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Lecture - 12
Capillary Flows (continued)

Okay, so we have been looking at contact angle and we saw that if you know the surface

tension  between liquid  gas,  solid  liquid  and solid  gas  interfaces  then we will  be able  to

calculate surface tension, right. So, now we will go ahead and talk about in case of capillary

flows when the gravity is becoming important, okay when the gravitational force need to be

accounted for.

So, if you consider a fluid volume of omega and having the liquid air interface of d omega

then we try to see in what situations we need to consider for the gravitational force. So, we

need to minimize the equilibrium position of a gas liquid interface can be determined when

the Gibb’s free energy is minimum, okay and for the Gibb’s free energy to be minimum the

summation of the surface energy and the gravitational potential energy need to be minimum,

okay.

(Refer Slide Time: 01:21)

So, let us look at the capillary length and capillary rise and here we consider liquid volume

omega with free liquid air interface d omega. Now if you want to determine the equilibrium

shape then the free energy needs to be minimized, okay. And this free energy as the surface



energy + the gravitational potential energy, okay. So, we can write this the G minimum will

be we have to minimize the surface energy gamma*d omega*a.

So, this is the capillary radius, this is surface tension and this is integrated over the interface +

rho*G integration dr integrated over the volume*Z, okay. So, this gives you the volume of the

fluidic element and this gives you the interface length. So, the entire term is minimized for a

fixed volume omega, okay. So, if you talk about a liquid drop present in a free space the

liquid drop volume will be spherical, okay.

To minimize energy, the volume has to be spherical because in this case the gravitational

potential energy is 0. So, you are basically minimizing the surface area at for a fixed volume.

So, the minimum surface area for a fixed volume is a sphere, okay. So, this is why in free

space the liquid drop takes a spherical shape. And when we have gravity present to account

for the gravitational forces we define a parameter called capillary length, okay.

So,  we will  define  a  parameter  called  characteristic  length,  okay you can  also  call  it  as

capillary lengths, l capillary. So, characteristic length for capillary flow is gamma over rho g,

okay. So, it  is  basically  the competition between the surface energy and the gravitational

potential energy, right. And so, if a, okay so just see here a is << gamma over rho g, okay if

this condition is satisfied then we say that gravity can be neglected, okay.

So, the radius of the capillary if it is less than the characteristic capillary length then you can

say that gravity is neglected, right. Now we can find for water - air interface at 20 degree

centigrade you can find l cap characteristic capillary length would be gamma will be 0.073,

density will be 1000*9.81 is Z. So, it is about 2.7 millimeter, okay. 

Now in case of capillary flows in micro channels the radius of the micro channel or the

capillary is < this value < 2 millimeter, 2.7 millimeter. So, you can say that for all capillary

flows in micro channels the gravity force can be neglected, right. So, in practical micro scale

capillary flows the radius of the capillary a is << l cap. So, the rho g is << gamma over a

square, right.

So, gravity does not influence, okay. So, capillary flows at micro scale are not affected by

gravitational  force, okay. So, having talked about that let  us talk about capillary rise.  We



know that when you put a small capillary into a liquid container the liquid tries to move up

the capillary, okay. Here we try to find out what would be the maximum achievable height up

to which the liquid will rise, okay.
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So let us look at, move on to here, so this is the illustrative figure. So, you look at capillary

rise  height.  So,  this  is  the  situation  as  you  have  see  here,  okay. For  simplicity  we  are

considering a vertical tube into a liquid present here and we are satisfying the condition that

the radius of the capillary is << the characteristic capillary length and the gravity is in the

vertical direction, okay.

So, g is along the vertical direction along the g direction and theta is the contact angle as you

see here. So, this angle is going to be theta which we call contact angle is theta, right. So, this

is theta and the surface tension liquid air interface liquid air surface tension = gamma. So,

here we assume that the radius of the capillary is less compared to the characteristic which

mean  that  gravitational  force  is  negligible  and if  gravitational  force  is  neglected  we can

expect the interface to be spherical in shape, okay.

