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Okay, so let us continue our discussion on electroosmosis. We told that if you have a charge

surface and there is an ionic liquid in contact with the charge surface, then we form an electrical

double layer and by applying a voltage difference between the 2 ends of a capillary, for example,

we will be able to derive the fluid, okay. So, it can create pumping action in doing so, okay.

So, what would happen is  closer to  the wall  would create  a diffuse layer  and if  the wall  is

negatively charged, it would create a positive charge rich region in the diffuse layer and if you

create an electric field, the charges in the liquid in the diffuse layer they will tend to migrate

towards the and in doing so they will carry the bulk of the liquid with it because of viscous run,

okay.

(Refer Slide Time: 01:15)

So, if you look at the Navier Stokes equation, what happens is you have rho*del v/del t+v dot del

v=-gradient of pressure +del square v that is the viscous term-electrical  charge density * the

gradient of potential, okay. So, this is the electrical body force term, okay. So, this electrical body

force term basically accounts for the force exerted on the fluid because of the electric field, okay.



So, if you were to solve a case where we would talk about how the electroosmotic velocity is

going to look like, then we would have 2 consider the Navier Stokes equation and we have to

include this electrical force as a body force term in the Navier Stokes equation, okay. So, let us

look at a simple case flow between 2 infinitely long parallel plates and we apply appropriate

boundary conditions to derive the expression for the velocity profile, okay. So, we look at the

ideal electroosmotic flow between parallel plates, okay.

(Refer Slide Time: 03:23)

So, there are some assumptions that we would make here. We would make some assumptions.

So, the assumption is that the external electric field does not change the charge distribution, the

charge density, okay. So, we assume that the charge density inside the liquid is because of the

charge distribution that happens when the ionic liquid is in contact with the charged surface,

okay and the external electrical field does not create any charge.

So,  there  is  no  change  in  the  charge  density.  Here,  we  consider  ideal  electroosmotic  flow

meaning  there  is  no  external  pressure  gradient  present  here,  okay. So,  we also  say  that  no

external pressure gradient, okay.
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So,  with  those  2  assumptions  if  you  look  at  the  situation,  this  is  the  situation.  We have  2

infinitely long parallel plates. So, this is the bottom plate okay and this is the top plate, okay.

Because the surfaces are charged surfaces, so in this case the surface is positively charged, okay.

So, we have the positive terminal and negative terminal there. Since, the surface is positively

charged, we would how a negative charge region in the electrical double layer here, okay.

So, across this electrical double layer, we would have a negative charged rich region, so when we

apply an electric field, this negative charges would try to migrate towards the (()) (05:47), thus it

will create a velocity in this direction, okay in the opposite X direction. So, you know here we

say that there is no external pressure gradient, so the external at X=0 is 0 and P external at X=L

is 0 and potential on the left-hand side is 0 and on the right-hand side is delta v, okay.

So, you know we talk about here, so here we talk about infinite parallel plate channel and the

charge was located at Z = +- h/2. So, we say that the centre is here at the middle between the 2

plates. So, at +- h/2 we have the charged walls, okay.
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The  assumption  that  external  pressure  gradient  is  0  and the  external  electric  field  is  in  the

negative Z direction because we have delta v here and 0 here. The direction of the electric field is

in the negative X direction, okay. So, external electric field in negative X direction. So, we can

write electric field E as negative E*ex, this is (()) (08:05), so it means that the electric field in the

negative X direction and we know that the gradient of the electric potential del phi r=negative of

electric field, so it will be E*ex. 

Now, the gradient of external pressure is 0 and velocity vr is only in the x direction and it varies

across Z, okay. So, the velocity is going to be only in the X direction and it only varies in the Z

direction, so that it was this means.

