the  centre  of  the  hemispherical

electrode  to  the  centre  of  the  particular  okay.  So,  what  we  see  from  here  is  that  the

dielectrophoretic force, where is as 1 over r to the power 5. Now, for the dielectrophoretic force

to be maximum, r has to be minimum; so here, r minimum and the r minimum is; so we have a

hemispherical electrode, okay.

Now, this is the centre of the hemispherical electrode and this is where we measure r, okay; r

goes in this way and let us say we have a particle sitting here and which has you know radius a,

so the minimum r is going to be this, okay and this is nothing but a + r. So, r minimum is going

to be the radius of the particle + the radius of the hemispherical electrode, okay. So, you know;

so the r minimum is r0, this is r0, not r, so this is r0 + a.
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You can say that this is 1 + gamma * a, let us define gamma as r0 over a, so this is the ratio

between the radius of the electrode to the radius of the particle. So, with that we can substitute

this r minimum in the dielectrophoretic force equation here to find the maximum DEP force.

So, the maximum DEP force; F DEP max can be F DEP r min, which is going to be 8pi epsilon

2 - epsilon 1/ epsilon 2 + 2epsilon 1 * gamma square/ 1 + gamma to the power 5 epsilon 1 *

delta v square, so that is going to be the expression for the maximum DEP force.

So, we are actually taking the magnitude, so the negative sign is dropped off okay. Now, we are

interested  to  see;  you know what  is  the  maximum velocity  with  which  we can  you know

transport the sample, at the same time we are able to trap the particles from the sample, okay.

So, you know the maximum DEP force is going to be when the r is going to be r0 + a okay, so

we can find out what is going to be the drag force at that location, okay.
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So, first we find the velocity at r = r0 + a, so that is going to be so; u r0 + a is = 6 * 1 – 1 +

gamma * a over h * 1+ gamma * a over h u0, okay, so that is the expression for the velocity if

you substitute r as r0 + a, so this is what you would get. So, u r0 + a; you can simplify this to 6

* 1 + gamma * a over h * u0, okay right. So, from knowing the velocity, you can find, what is

the drag at this location?

So, drag force at r = r0 + a is going to be F drag r0 + a, so finding the magnitude is going to be

6pi; so, 6pi ETA a and u r0 + a, so we have a radial expression for u r0 + a, so this is going to be

36 pi * 1 + gamma ETA a square over h * u0, okay. Now, for the trapping to be possible, the

drag force has to be less than the dielectrophoretic force. So, in the limiting case let us say that

F DEP = F trap, okay.
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So, you know the maximum velocity at which trapping is still possible, so F drag will be = F

DEP max okay, so we can; we have an expression for the drag force where the DEP force is

maximum and we have an expression for the maximum DEP force, so we can write the drag

force is 36 * pi * 1 + gamma * ETA a square over h u0 that is maximum velocity that we are

interest to find out is going to be 8pi epsilon 2 – epsilon 1/ epsilon 2 + 2epsilon 1 * gamma

square/ 1 + gamma to the power 5 epsilon 1 delta v square.

(Refer Slide Time: 17:21)

So, from here we can find out what is going to be the maximum velocity. So, u0 max is going to

be 4/9 * epsilon 2 – epsilon 1 / epsilon 2 + 2epsilon 1 gamma square/ 1 + gamma 6 h epsilon 1

delta v square over ETA square, okay. So, that is going to be the maximum velocity of the

particles or the samples at which trapping is still possible. Now, let us consider a test case; we

consider a test case, where we have you know liquid benzene as the medium, okay.

And  the  properties  are  the  dielectric  constant  epsilon  1  is  the  permittivity  is  2.28  into

permittivity of free space and the viscosity is 0.65 milli pascal second and let us say we have

glass particles okay, so we have glass particles that we are trying to trap from liquid benzene, so

glass particles whose permittivity is 6 times permittivity of free space and let us say the radius

of  the particle  and the radius  of the hemispherical  electrode,  they are the same is  about  5

micron.
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And let us say the channel height h is 100 micron and the applied voltage delta v is 10 volts, so

under that condition, we can find out that the velocity u max is going to be about 30 millimetre

per second okay. So, such a velocity is actually considerably high in micro channels, so which

is  very  encouraging  because  the  trapping  is  still  possible  at  search  higher  velocities  in  a

microfluidic environment okay.

