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Lecture — 15
Electrokinetics (Continued...)
Okay, so let us continue our discussion on electroosmosis. We told that if you have a charge
surface and there is an ionic liquid in contact with the charge surface, then we form an electrical
double layer and by applying a voltage difference between the 2 ends of a capillary, for example,

we will be able to derive the fluid, okay. So, it can create pumping action in doing so, okay.

So, what would happen is closer to the wall would create a diffuse layer and if the wall is
negatively charged, it would create a positive charge rich region in the diffuse layer and if you
create an electric field, the charges in the liquid in the diffuse layer they will tend to migrate
towards the and in doing so they will carry the bulk of the liquid with it because of viscous run,
okay.
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So, if you look at the Navier Stokes equation, what happens is you have rho*del v/del t+v dot del

v=-gradient of pressure +del square v that is the viscous term-electrical charge density * the
gradient of potential, okay. So, this is the electrical body force term, okay. So, this electrical body

force term basically accounts for the force exerted on the fluid because of the electric field, okay.



So, if you were to solve a case where we would talk about how the electroosmotic velocity is
going to look like, then we would have 2 consider the Navier Stokes equation and we have to
include this electrical force as a body force term in the Navier Stokes equation, okay. So, let us
look at a simple case flow between 2 infinitely long parallel plates and we apply appropriate
boundary conditions to derive the expression for the velocity profile, okay. So, we look at the
ideal electroosmotic flow between parallel plates, okay.
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So, there are some assumptions that we would make here. We would make some assumptions.

So, the assumption is that the external electric field does not change the charge distribution, the
charge density, okay. So, we assume that the charge density inside the liquid is because of the
charge distribution that happens when the ionic liquid is in contact with the charged surface,

okay and the external electrical field does not create any charge.

So, there is no change in the charge density. Here, we consider ideal electroosmotic flow
meaning there is no external pressure gradient present here, okay. So, we also say that no
external pressure gradient, okay.

(Refer Slide Time: 04:40)
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So, with those 2 assumptions if you look at the situation, this is the situation. We have 2
infinitely long parallel plates. So, this is the bottom plate okay and this is the top plate, okay.
Because the surfaces are charged surfaces, so in this case the surface is positively charged, okay.

So, we have the positive terminal and negative terminal there. Since, the surface is positively

charged, we would how a negative charge region in the electrical double layer here, okay.

So, across this electrical double layer, we would have a negative charged rich region, so when we
apply an electric field, this negative charges would try to migrate towards the (()) (05:47), thus it
will create a velocity in this direction, okay in the opposite X direction. So, you know here we
say that there is no external pressure gradient, so the external at X=0 is 0 and P external at X=L

is 0 and potential on the left-hand side is 0 and on the right-hand side is delta v, okay.

So, you know we talk about here, so here we talk about infinite parallel plate channel and the
charge was located at Z = +- h/2. So, we say that the centre is here at the middle between the 2
plates. So, at +- h/2 we have the charged walls, okay.

(Refer Slide Time: 07:15)
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The assumption that external pressure gradient is 0 and the external electric field is in the

e

negative Z direction because we have delta v here and 0 here. The direction of the electric field is
in the negative X direction, okay. So, external electric field in negative X direction. So, we can
write electric field E as negative E*ex, this is (()) (08:05), so it means that the electric field in the
negative X direction and we know that the gradient of the electric potential del phi r=negative of

electric field, so it will be E*ex.

Now, the gradient of external pressure is 0 and velocity vr is only in the x direction and it varies
across Z, okay. So, the velocity is going to be only in the X direction and it only varies in the Z
direction, so that it was this means.

(Refer Slide Time: 09:10)
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You can write the Maxwell’s equation for the electrical charge density which is given by
electrical charge density=-epsilon*del square phi r, okay. So, with that if we write the X
component of Navier Stokes equation, then I can write rho*del v/del t+u.del u=-del p/del x+eta
del square u-electrical charge density*the potential gradient, okay. So, we are talking about

steady flow.

