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Lecture - 14
Electrokinetics

Okay. So, let us talk about electro osmosis. Before we talk about electro osmosis, let us talk
about the electrical double layer, the debye layer which is an important concept in electro
0SMOsis.
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So, if you look at here we have a surface which has negative charge okay and over the surface
we have a liquid present an ionic liquid, because of the negative charge on the surface, the
positive charges are attracted towards the wall and at the very interface on the wall, these
positive charges are strictly bound on to the negative charges and these positive charges are

immobile okay. So, they form an immobile layer which is known as stern layer.

They are very strongly bound to the negative charge wall and because of the negative charge
on the wall more positive charges are also attracted towards the wall so, there is a region
close to the wall where we would find net positive charge okay. And that region is known as
electrical double layer okay. And beyond this electrical double layer we would have the
neutral liquid where you will have equal number of positive and negative charges. So, this

immobile static layer is known as stern layer or Helmholtz layer.



And the region of the liquid close to the wall where we have net positive charge provided the
surface is negative is known as diffuse layer or it is also known as Gouy-Chapman layer
okay. Now, when we apply a voltage difference between the 2 terminals, these positive
charges as this region is rich in positive charges, they tend to move towards the negative
electrode which is the cathode. So, in doing so, they carry the bulk of the liquid along with it
so we have a pumping action taking place from positive to negative terminal okay. So we

have a pumping action taking place.

If we look at the potential variation from the wall into the bulk of the liquid, let us call this z
direction or in this case, let us call it y direction. Then this is how, it is going to vary. This is
how the potential phi is going to vary from the wall into the bulk of the liquid. The potential
right on the wall is the wall potential which is denoted by phi wall and the potential odd the

strong layer or the immobile layer is known as zeta potential okay.

So, xi is called zeta potential which depends on the surface as well as the liquid that is present
on the surface. So, this zeta potential is the potential at the Stern layer okay. So, the electric
potential from the wall is reduced into the bulk and about to the land scale of lambda D, it
reduces to 0 into the bulk okay. And this land scale is known as lambda D is known as debye
length okay. So, lambda D is called debye length, which is the land scale at which the
potential reduces to 0 in the bulk liquid okay.

So, this is a very important parameter in the definition of electrical double layer okay which
is called debye length. Now, if you look at the zeta potential for different materials, as I told it
also depends on the liquid that we are talking about. For glass, the zeta potential is varying
from -88 to -66 depending on the liquid and for pdms, it is found to vary between -110 to -68
okay. And this zeta potential as you would see in subsequent lectures, you would see that this

zeta potential is a very important parameter that governs the electro osmotic flow okay.

Now let us talk about the continuum model for the electrical double layer.

(Refer Slide Time: 06:03)
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So here if you look at this case, we will be considering this case okay. So, here we talk about
continuum model of debye layer okay. So here, we consider a positively charge surface, so
the surface is positively charged okay as you can see here. It has got positive charge. So we
would have a charges from the liquid, the negative charges will come and bind to the surface
because the surface is positively charged and inside the diffuse layer we would have net

negative charge okay.

Because the surface is positive, we would have negative charge close to the surface in the
diffuse layer and the bulk will be neutral okay. So this is the stern layer and this is the diffuse
layer okay. And lambda D is representing a land scale where the potential vanishes to 0 from
xi potential at the stern layer. So you can see a potential at the wall or at the stern layer is

given by xi and it vanishes to almost 0 at the debye layer land scale.

And if you look at the concentration of the charges, what do you see here, the coence are
suppressed near the walls, since the wall is positively charge, the positive charges in the
liquid is less at the wall and it increases to a value CO in the bulk. Similarly, the counter ions
are higher at the wall and they reduce to CO into the bulk okay. So, if you want to talk about

the continuum model for debye layer, we can assume the charges follow the Gauss law okay.

As ideal gas we can assume the charges as ideal gas. If you do that so you have to consider
for thermo dynamic considerations and in that case, we will have to consider what is called
the potential of the liquid okay. So, the chemical potential of the liquid is what we have to

consider.



(Refer Slide Time: 09:01)
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So, we can define the chemical potential okay for thermo dynamic consideration to treat
charges or ions as ideal gas. So you can write the expression for the chemical potential as
this. So you can write mu +- r = mu 0+ Boltzmann's constant * temperature * lan of C+-r
divided by CO +-ze * pi r. so this is the charge and this is the potential okay. This is the

chemical potential in the absence of electric potential.