So, you know but one necessary condition for you know; dielectrophoretic force is that always

the dielectric constant of the particle has to be higher than that of the liquid okay, so such higher

velocity is encouraging one necessary condition is that the dielectric constant of the permittivity

of the medium has to be greater than permittivity of the liquid okay. So, now what we have

done here is; we have taken an example of the electrode configuration.

But  depending on the  electrode  configuration  that  we have for a specific  problem, we can

determine you know what is going to be the potential  distribution,  what is going to be the

electric field and accordingly we can find out dielectrophoretic force and balance it with the

drag force to calculate what could be the expression for the maximum velocity okay and from

there for a given set of conditions, we will be able to find out what could be the flow rate at

which we can drive the sample.
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But still in achieving trapping of the particles present in the sample okay, so with that let us

move  on  to  talk  about  AC  dielectrophoresis.  So,  what  we  have  been  looking  at  in  the

electrophoresis is DC dielectrophoresis okay however, the AC dielectrophoresis have certain

advantages okay. The first advantage is that you know the charge monopoles for the ions will

not in a move with respect to their original position in case of a AC dielectrophoresis.

Because the polarity of the electrode will change, so any drift of an ion in the first cycle will be

compensated by the second cycle, so the ions in the liquid will not move relative to its mean

position okay. So, the charge monolpoes or ions do not change mean position in AC fields okay.

Now, the second advantage is that we talk when we talk about the electrodes that we use to

achieve dielectrophoresis.

You know; we know that when you have a charged surface and we have a liquid that has non

zero electrical conductivity will result in forming what is called the Debye layer, okay. So, in

case of DC electrophoresis; dielectrophoresis, we have permanent Debye layer forming over the

electrodes okay, so which is not a good sign for the dielectrophoretic force to continuously

occur for a longer time okay.

And  by  going  for  AC  dielectrophoresis,  the  permanent  Debye  layer  formation  and  the

electrodes is prevented okay because there is always a change in the polarity in each cycle, so

there is no; not enough time for the Debye layer to be consistently there for a longer time, okay.

So, what we have is the creation of permanent Debye layer at electrodes is avoided, okay.



The  third  advantage  of  the  AC  dielectrophoresis  is  that  the  Clausius  mossotti  in  DC

dielectrophoresis  is depends on the dielectric  constant of the liquid and the particle.  In AC

dielectrophoresis, the Clausius mossotti factor is also dependent on the driving frequency of the

signal, so what did; this enables is that by manipulating the frequency of the signal, we would

be; you can achieve in situ trapping or release okay.

(Refer Slide Time: 26:52)

So, by controlling the driving frequency for a fixed set of particle and liquids, we can vary the

sign of the dielectric force okay. So, selectively we can trap, we can release particle in situ

okay, so that  is  possible  in AC dielectrophoresis.  So,  in  AC dielectrophoresis,  the Clausius

mossotti factor vector depends on the driving frequency okay. So, what this means is; so this is

let us say driving frequency omega.

And the Clausius mossotti factor can change sign okay and hence the dielectrophoretic force

can also change sign,  so this  enables in situ control is  possible,  so selectively attractive or

repulsive force is possible; attractive or repulsive force possible, okay. Now, if you consider a

simple harmonic variation; if you consider simple harmonic time variation, so something like

you know exponential – i omega t, okay.
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You can express the potential phi rt as phi r * e to the power – i omega t and we can write the

electric field as e to the power -i omega t, so these are; you know we are considering that the

potential and the electric field following the simple harmonic time variation okay, as you can

see  there.  Now, when  we deal  with  simple  harmonic  time  variation,  we  can  have  At;  for

example will be the real part of A0 e to the power –i omega t okay.

And we can define Bt as the real part of; so these are equivalent to or expression for potential

and electric field, we are giving an example where; so this is the time dependent variation A,

this is B; the real part of B0 e to the power -i omega t, where A0 and the B0 are called the

constant  complex  amplitudes,  okay. So,  we can  have  time  average  of  At  and Bt,  the  time

average of At and Bt is going to be 1/2 of the real part of A0 * B0 star, okay, where B0 star is

the complex conjugate of B0.
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So, in AC dielectrophoresis since we will be talking about harmonic variation of the signal, we

would be requiring these details while we talk about time average of the dielectrophoretic force

okay. So, you require how we can do the time averaging of the dielectrophoretic force from

these basics that we look at here, okay. Now, we can generalize the expression for DEP force;

expression of DEP force for AC fields.