So, this is 0 because we talk about steady flow and this is the acceleration term which is 0
because we are talking about uniform flow there and no pressure gradient. So, this term also
vanishes.

(Refer Slide Time: 10:45)
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So, we have only these 2 terms in the equation. So, we say that eta del square u/del Z square
because u is only a function of z and we have an expression for the charged density from her,
okay. So, we can write +epsilon del square phi z/del z square*electric field is going to be 0. So,
now we can integrate. We can say if we take this to the other side of the equation and integrate,
we get —eta*u z =epsilon*phi z*electric field+C1z+C2, okay. So, that is equation we get.

(Refer Slide Time: 12:02)
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Now, what are the boundary conditions we have, one is the no-slip boundary condition, that
means the velocity at +- h/2 at the plate okay will be 0 and the other condition is that the gradient
of the velocity as we move away from the wall, okay as I said in the bulk, there are equal number

of positive and negative charges, the velocity profile is flatter in the bulk liquid, so the gradient

of the velocity as z tends to infinity will vanish, okay.

So, we have 2 boundary conditions; one is the no-slip boundary condition which is u +- h/2=0
and the second condition is del u/del z as z tends to infinity=0, okay.

(Refer Slide Time: 13:40)
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Now, if you apply this second condition on this equation for the velocity profile, we would see
that the C1 has to be 0, otherwise it is not possible to evaluate this equation, okay. So, to satisfy
this you will see that constant C1 has to be 0. So, now if you apply the no-slip condition, we
have uz=-epsilon phi in the electric field/eta-C2/over eta, right. So, if you say 0, so this is 0 at +-

s/2=-epsilon eta E*xi.

So, at the wall this potential is going to be the zeta potential, okay, divided by eta-C2/eta. So, we
get an expression for the constant C2 will be —epsilon*electric field*eta, right. So, with that we
can write down the expression for the velocity profile, uz=zeta potential-phi z*epsilon E/eta,
okay. So, this is the expression for the velocity profile in case of flow-through to infinitely long

parallel plates.

So, it depends on the zeta potential, okay. Higher the zeta potential, the velocity magnitude will
be higher and it also depends on the electric field, directly proportional to the electrical field as
well as the permittivity of the liquid and it is inversely proportional to the viscosity, okay. Now,
if we go the Debye-Huckel limit, why we say that, the electrical energy is small compared to the
thermal energy, okay where the lambda d, (()) (15:47) length is very small compared to the
length scale of the flow that we are talking about, then we see what happens, okay.

(Refer Slide Time: 15:59)
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So, under Debye- Huckel limit which is nothing but thin electrical double layer, we have derived
this earlier del square phi/del z square=1/lambda d square*phi. So, this equation we derived
earlier in case of thin electrical double layer limit. So, for the infinite parallel plate channel, the
surfaces are at +- h/2, okay. So, the potential at +- h/2 is going to be zeta potential. Now, with
this boundary condition if we solve this we get an expression for potential, okay. We get an

expression phi as a function of z.

We get zeta*cos hyperbolic z plus lambda d, this is what we had seen earlier, okay cos
hyperbolic h/2 lambda d. So, this is the expression for the potential within the Debye layer.
(Refer Slide Time: 17:49)
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Now, if we substitute this phi z, in this velocity expression, we have an expression for the
velocity along z direction. So, we can have uz=1-cos hyperbolic z/lambda d/cos hyperbolic h/2
lambda d*a factor called, so you will have epsilon xi E/eta. Now, this is known as ideal

electroosmotic velocity U come a subscript eo, okay.

So, if we assume that lambda d<< h which is nothing but the thin EDL approximation, then in
that case, you will that this term at the bottom will be infinite, this term will be 0, okay. This
complete term will vanish. So, uz will be equal to ideal electroosmotic flow which is nothing but
epsilon xi E/eta, okay. So, this something we can tell when the electrical double layer is very thin

as compared to the transverse length scale, okay.