(Refer Slide Time: 09:10)



You  can  write  the  Maxwell’s  equation  for  the  electrical  charge  density  which  is  given  by

electrical  charge  density=-epsilon*del  square  phi  r,  okay.  So,  with  that  if  we  write  the  X

component of Navier Stokes equation, then I can write rho*del v/del t+u.del u=-del p/del x+eta

del  square  u-electrical  charge  density*the  potential  gradient,  okay. So,  we are  talking  about

steady flow. 

So, this is 0 because we talk about steady flow and this is the acceleration term which is 0

because we are talking about uniform flow there and no pressure gradient. So, this term also

vanishes.
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So, we have only these 2 terms in the equation. So, we say that eta del square u/del Z square

because u is only a function of z and we have an expression for the charged density from her,

okay. So, we can write +epsilon del square phi z/del z square*electric field is going to be 0. So,

now we can integrate. We can say if we take this to the other side of the equation and integrate,

we get –eta*u z =epsilon*phi z*electric field+C1z+C2, okay. So, that is equation we get.
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Now, what are the boundary conditions we have, one is the no-slip boundary condition, that

means the velocity at +- h/2 at the plate okay will be 0 and the other condition is that the gradient

of the velocity as we move away from the wall, okay as I said in the bulk, there are equal number

of positive and negative charges, the velocity profile is flatter in the bulk liquid, so the gradient

of the velocity as z tends to infinity will vanish, okay. 

So, we have 2 boundary conditions; one is the no-slip boundary condition which is u +- h/2=0

and the second condition is del u/del z as z tends to infinity=0, okay.
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Now, if you apply this second condition on this equation for the velocity profile, we would see

that the C1 has to be 0, otherwise it is not possible to evaluate this equation, okay. So, to satisfy

this you will see that constant C1 has to be 0. So, now if you apply the no-slip condition, we

have uz=-epsilon phi in the electric field/eta-C2/over eta, right. So, if you say 0, so this is 0 at +-

s/2=-epsilon eta E*xi.

So, at the wall this potential is going to be the zeta potential, okay, divided by eta-C2/eta. So, we

get an expression for the constant C2 will be –epsilon*electric field*eta, right. So, with that we

can write down the expression for the velocity profile, uz=zeta potential-phi z*epsilon E/eta,

okay. So, this is the expression for the velocity profile in case of flow-through to infinitely long

parallel plates.

So, it depends on the zeta potential, okay. Higher the zeta potential, the velocity magnitude will

be higher and it also depends on the electric field, directly proportional to the electrical field as

well as the permittivity of the liquid and it is inversely proportional to the viscosity, okay. Now,

if we go the Debye-Huckel limit, why we say that, the electrical energy is small compared to the

thermal  energy, okay where the lambda d,  (())  (15:47) length is very small  compared to the

length scale of the flow that we are talking about, then we see what happens, okay.
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So, under Debye- Huckel limit which is nothing but thin electrical double layer, we have derived

this earlier  del square phi/del  z square=1/lambda d square*phi.  So, this  equation we derived

earlier in case of thin electrical double layer limit. So, for the infinite parallel plate channel, the

surfaces are at +- h/2, okay. So, the potential at +- h/2 is going to be zeta potential. Now, with

this boundary condition if we solve this we get an expression for potential,  okay. We get an

expression phi as a function of z.

We get  zeta*cos  hyperbolic  z  plus  lambda  d,  this  is  what  we  had  seen  earlier,  okay  cos

hyperbolic h/2 lambda d. So, this is the expression for the potential within the Debye layer.
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Now, if  we substitute  this  phi  z,  in  this  velocity  expression,  we have  an expression for  the

velocity along z direction. So, we can have uz=1-cos hyperbolic z/lambda d/cos hyperbolic h/2

lambda  d*a  factor  called,  so  you  will  have  epsilon  xi  E/eta.  Now, this  is  known  as  ideal

electroosmotic velocity U come a subscript eo, okay.

So, if we assume that lambda d<< h which is nothing but the thin EDL approximation, then in

that case, you will that this term at the bottom will be infinite, this term will be 0, okay. This

complete term will vanish. So, uz will be equal to ideal electroosmotic flow which is nothing but

epsilon xi E/eta, okay. So, this something we can tell when the electrical double layer is very thin

as compared to the transverse length scale, okay.