And here we say that the liquid has non zero electrical conductivity okay, so for that we would

require the general boundary condition, which is nothing but that the electric field in the radial

direction Er, r theta okay at a location r and along theta is - del over del r * phi r theta, so this is

the simple definition of the electric field with respect to the potential,  so which acts as the

boundary condition in the radial direction okay.
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And this boundary condition is at the surface of the sphere of the particle; surface of a sphere or

particle,  okay so  we  can  write;  you  know if  you remember  we  had written  the  boundary

condition for DC case; epsilon 1 Er1 a theta, t, so in DC case, we did not have t, we had a and

theta, which will be = epsilon 2 Er okay, so this will be - a theta t is = the charge density, okay.

For DC case, we did not have the charge density.

So, epsilon 1 Er1 a theta was epsilon 2 Er2 a theta okay that was the boundary condition that

we used in DC case. Now, here we have AC so time is coming into play and here also we are

assuming that the liquid has non zero conductivity, so there is  some charge density on the

surface okay, which is taken into here. So, you know; if you have perfect dielectric; perfect

dielectric medium, then the q surface is 0 and this was the case we considered in DC okay, DC

dielectrophoresis.

And with non-zero conductivity; with non-zero conductivity and AC fields, the q surface is not

= 0 and this is going to be time dependent, so the surface charge is going to vary with time; it is

time  dependent  okay.  So,  this  is  the  boundary  condition  we  are  going  to  use  in  AC

dielectrophoresis, let us call this equation A, okay. Now, this time dependent charge q surface

can be given by the charge conservation okay, by the Ohm's law.

(Refer Slide Time: 35:29)

So, the q surface, which is the charge on the surface is given by charge conservation and Ohm's

law okay, which is given by the del q surface, which is a function of time over del t is going to

be jr1 a theta t – Jr2 a theta, so this J is nothing but current density, right. We have looked at this



in electro hydrodynamics, this is nothing but current density okay and we can write current

density in the form of electrical conductivity and electric fields.
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So, if you do that we write electrical conductivity of 1 and electric field Er1, a theta t - electrical

conductivity of 2, Er2 a theta t, okay so that is how the charge on the surface is going to vary

with time and if you express that in terms of the electrical conductivity and electric field in the

medium as well as the sphere or particle let us call this equation as equation B. Now, if we take

time derivative of equation A, okay, you divide both side with d/dt; we take derivative D by DT

on both sides.

And plug that in this equation okay, so you know; you take the time derivative here dq surface

over dt, so we get time derivative of the left side and then in place of dq surface over dt, if you

plug in this term on the right hand side, then this is what we will get, okay. So, we take time

derivative of equation A and substitute in equation B, okay and after substituting we; so if you

do that first and then multiply with i over omega okay.
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If you do that, we get this equation, we get epsilon 1 - i electrical conductivity 1/ the frequency

* Er1 a theta will be = epsilon 2 - i sigma of 1/ w Er2 a theta, so this is the equation we get

when you do the ever okay. So, here we can define a complex dielectric function; complex

dielectric function, which is epsilon omega is going to be epsilon - i to sigma over omega. So, if

we define that then this equation will be something like epsilon 1 * the electric field Er1 a theta

okay, sorry; this will be epsilon 1 omega, will be = epsilon 2 omega r2 a theta.

So, this is this equation is similar to what we had seen for the DC case except that the dielectric

constant is replaced by the complex conjugate of the dielectric constant, okay. So, we have a

solution for the dielectric force for the DC case and if you modify the Clausius mossotti factor

to include the complex dielectric constant, instead in place of the dielectric constant itself then

we can get an expression for dielectrophoretic force for AC case, okay.
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So, what you do is; so, the result for DC case can be used with complex dielectric function in

the Clausius mossotti factor, okay. So, this we can do because this equation is similar to our DC

case, where we saw epsilon 1 Er1 = Epsilon 2 Er2, so this is what we saw in DC okay. So, the

only difference is that this dielectric constant is replaced by the complex dielectric function

okay, so we can write down the dielectrophoretic force for AC case, which is a function of let us

say at ro t, okay.