Some typical values are the xi can be of the order of 100 mV and we can define a parameter
called the electroosmotic mobility, okay.

(Refer Slide Time: 20:20)

Fén L3R Vs Imet  Acthcem  Toom g

"il--""‘-:""ﬁ"{! %
: e
TR
I +:;h."4 ""'I.JM E. '______...f-l
———
0 fo0 |
£ o|fUe)=p (€L
ElwsaEt " Re?r ™I Nw
-

M, ~ % sV wr(vs) 4

| uge ~ IS

® |

So, we can define a parameter called electroosmotic mobility which is the ratio between the ideal
electroosmotic velocity/the electric field, okay. This is given by the symbol mu subscript eo, so
this is the electroosmotic mobility, okay which is the nothing but you can write this also as
epsilon xi/eta, okay. Typically, this electroosmotic mobility mu eo is about 7*10 to the power of
-8 m? per vs, okay. Now, if we use these typical values of zeta potential and electroosmotic

mobility, the typical electroosmotic flow velocity is of the order of 1 mm/s, okay. So, in a typical



electroosmotic pumping, we can expect the electroosmotic velocity is of the order of few
millimetre per second, okay.

(Refer Slide Time: 21:50)
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So, now we talk about the flow rate, okay, knowing the velocity profile or the ideal
electroosmotic velocity, how you can the flow rate. So, just calculate the ideal electroosmotic
flow rate, okay, Qeo=0 to W, so that is W is the width into the plate, okay*dy and then
integration-h/2 to h/2 dz and the velocity is varying along uz. So, if you do that, if you say that
uz can be approximated as Qeo ideal electroosmotic velocity, then we can find an expression for

the flow rate which is Ueo*wh.

So, Qeo=Ueo*wh and this is at lambda d <<h/2, okay. So, this is the expression for the velocity
profile and the total flow rate in case of a flow-through to parallel plates. Now, let us look at flow
in a cylindrical tube situation, okay.

(Refer Slide Time: 23:38)
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So, let us look at flow-through in a cylindrical tube or channel. So, for cylindrical channel, if you
solve this equation del square phi r=1/lambda d square phi r, solve for cylindrical channel, you
get an expression for the potential phi r as this, (()) (24:40) I0 r/lambda d/I0 a/lambda d, okay.
So, this is the expression for the potential in case of flow in a cylindrical channel. So, this is how
the potential is going to vary along the radial direction where 10 is the Bessel function of first

kind, okay.

So, there are 10, I1, 12, ... like that, so 10 is the Bessel function of first kind and V we can write is
a function of r but in the X direction. So, the velocity is in the axial direction and you can write
down the boundary conditions.

(Refer Slide Time: 26:01)
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So, we have mostly boundary condition which is velocity at right=a and the perimeter is going to
be 0 and the second boundary condition is that when you are talking about flow-through tube, we
are talking about symmetry, okay. So, the gradient of the velocity at r=0 should also vanish, okay.
So, the gradient of del u/del r at r=0 should also be 0 and this is the symmetry boundary

condition, okay.

Now, using these 2 boundary conditions, if you solve the velocity profile similar to this flow
between flat plate case, okay. We would have an equivalent in the radial coordinate and if you
solve that for flow-through tube, then you would get ur=1-10 r/lambda d/I0 a/lambda d*Ueo,
okay. So, this is the ideal electroosmotic flow velocity.

(Refer Slide Time: 27:54)
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So, we can find the ideal electroosmotic flow rate. So, we can write Qeo=integration 0 to 2pi d
theta O to a, dr, ru, r theta. So, that is = Ueo. So, this is basically mean to be independent of theta,
so we have only as a function of 1, so that is from here. Now, if we impose the condition that

lambda is less than less than a, then Ur could become Ueo, okay. So, under that condition, we

can integrate this to get Ueo*pi a square.