Some typical values are the xi can be of the order of 100 mV and we can define a parameter

called the electroosmotic mobility, okay.

(Refer Slide Time: 20:20)

So, we can define a parameter called electroosmotic mobility which is the ratio between the ideal

electroosmotic velocity/the electric field, okay. This is given by the symbol mu subscript eo, so

this  is the electroosmotic mobility, okay which is the nothing but you can write this also as

epsilon xi/eta, okay. Typically, this electroosmotic mobility mu eo is about 7*10 to the power of

-8 m² per vs, okay. Now, if  we use these typical  values of zeta potential  and electroosmotic

mobility, the typical electroosmotic flow velocity is of the order of 1 mm/s, okay. So, in a typical



electroosmotic  pumping,  we  can  expect  the  electroosmotic  velocity  is  of  the  order  of  few

millimetre per second, okay.

(Refer Slide Time: 21:50)

So,  now  we  talk  about  the  flow  rate,  okay,  knowing  the  velocity  profile  or  the  ideal

electroosmotic velocity, how you can the flow rate. So, just calculate the ideal electroosmotic

flow  rate,  okay, Qeo=0  to  W, so  that  is  W is  the  width  into  the  plate,  okay*dy  and  then

integration-h/2 to h/2 dz and the velocity is varying along uz. So, if you do that, if you say that

uz can be approximated as Qeo ideal electroosmotic velocity, then we can find an expression for

the flow rate which is Ueo*wh.

So, Qeo=Ueo*wh and this is at lambda d <<h/2, okay. So, this is the expression for the velocity

profile and the total flow rate in case of a flow-through to parallel plates. Now, let us look at flow

in a cylindrical tube situation, okay.
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So, let us look at flow-through in a cylindrical tube or channel. So, for cylindrical channel, if you

solve this equation del square phi r=1/lambda d square phi r, solve for cylindrical channel, you

get an expression for the potential phi r as this, (()) (24:40) I0 r/lambda d/I0 a/lambda d, okay.

So, this is the expression for the potential in case of flow in a cylindrical channel. So, this is how

the potential is going to vary along the radial direction where I0 is the Bessel function of first

kind, okay.

So, there are I0, I1, I2, … like that, so I0 is the Bessel function of first kind and V we can write is

a function of r but in the X direction. So, the velocity is in the axial direction and you can write

down the boundary conditions.
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So, we have mostly boundary condition which is velocity at right=a and the perimeter is going to

be 0 and the second boundary condition is that when you are talking about flow-through tube, we

are talking about symmetry, okay. So, the gradient of the velocity at r=0 should also vanish, okay.

So,  the  gradient  of  del  u/del  r  at  r=0 should  also  be  0  and this  is  the  symmetry  boundary

condition, okay.

Now, using these 2 boundary conditions, if you solve the velocity profile similar to this flow

between flat plate case, okay. We would have an equivalent in the radial coordinate and if you

solve that for flow-through tube, then you would get ur=1-I0 r/lambda d/I0 a/lambda d*Ueo,

okay. So, this is the ideal electroosmotic flow velocity.
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So, we can find the ideal electroosmotic flow rate. So, we can write Qeo=integration 0 to 2pi d

theta 0 to a, dr, ru, r theta. So, that is = Ueo. So, this is basically mean to be independent of theta,

so we have only as a function of r, so that is from here. Now, if we impose the condition that

lambda is less than less than a, then Ur could become Ueo, okay. So, under that condition, we

can integrate this to get Ueo*pi a square. 
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So, the electroosmotic flow rate=Ueo * the area of section, okay. So, now let us talk about Debye

layer overlap. We have been talking about cases, you know we derived the expression for the

velocity and flow rate for 2 different cases; one for flow between parallel plates and the second

one is flow in a circular tube and in all these different cases we have been considering that the



lambda d is very small compared to the radius of length scale of the flow and but when the

lambda d becomes comparable to the length scale, how the profile of the electroosmotic flow is

going to change, okay. So that is something we can look at here.