This is going to be 2pi epsilon 1, so make it; please note that this dielectric constant is going to

be the dielectric constant of fluid okay not the complex dielectric function, only the expressions

in  the  Clausius  mossotti  factor  becomes  complex,  so  this  will  become epsilon  2  omega  –

epsilon 1 omega/ epsilon 2 omega + 2epsilon 1 omega * a cube * gradient of E ro t square okay,

so this is the dielectric constant; constant of medium not complex dielectric function okay.
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So, this is going to be the expression for the dielectricphoretic force in a AC field, okay. Now,

this is time dependent, so we have to find a time average dielectrophoretic force, so you can

find the time averaged DEP force okay, which is F DEP. Now, here if you look at what we have

seen earlier, okay we had At and Bt, so similarly here we define At as the Clausius mossotti

factor K of epsilon 1 omega, epsilon 2 omega which is nothing but this term there okay * Er0 t.

And we have another term to define Bt is E of r0 t, so these are 2 functions okay from the

dielectrophoretic force that you can extract that a time dependent okay, so we can average the

dielectrophoretic force similar to the time average of a At, Bt, you can find F DEP r0 omega is

going to be 2pi epsilon 1, the real part of the Clausius mossotti factor Omega, E2 Omega, real

part of this term * a cube * the gradient of Erms square r0.

So, this is the root mean square electric field, where Erms is going to be epsilon over square

root of 2, okay so this is going to the expression for the time average dielectrophoretic force

okay in the AC mode. Now, you have to find that what is going to be the critical frequency

about  which  this  dielectric  force  is  going to  change its  sign  okay from positive,  this  may

become negative.

(Refer Slide Time: 48:01)



And as you know that the change of the sign is going to be decided by the value of the Clausius

mossotti  factor  because  that  is  the  only  term  which  has;  which  has  the  control  over

dielectrophoretic  force  okay.  So,  if  you  want  to  find  the  critical  frequency  at  which  the

dielectrophoretic force sign changes, then we have to say that this part, so this; you know the

real part of the Clausius mossotti factor will change between negative to positive okay.

And to find the critical value, let us equate that to 0 okay, so if you do that you can write the

real epsilon 2 omega c omega c and we take to; this to the numerator + 2 E1 omega c star that

means that is the complex conjugate is going to be 0. So, if that is 0, then we can find the

critical  frequency, okay. So,  what  we see here is  that  this  part  can  control  the sign of  the

dielectrophoretic force.

So, we say that this part  can move from negative to positive okay, so since it  moves from

negative to positive at the critical value, this would be 0, okay so that is what we are doing here

and if that is 0, we can find the critical frequency, which is going to be electrical conductivity1 -

electrical conductivity 2 * electrical conductivity 2 + 2 electrical conductivity 1/ epsilon 2 –

epsilon 1 * epsilon 2 + 2epsilon 1, square root of that.
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So, the critical frequency is going to depend on the electrical conductivity of the medium and

the particle  and the dielectric  constant  of the medium as well  as the particle  okay. So, the

critical frequency at which the dielectric constant will change sign will depend on the electrical

conductivity and the dielectric constant of the medium as well as the particle okay. Now, if we

consider a biological cell and the biological cells have mainly cytoplasm in water, okay.

So, we have mainly cytoplasm in water, so the electrical conductivity of the medium is 0.01

siemen per meter and epsilon 2 is 60 times epsilon 0 and that is for the cell okay and for the

medium, which is water, we have 0.01 siemen per meter and epsilon 1 is 78 times epsilon 0,

this is for water. So, we have the particle and the medium. So, for this case if you find the

critical frequency omega c turns out to be 1.88 * 10 to the power 8 radian per second okay.

So, that is typically the value of the critical frequency okay. What is interesting about AC at

dielectrophoretic precious is that the Clausius mossotti factor is dependent on the frequency

okay and that critical frequency is dependent on the property of the medium and the property of

that object okay, so this can be used to; can be exploited in biology to separate living cells from

dead cells and cancer cells from healthy cells.
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Because the electrical  conductivity, the dielectric  constant  is  different  for healthy  cells  and

diseased  cells  and  they  are  different  for  living  cells  and  dead  cells  okay.  So,  the  critical

frequency is going to be different for the different types of cells and this can be exploited to

separate them okay. So, what we know from here is that the frequency dependent DEP force

can be used to separate living cells from dead cells, okay and healthy cells from cancer cells

okay.

And this is because the different cells of different sigma and epsilon and so this gives rise to

different omega c, okay. So, the omega c at which they are captured or repelled is different for

different cells; different cell types okay, so this has interesting applications in microfluidics.