(Refer Slide Time: 29:21)
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So, the electroosmotic flow rate=Ueo * the area of section, okay. So, now let us talk about Debye
layer overlap. We have been talking about cases, you know we derived the expression for the
velocity and flow rate for 2 different cases; one for flow between parallel plates and the second

one is flow in a circular tube and in all these different cases we have been considering that the



lambda d is very small compared to the radius of length scale of the flow and but when the
lambda d becomes comparable to the length scale, how the profile of the electroosmotic flow is
going to change, okay. So that is something we can look at here.

(Refer Slide Time: 30:22)
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So, we look at Debye layer overlap, okay. So, you know we talk about different length scale.
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In one case we have lambda d/a, so let us talk about flow through a tube. If this is = 0.01 that
means, we are talking about a tube of radius about 1 micron. So, micron size (()) (31:10). So, this
results in a flat profile, okay. As you can see here, this is the value of lambda d/a for which this is

the flow profile, okay. You can see that this is the radial velocity over this characteristic velocity



which is nothing Ueo, okay at the centre.

So, you can see that the profile takes a much flatter, okay. The profile is very flat at the
significant part of the flow okay is flat. Now, if you take a value which is about 0.1, okay. So,
you are talking about a tube radius about 100 nm, okay. Because lambda d is of the order of 10
nm, okay. So, that is what we have seen earlier. So, radius is about 100 nm, then we see that the
profile is parabolic somewhat, close to the walls and towards the centre it becomes flat.

(Refer Slide Time: 32:47)
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So, here we see that a rounded profile, but it is flat near centre, okay. Now, if we go to lambda
d/a as 1, that means we talk about a tube of radius 10 nm, this is what we see. This is the velocity
profile, okay. So, the velocity profile is almost parabolic similar to the profile that we see in case
of (()) (33:22) driven force, okay. So, here the flow is parabolic. So, I see a parabolic profile,
okay. Now, if you write down the equation for the velocity Ur=1-10 r/lambda d/I0 a/lambda d *
Ueo.

(Refer Slide Time: 34:18)
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Now, if we do a tailor expansion of this equation and we have to learn how to expand when you
have this Bessel function here, okay. So, we can write Ur to be a square/4 lambda d square*1-r
square/a square*electroosmotic velocity plus some terms which are of the order of a/lambda d

square, okay. So, this is the order okay.

Now, here you can see as lambda d becomes comparable to the radius, okay. So, the velocity is
going to be suppressed, okay. So, the electroosmotic flow is going to be suppressed. So, as
lambda d increases, the electroosmotic flow get suppressed, okay. So, that is what we also see
here/ So, here if you see on the X-axis you have the lambda d/a and the Y-axis you have the

maximum velocity of the centre divided by some characteristic velocity, okay.

Now as lambda d/a, so if it is small, even the lambda d is somewhere over here, you can see that
the velocity is comparable to the ideal electroosmotic flow velocity and as lambda d/a increases
as the Debye length becomes larger and larger, the (()) (36:33) this electroosmotic flow is heavily
suppressed. So, the actual velocity at the centre is only 10% of the ideal electroosmotic velocity,

okay.

So, what we learn is that the electroosmotic flow becomes beneficial only at the limit of low
lambda d or when the electrical double layer thickness is very small, okay. So, here we have been

looking at a electroosmotic flow when the pressure gradient is not present, okay but in most of



the practical situations we always have a pressure gradient present which opposes the
electroosmotic flow. When we have such pressure gradient present, the velocity profile itself is
going to get modified. So, we will like to see how it is going to get modified.
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3
So, we look at pressure driven flow, we look at electroosmotic flow with back pressure, okay. So,
the situation we see it here. This is the situation, okay. So, this is a circular capillary, so we have
this Debye layer here, okay and we have positive there and negative there and we say that the
wall is positively charged. So, we have negative charge region in the Debye layer which migrate

towards the (()) (38:41), so it creates a motion in this direction, okay.