So, that is the reason why the interface in this case will be spherical in shape. So, this is what

is shown here. So, this is a spherical interface, okay spherical interface, okay. So, if we look

at the geometry this is the radius of this sphere, okay and this is, a is the capillary radius, r is

the radius of this interface, okay. So, if you use geometry then this contact angle this angle

will be same as the contact angle which is theta, okay.



So, by geometry we can look at cos theta here you can write cos theta will be = a over r, right.

So, r will be a over cos theta, right. Now in this particular case, I know for a interface we

would have 2 different radii of curvature, okay. Since here in this case the radius of curvature

is  spherical  the 2 radii  of curvature are  equal,  okay. So,  you can say that  the 2 radii  of

curvature are equal, so we can say R1 = R2 will be = a over cos theta, okay.

So, now we tried to do a force balance, okay. So, here if you look at the interface, okay if we

look at the interface, if the interface is convex in shape. So, the pressure would be higher in

the convex side as compared to the concave side, okay. So, in this particular case since at the

convex side we would have air present and at the concave side we would have liquid present,

okay as you can see here.

At the concave side we have air present here and liquid is present there. So, the pressure on

the air side is more as compared to the liquid side, okay.
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So,  we  can  write  here  the  pressure  difference  is  pressure  higher  in  convex  or  air  side

compared to concave or liquid side of the interface. So, if pressure on the liquid side of the

interface we call it as p liquid at height h, okay. So, we can say p liquid at height h will be = P

0 is the atmospheric pressure - the Young Laplace pressure delta p surface, okay. So, this is

the Young Laplace pressure across curved interface.  Whenever the interface is curved we

would have Young Laplace pressure present.



So, you can write P0 – 2 gamma over a*cos theta, okay. Because we know that delta p across

the surface is 1 over R1 + 1 over R2*gamma. This is what we derived earlier. So, this here R1

= R2 and there = a over cos theta, so you can write 2 gamma over a*cos theta, okay. So, let us

call this equation 1. Now at this location here, okay so this is the point which is in the liquid

air interface but far away from the capillary.

So, here the pressure will be P0 same as the ambient pressure because this interface is flat and

as we know the Young Laplace pressure drop across a flat interface is going to be 0. So, the

liquid pressure will be same as the ambient pressure P0, okay. So, here we know that P liquid

at 0 is at Z = 0 is the pressure away from tube and that will be = P0, okay and this is because

Young Laplace pressure drop across flat interface will be 0, right.

So, this is P0, we can write this P0, okay. So, this pressure here is also going to be P0 because

they are at the same level, okay. So, you can write P0 is going to be P liquid at H + rho g H,

okay. So, you can write P0 will be equal to P liquid at h. So, this is the pressure at the liquid

side of the interface + the hydrostatic pressure rho g H, okay. So, let us call this equation 2.

Now if you combine equation 1 and 2 if you substitute P0 from here and there and rearrange

the term what you get is this.

So, using 1 and 2 what you get is H = 2 gamma divided by rho g a*cos theta, okay. And this

we can write it as we can write 2 l capillary square, okay gamma over rho g square l caps. So,

l caps square divided by a*cos theta. You can also write this as 2 over rho g a*gamma solid

gas – gamma solid liquid. Remember this gamma is gamma between liquid and gas, okay.

And we know that cos theta = gamma solid gas – gamma solid liquid divided by gamma

liquid gas. So, you can substitute for gamma liquid gas gamma liquid*cos theta is gamma

solid gas – gamma solid liquid.
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So, now if you take an example,  so you consider one example,  let  us consider a PMMA

channel and let us say 100 micron radius you can find that the capillary height is going to be

4.2 centimeter, okay and if you consider water as the liquid. So, you know the density H is

going to be 4.2 centimeter. Now if you instead of 100 micron radius, okay if you go for the

same material and the liquid water and the radius is 10 micron then H will be 10 times, okay.