So chemical potential when pi r = 0 and so this is for a given pi r, this is the chemical
potential and this is the Boltzmann's constant and this is temperature okay. And this are the
ionic concentration. And CO is the concentration or the ionic density at 0 electric potential
okay. Now, if we talk about thermo dynamic equilibrium, the chemical potential inside the
ionic liquid has to be uniform okay. If it is not uniform, the charges or ions can reorganize

themselves to generate energy okay.

So, the thermo dynamic equilibrium consideration, the chemical potential must be uniform
okay. So the gradient of the chemical potential must vanish okay.

(Refer Slide Time: 12:05)



<is el
| od [

b A L A A

Blan s DUV

‘r,“mgﬂ.qn&MC [
o

M (r = ¢enst :}V-“ﬁi"‘-:a
Aol

]

| <5‘.’ v In ‘-C:f‘f] = :Elv?u'}

LG

So, for thermo dynamic equilibrium, the chemical potential mu r will be constant so the
gradient of chemical potential will be 0. So, if you take gradient of the chemical potential
here, what you will get is this, you will get K B * T Boltzmann's constant * temperature
gradient of lan C+-r divided by CO will be = -+Ze * variant of phi r okay. So that is what we

would get.

Now, we have the boundary conditions that C+-infinity at Z = r = infinity, the concentration is
going to be CO, that is in the bulk of the liquid and the phi at infinity will be 0 okay. No
potential in the bulk and phi on the surface will be zeta potential okay.

(Refer Slide Time: 14:00)

So, if you apply these boundary conditions, on this equation what you would get is this, you

will get the distribution of the ions C+-r is CO * exponential -+Ze over K B * T * phi r okay.



So, this is the distribution of the ionic density. So if you know distribution of the negative and
positive ions, you can calculate the electrical charge density can be calculated as Z e * so this
is across r could be C+r-C-r, so this is the charge density which you can be calculated as -2Z

e CO0 *Sin of h sin hyperbolic * Z e over Boltzmann's constant temperature * potential okay.

Now, if you apply this Maxwell equation that we had studied del square phi r will be -1 over
epsilon * electrical charge density okay. So if you use this equation, so we have an expression
for electrical charge density which is this. So, we can find del square phir will be 2 Z e * CO
over epsilon * sin hyperbolic Z e over K B T * phi r okay. So, this is what we would get.
Now, if we consider that the surface is flat okay, then we are considering that the variation is

going to happen only along the direction normal to the surface okay.

So, in that case, phi can vary in a one dimension okay. So, if you are considering a flat
surface, planar surface, you can say that phi, let us say it is function of phi Z okay, where Z is
this direction here okay, this direction is Z okay. So, you can write del square so here you can
say this is phi Z and that is here is phi Z, so you can substitute solve for the potential and
write that phi Z is going to be 4 K B * T divided by Z e * tan inverse hyperbolic arc tan h tan
h of Z e * zeta potential divided by 4 k B T exponential -Z/lambda D.

So, this is how the potential is going to vary away from the wall in a direction normal to the
wall into the liquid okay. Now, we have introduced one parameter here lambda D which we
call as debye length okay.

(Refer Slide Time: 18:50)
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And here lambda D is defined as epsilon * Boltzmann's constant * temperature divided by
2*charge square * CO. That is the concentration or ionic density in the bulk. So that is how
the debye length is determined there is a square root of that. So, this is this represents, the

land scale from wall where the potential is reduced to 0 okay.

So, this is reduced to 0 and if you take an order of miniature you can take an example, so the
concentration of the charge ionic density let us say about 1 mol per meter cube okay and let
us say we consider water so epsilon is 78 times epsilon 0, the permittivity and let us say
charge is 1 unit, and the room temperature which is 298 kelvin okay. Consider 1 column then
we can find the lambda D is about 10 nano meter okay. So, that is an estimation of how thick

the debye layer is.

So debye layer is up the order of 10 nano meter okay. So, next we move on and talk about the
debye Huckel approximation.