(Refer Slide Time: 30:22)

So, we look at Debye layer overlap, okay. So, you know we talk about different length scale.

(Refer Slide Time: 30:46)

In one case we have lambda d/a, so let us talk about flow through a tube. If this is = 0.01 that

means, we are talking about a tube of radius about 1 micron. So, micron size (()) (31:10). So, this

results in a flat profile, okay. As you can see here, this is the value of lambda d/a for which this is

the flow profile, okay. You can see that this is the radial velocity over this characteristic velocity



which is nothing Ueo, okay at the centre.

So,  you  can  see  that  the  profile  takes  a  much  flatter,  okay. The  profile  is  very  flat  at  the

significant part of the flow okay is flat. Now, if you take a value which is about 0.1, okay. So,

you are talking about a tube radius about 100 nm, okay. Because lambda d is of the order of 10

nm, okay. So, that is what we have seen earlier. So, radius is about 100 nm, then we see that the

profile is parabolic somewhat, close to the walls and towards the centre it becomes flat.
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So, here we see that a rounded profile, but it is flat near centre, okay. Now, if we go to lambda

d/a as 1, that means we talk about a tube of radius 10 nm, this is what we see. This is the velocity

profile, okay. So, the velocity profile is almost parabolic similar to the profile that we see in case

of (()) (33:22) driven force, okay. So, here the flow is parabolic. So, I see a parabolic profile,

okay. Now, if you write down the equation for the velocity Ur=1-I0 r/lambda d/I0 a/lambda d *

Ueo.
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Now, if we do a tailor expansion of this equation and we have to learn how to expand when you

have this Bessel function here, okay. So, we can write Ur to be a square/4 lambda d square*1-r

square/a square*electroosmotic velocity plus some terms which are of the order of a/lambda d

square, okay. So, this is the order okay.

Now, here you can see as lambda d becomes comparable to the radius, okay. So, the velocity is

going to be suppressed,  okay. So, the electroosmotic  flow is  going to be suppressed.  So, as

lambda d increases, the electroosmotic flow get suppressed, okay. So, that is what we also see

here/ So, here if you see on the X-axis you have the lambda d/a and the Y-axis you have the

maximum velocity of the centre divided by some characteristic velocity, okay.

Now as lambda d/a, so if it is small, even the lambda d is somewhere over here, you can see that

the velocity is comparable to the ideal electroosmotic flow velocity and as lambda d/a increases

as the Debye length becomes larger and larger, the (()) (36:33) this electroosmotic flow is heavily

suppressed. So, the actual velocity at the centre is only 10% of the ideal electroosmotic velocity,

okay.

So, what we learn is that the electroosmotic flow becomes beneficial only at the limit of low

lambda d or when the electrical double layer thickness is very small, okay. So, here we have been

looking at a electroosmotic flow when the pressure gradient is not present, okay but in most of



the  practical  situations  we  always  have  a  pressure  gradient  present  which  opposes  the

electroosmotic flow. When we have such pressure gradient present, the velocity profile itself is

going to get modified. So, we will like to see how it is going to get modified.

(Refer Slide Time: 37:35)

So, we look at pressure driven flow, we look at electroosmotic flow with back pressure, okay. So,

the situation we see it here. This is the situation, okay. So, this is a circular capillary, so we have

this Debye layer here, okay and we have positive there and negative there and we say that the

wall is positively charged. So, we have negative charge region in the Debye layer which migrate

towards the (()) (38:41), so it creates a motion in this direction, okay.

But we have a backpressure that is acting because of the finite fluidic resistance, a backpressure

acting. So, we can see that the P (()) (38:58) at X=0 is 0 but the pressure X=L is delta P. So, we

have some backpressure which is acting in this direction. The potential here is 0 and the potential

here is delta v, okay.