H will be 42 centimeter, okay. Now if you look at this equation this equation here H = 2

gamma divided by rho g a cos theta H = 2 gamma over rho g a cos theta. Here it is possible to

measure contact angle the capillary height this will be known for a liquid and this will be

known for a capillary. So, it is possible to find out gamma. So, gamma can be calculated,

okay.

So, it is possible to do an experiment, okay where we would know the capillary radius we can

measure the contact angle, we can measure the capillary height to predict what the surface

tension would be for a liquid, okay.
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So, next we move on to talk about the capillary rise time, okay. So, we know that if you put a

capillary or a micro channel we can expose to some liquid because of the capillary action the

liquid will move into, okay. And we found an expression for in case of a vertical capillary

what is going to be the maximum height to which liquid will move.

Let  us look at  what  is  the time scale up to which this  maximum capillary height can be

attained, okay and how it is going to achieve this maximum height, okay. So, for that we

would consider the equilibrium height, so the equilibrium height H and so that we would find

the rise time required, okay. Let us say L t is the height of liquid column at time t, okay and

this equilibrium can be attained.

So, equilibrium L infinity will be = H. So, as time would tend to infinity the liquid would

reach  the  equilibrium  height.  First  let  us  do  mass  conservation,  okay.  If  you  do  mass

conservation we can write d L over d t, okay the change in the height or this is the speed of

rise will be equal to the velocity, rise.

U 0 which will be equal to the flow rate divided by phi a square, a is the capillary radius and

we can substitute for Q from where Q can be written as phi a 4 divided by 8*delta p. So, we

can write it as a square delta p which is a function of time*8 eta*1 over L t, okay. So, all our

time depended here, right. Now we can do energy balance.

So, when you put a capillary in liquid the liquid tries to pull up and this is because of the

Young Laplace pressure that is present across the interface and this pressure is utilized to



overcome  the  viscous  drop  and  also  to  overcome  the  potential  energy  because  of  any

gravitational  present,  okay  however  small  that  might  be.  So,  you  can  write  the  energy

balance.

You can write the Young Laplace pressure drop will be = the viscous pressure drop + the

hydrostatic pressure of the potential energy of liquid column, okay. So, you can write delta p

surface will be = delta p at,  so this is the viscous + rho*g*L t. So, this is the hydrostatic

pressure and this is the viscous pressure drop, right. Let us call this equation 2 and let us call

this equation 1, okay.
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Now if you insert this equation 2 expression for the Young Laplace pressure here, okay sorry

not Young Laplace pressure but the viscous pressure drop, okay which can be substituted here

if you do that what we get is this. We get d L t over d t will be = a square over 8 eta L t, okay

a square over 8 eta*1 over L t*delta p t which will be equal to delta p surface – which is the

Young Laplace pressure – rho g*L t.

And we have an expression for this, right which will be 2 gamma cos theta over a. So, if you

substitute, now if you simplify you get d L t over d t will be equal to gamma over 8 eta*2 a

cos theta 1 over L t, so divided by L t – rho g a square over gamma, okay. So, which can also

be written as, rho g a square divided by 8 eta*H over L t – 1, so this is d L t over d t, right.

Now, to precede further let us try to non base this equation, okay.
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So, use some characteristic scales, we can say t is the characteristic capillary time scale*t star

and where zeta capillary will be = 8 eta H over rho g a square and we can say L will be =

H*L star, okay. H is the maximum capillary height and L is at time t. Now with that we can

write this equation in non-dimensional form, so you can write d L star t star of d t star. So, d L

t over d L start t star of d t star = 1 divided by L star t star – 1.

So, this is the equation that we have to solve. So, with the boundary conditions what are the

boundary conditions? The boundary conditions are L star at 0 is going to be 0, so when time t

= 0 this is going to be 0 and when time t = infinity L star infinity will be = 1, okay. So,

because L will be H L star will be 1. With that we can have 2 extreme cases. In case one, we

say that the time  t star is << 1, okay so L star is << one.