But we have a backpressure that is acting because of the finite fluidic resistance, a backpressure
acting. So, we can see that the P (()) (38:58) at X=0 is 0 but the pressure X=L is delta P. So, we
have some backpressure which is acting in this direction. The potential here is 0 and the potential

here is delta v, okay.

So, here what we are going to predict is that the velocity is going to be, we will see when we
work with the Navier Stokes equation, we will end up with linear equation where we can find out
the electroosmotic velocity and velocity due to the adverse pressure gradient independently, so
we can find the net velocity by adding these 2 together in a vector sense, okay.

(Refer Slide Time: 39:50)
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So, here we are talking about external pressure gradient is presence, okay. So, the conditions are
phi at X=0 is going to be 0 and phi at X=L is going to be delta V. The pressure at X=0 is going to
be 0 and pressure at X-=L is going to be delta p, okay.
(Refer Slide Time: 40:44)
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Now, let us say we can write the potential negative gradient of the potential phi is nothing but the
electric field, okay which can be written as -delta V/L, okay*Ex, this is the unit vector, okay.
Similarly, we can write gradient of pressure is going to be —delta p/L along X direction. So, this
unit vectors represent this along X direction, okay. So, here we say that the velocity is along X

direction and it varies in the radial direction, so into Ex, okay.



We have the boundary conditions which are the velocity at r=a is O that is the no-slip and we
have del u/del r at =0 is 0 so that is the symmetry boundary condition.
(Refer Slide Time: 43:34)
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Now, if you look at the Navier Stokes equation, it is O=eta del square utepsilon del square
pi*delta V/L-delta p/L. So, this equation is a linear equation, okay. So, it is a linear equation, so
you can find the solution by breaking the equation into 2 parts and superimposing the solution,
okay. So, we can say this is a linear equation, so we can solve by superimposing the

electroosmotic flow and the Poiseuille flow, okay.

So, this part is going to give you the electroosmotic flow when there is no pressure gradient.
Similarly, these 2 are going to give you the pressure driven Poiseuille flow, okay. So, we can
write the velocity Ur to be the vector summation of the Poiseuille+ the electroosmotic, okay. So,
this is what we can write because the equation is linear.
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So, the 2 equations that we get is one is O=eta del square u-epsilon del square phi*delta v/L is
nothing but the electric field, okay and we have O=eta delta square u-delta p/L. So, you know, we
have the 2 equations there is a correction here. So, 0 is eta del square u+epsilon del square

phi*del v/L and this is for the electroosmotic flow and this is for the pressure driven flow which

is O=eta del square u-del p/L.

So, here this equation would be solved using the condition u electroosmotic at 0 is 0 and del Ueo
0/del =0 and this equation will be solved based on Upa=0 and del Up/del r0=0, okay. So, we
have to solve these 2 equations to get a solution. Now, we know the solutions for this

independently. So, we can superimpose and write the expression for the velocity profile.
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So, the expression for the velocity profile would be for the electroosmotic flow, the
electroosmotic velocity profile would be Ur=1-10 r/lambda d/I0 a/lambda d*epsilon xi/eta*delta
v/L. So, that is the electroosmotic velocity-a square-r square delta P/4 eta L, okay. So, that is how
the velocity profile for the electroosmotic flow in presence of pressure gradient is going to look

like, okay.

Now, we can find the electroosmotic flow rate, that will be doing in the limit of lambda d<<a.
So, if we do that we would get Q total flow rate will be=Q electroosmotic + Q pressure driven.
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We can write this pia square*U electroosmotic and the Qp we can write this as -delta P/r



hydraulic, okay because this is in the negative direction. You know, we can see it here, the
electroosmotic flow is going to be in this direction and the pressure driven flow is going to be in

the opposite direction, so this is going to be Qeo and this is going to be the Qp.

So, there is a negative sign. So, we can say it is pia square epsilon xi/eta L*delta v-pi a4/8eta
L*delta p. So, that is the expression for the flow rate, okay. You know, next we will look at how

the PQ characteristics would look like, okay and that we will do in the subsequent class.