(Refer Slide Time: 20:55)

So, we talk about Debye Huckel approximation. So the approximation is best on the fact that
the electrical energy is < as compared to the thermal energy okay. So, that is the
approximation on which the Debye Huckel approximation is best on. So, we can say that Z e
* xi 1s << so this is energy right charge * voltage is << the thermal enrgy is Boltzmann's

constant * temperature.

Now, if you impose this condition on this equation here okay, on this equation there then

what we see here a sin h of some term right and we know that sin h u will be = u when u is



small okay. So, if you impose this condition coming from the Debye Huckel approximation
on this equation here, then we can simplify the equation for the potential we can write that del

square phi r will be = 2 Z e square C0 divided by epsilon * phi r divided by K B T okay.

So, this is what we get okay Z e over K b T * phi r becomes u and the sin hyperbolic goes
out. So, 2 Z e CO over epsilon right so, we have this Z e here so that makes it Z e square * C0
over epsilon * phi r over K B T. So, we can write this as here if you look at the expression for
lambda D okay, so you can lambda D square 1 over lambda D square will be this right. So,
this is nothing but 1 over lambda D square. So, you can write this as 1 over lambda d square *

phi r right.

So, we have the equation del square phi r is 1 over lambda D square * phi r. now, if you have
a planer surface, we can write del square phi Z will be = 1 over lambda D square * phi Z.
Now, to solve this equation, we can apply the boundary conditions. The boundary conditions
are the potential when Z = infinity will be 0, so that is in the bulk liquid. And the potential at
Z = 0 will be the zeta potential. So if you apply that to this equation, what we would see is we

get an expression for the potential, which is zeta * exponential - Z over lambda D.

So, this shows how the potential varies from the wall into the bulk. So, we see that the
potential decreases exponentially from the surface into the bulk. And that is what we see it
here okay, if you look at what we have represented pictorially here we see that the phi is
reducing exponentially into the bulk liquid okay right. So, see that phi Z decreases
exponentially into the bulk liquid okay.

(Refer Slide Time: 26:26)
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Now, we can find the charge density. Charge density can be found so electrical charge density
will be = -epsilon del square phi Z over del Z square right. So, this is nothing but this
equation that we just talked about this equation okay. So, we can find the charge density
moving the charge density, we can find what is the concentration of the ion. The ionic density

is CO * exponential 1-+Ze over K B T * phi r okay.

So, this is the general expression how we can know what is the ionic density knowing the
potential distribution okay. So, we can write in this one dimensional case, C +- Z will be = C0
* 1-+Ze+K B T and we have an expression for phi Z okay. We have one expression for phi Z

here. So, say exponential -Z over lambda D okay.

So, what we see here is if you look at the ionic density distribution, it says that the co-ions
okay if the wall is negatively charged, the negative charge in the liquid are suppressed close
to the wall and it can increase into the bulk whereas the counter ions are more close to the
wall and they reduce into the bulk of the liquid. And so this is what we observed here okay.

So, the co-ions are suppressed near the wall and the counter ions are more near the wall.

The co-ions increase into the bulk and the counter ions are maximum at the wall and decrease
into the bulk and they reach a value which is the value when the potential is 0, which is into
the bulk of the liquid okay. So, this is what we observed from this equation.

(Refer Slide Time: 29:34)
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What we see here, is co-ions are suppressed near surface okay. You can say that if you look at

the sign here and there, we can predict this, co-ions are suppressed near the surface and the
counter ions are enhanced near the surface okay. So, if you have the wall which is negatively
charged then, if you look at the charge distribution inside the liquid, there will be more
positive charges close to the wall and it is going to reduce into the bulk and there will be less

negative charge close to the wall and it is going to increase into the bulk of the liquid okay.

So, with that next let us talk about the debye layer capacitance. So, as we understand the
debye layer stores some charges and because of waste there is capacitance that develops
across the debye layer and we try to see what is the value of this capacitance okay. So, let us
talk about debye layer capacitance let us first.

(Refer Slide Time: 31:20)
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So, this is shown pictorially here so we will talk about debye layer capacitance okay. So, you
can see here there are 2 plates, 1 plate is as positive zeta potential and the second plate has the
negative zeta potential and this is how the potential is going to vary from plate 1 to plate 2,
this line okay. So, this is how the potential is going to vary between the 2 walls okay. Now,
you have debye layer close to both these walls, this is specified by lambda D okay.