So, here what we are going to predict is that the velocity is going to be, we will see when we

work with the Navier Stokes equation, we will end up with linear equation where we can find out

the electroosmotic velocity and velocity due to the adverse pressure gradient independently, so

we can find the net velocity by adding these 2 together in a vector sense, okay.
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So, here we are talking about external pressure gradient is presence, okay. So, the conditions are

phi at X=0 is going to be 0 and phi at X=L is going to be delta V. The pressure at X=0 is going to

be 0 and pressure at X-=L is going to be delta p, okay.
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Now, let us say we can write the potential negative gradient of the potential phi is nothing but the

electric field, okay which can be written as -delta V/L, okay*Ex, this is the unit vector, okay.

Similarly, we can write gradient of pressure is going to be –delta p/L along X direction. So, this

unit vectors represent this along X direction, okay. So, here we say that the velocity is along X

direction and it varies in the radial direction, so into Ex, okay.



We have the boundary conditions which are the velocity at r=a is 0 that is the no-slip and we

have del u/del r at r=0 is 0 so that is the symmetry boundary condition.
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Now, if  you look at  the Navier Stokes equation,  it  is 0=eta del  square u+epsilon del square

pi*delta V/L-delta p/L. So, this equation is a linear equation, okay. So, it is a linear equation, so

you can find the solution by breaking the equation into 2 parts and superimposing the solution,

okay.  So,  we  can  say  this  is  a  linear  equation,  so  we  can  solve  by  superimposing  the

electroosmotic flow and the Poiseuille flow, okay.

So, this part is going to give you the electroosmotic flow when there is no pressure gradient.

Similarly, these 2 are going to give you the pressure driven Poiseuille flow, okay. So, we can

write the velocity Ur to be the vector summation of the Poiseuille+ the electroosmotic, okay. So,

this is what we can write because the equation is linear.
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So, the 2 equations that we get is one is 0=eta del square u-epsilon del square phi*delta v/L is

nothing but the electric field, okay and we have 0=eta delta square u-delta p/L. So, you know, we

have the 2 equations there is a correction here. So, 0 is eta del square u+epsilon del square

phi*del v/L and this is for the electroosmotic flow and this is for the pressure driven flow which

is 0=eta del square u-del p/L.

So, here this equation would be solved using the condition u electroosmotic at 0 is 0 and del Ueo

0/del r=0 and this equation will be solved based on Upa=0 and del Up/del r0=0, okay. So, we

have  to  solve  these  2  equations  to  get  a  solution.  Now,  we  know  the  solutions  for  this

independently. So, we can superimpose and write the expression for the velocity profile.
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So,  the  expression  for  the  velocity  profile  would  be  for  the  electroosmotic  flow,  the

electroosmotic velocity profile would be Ur=1-I0 r/lambda d/I0 a/lambda d*epsilon xi/eta*delta

v/L. So, that is the electroosmotic velocity-a square-r square delta P/4 eta L, okay. So, that is how

the velocity profile for the electroosmotic flow in presence of pressure gradient is going to look

like, okay.

Now, we can find the electroosmotic flow rate, that will be doing in the limit of lambda d<<a.

So, if we do that we would get Q total flow rate will be=Q electroosmotic + Q pressure driven.
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We can  write  this  pia  square*U electroosmotic  and  the  Qp we can  write  this  as  -delta  P/r



hydraulic,  okay because this  is  in  the negative  direction.  You know, we can see it  here,  the

electroosmotic flow is going to be in this direction and the pressure driven flow is going to be in

the opposite direction, so this is going to be Qeo and this is going to be the Qp.

So, there is a negative sign. So, we can say it is pia square epsilon xi/eta L*delta v-pi a4/8eta

L*delta p. So, that is the expression for the flow rate, okay. You know, next we will look at how

the PQ characteristics would look like, okay and that we will do in the subsequent class.