So, what is happening is you have a capacitor configuration here okay, because it is storing
charge and you have another capacitor here and then inside the bulk, you have some kind of a
register. So, if you look at the electrical equivalent if what is happening between the plate 1 to
plate 2, this is how you can represent. So, you have you know capacitor here okay and then
you have another capacitor close to wall 2 here and then the bulk of the liquid can be

considered as a resistor element okay.

So, you can calculate the charge per unit area at each of these walls.

(Refer Slide Time: 33:10)
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So, you can calculate charge per unit area A and so this is how you would calculate the charge
q liquid will be integration 0 to infinity, the variation of the charge density along Z * dZ okay.
So, we can 0 to infinity we have an expression for the charge density which is given by -
epsilon xi over lambda D square * exponential - Z over lambda D okay * dZ okay. So, this
charge density expression we have already derived it here right. So, this is you know the

positive and negative ions.



So, you can find out what is going to be the charge density from this what we have written
here from here okay. So, you can find the electrical charge density, which will come out to be
this okay. So this is the electrical charge density. Now, if we integrate, what you get is -
epsilon divided by lambda D * xi okay. So, you are saying charge is given by this ratio here

* the zeta potential oaky. So, this acts as a potential, is a zeta potential.

So, you can write capacitance okay. You know q = the charge = capacitance * potential. So,
capacitance we can write C is epsilon over lambda D okay.

(Refer Slide Time: 35:51)

Now, if you use lambda D as about 10 nano meter and it is liquid, so epsilon is about 78 times
epsilon not, which is for the free space. Then you can get an expression for, get a value for
the capacitance across the debye layer, which is of the order of .072 Faraday per meter
square. So, this is the charge we are calculating per unit area of one of this plates okay. Now,

we have a liquid which is having finite electrical conductivity okay.

So, the liquid that is present between these 2 plates as got finite electrical conductivity. So,
we know it is resistivity also, which is inverse of the electrical conductivity. So, from there
we can say the resistance of the liquid will be the thickness divided by electrical. So,
resistance is sl over A right. This is resistivity * length divided by the area of cross section.

So, 1 over rho is the resistivity * h divided by area. So, this is the resistance okay.



So, this is the resistance of the liquid okay. And the capacitance, so, we have 2 capacitors
here okay, they are connected in series okay. So, we can find the equivalent capacitance. So,
equivalent capacitance will be epsilon A over 2 lambda D okay.

(Refer Slide Time: 38:20)

So, we can define a characteristic time constant, which is tau RC = resistance * capacitance
okay. So, which = h over electrical conductivity * area, that is RC is epsilon A over 2 lambda
D right. So, you can write this as epsilon / 2 * electrical conductivity * h over lambda D. So,
this is the expression for the time constant. So, this is the time constant for this system, where

we have 2 capacitors and 1 resistors in series.

So, if we say lambda D is up the order of 10 nano meter and the height h is up the order of
100 micron, sorry the h, that we define for the resistance is the resistance of the channel, this
is lambda D okay, h is here. So, this is h, this is basically the gap between the channel,
because lambda D is very small. So, this is shown here, this is h. so, that is the resistance of
the liquid. So, h is about 100 micron and the relative permittivity, assuming it is water, so it is
about 78 and electrical conductivity is about 10 to the power -3 siemens per meter.

(Refer Slide Time: 40:48)
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So, from there we can find tau RC is up the order of 3.6 millisecond and we can find the
angular frequency also 2 pi divided by tau RC, which is about 1.7 * 10 power 3 radian per
second okay. So, from this characteristic time constant what we understand that, if we have a
process okay, let us say you are trying to use AC electro osmosis, if the frequency of the
applied voltage is such that the time available for the debye layer to form is < 3.6

millisecond, then the debye layer will not be able to form okay.

So, you need at least 3.6 millisecond for the debye layer to form to make the electro osmotic
action to happen okay. If you use AC electro osmosis and the frequency is sufficiently high
that the time available is < 3.6 millisecond, then it will not work. The electro osmotic
pumping will not work okay. Considering this example for the height and lambda D and the
liquid that we consider okay. So, here what we understood is that, process slower than 3.6

millisecond you have time available for debye layer okay.

And if the time is < 3.6 millisecond debye layer is not found okay. So, that is an important
conclusion we learn from by talking about the debye layer capacitance okay. So, let us stop

here.