So, we are talking about at the beginning of the capillary rise, okay. So, in that case we can

write d L star t star over d t star, you know L star is small compared to 1, so 1 over L star will

be very large. So, we can rise, so 1 can be dropped off there, so L star t star. So you can write

L star t star will be = square root of 2 t star, okay. This is valid for t star << 1. Now you can

consider the second case, case 2 and here the time will be large, okay.

So, t star would tend to infinity, so which means that L star will tend to 1, okay. So, in that

case we can write L star = to 1 – delta*L star delta being very small. So, you can say that

where 0 < = delta L star << 1. So, you can write d L star t star over d t star will be = 1 divided

by 1 – delta L star – 1, right.



So this is the, this equation, okay instead of L star we substitute 1 – delta L star, so this will

be = 1 – delta L star – 1, right, - 1 and this will be equal to delta L star or L star t star, okay.

So, this is the equation we need to solve, okay. So, what we can see from here is delta L star

is going to proportional to exponential – t star, okay. So, we can write L star t star will be = 1

– a exponential t star.

So, this is the solution when t star is large, okay and this is the solution we obtained when t

star is small, okay. So, what we see is when you have capillary rise at the beginning of the

capillary  rise  when  t  star  is  small  it  follows  of  t  trend  and  at  large  time  scale  it  goes

exponentially, okay it is exponentially and achieves a steady value, okay. Asymptotically it

reaches the steady value.
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So, this is what we see, we let us say this is L star = 1, okay and this is let us say t star and so

this is going to vary something like this, okay. So, this is the trend it is going to follow what

we conclude from here is initially meniscus advances as square root of t and this is but when

time t is the characteristic time scale then it reaches equilibrium value asymptotically, okay.

So you take an example, if you take an example with the same PMMA channel case, PMMA

tube and radius is 100 micron and we have water as the liquid and we saw that H will be

about 4.2 centimeter and the time scale will be about 3.4 second, okay. So, in this case we can

expect that the capillary rise is going to follow the square root of t trend up to about 3.4

second and then asymptotically it will reach 4.2 centimeter, okay.



So, now having talked about that let us talked about few dimensionless numbers that are

important  in  capillary  flows and the  first  number  that  will  talk  about  is  known as  bond

number which is the ratio between gravitational force to surface tension force, okay.
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Dimensionless numbers,  the  first  number  we  talk  about  is  bond  number,  is  the  ratio  of

gravitational force divided by surface tension force, okay. So, we can write this, so bond

number is  specified by Bo, gravitational  force is  rho g a  divided by gamma over  a.  So,

gamma rho g a square divided by gamma will be = a square divided by L capillary square,

okay.

So, that is how you can mathematically express the bond number in terms of the square of the

capillary radius and the square of the characteristic  length capillary length scale.  If bond

number is of the order of 1 we can say that the radius of the capillary and the characteristic

capillary length they are of the same order and if bond number is < 1 and we can say that

surface tension dominates.

Surface  tension  dominates  over  the  gravitational  force  which  is  the  case  in micro  scale.

Gravitational force as a result a is << l cap, okay. Now the next dimensionless number that

we talk about is capillary number, so we talk about capillary number. Capillary number is

defined as the ration between viscous force to the surface tension force. So, capillary number

is defined as the ratio of viscous force to surface tension force, okay.



So, we can write this as eta V0 over gamma, okay and we can write this as some velocity

divided by gamma over eta. Gamma over eta is known as the intrinsic velocity, okay because

this capillary number and if capillary number = 1 the imposed velocity, so this is the imposed

velocity  = the intrinsic velocity, okay. That next number we talk about is Stokes number

represented by Nst.

So, Stokes number is given by the viscous force by the gravitational force which is capillary

number  divided by the  bond number,  okay. So,  Stokes  number is  the  ration  of  capillary

number to bond number which you can write as eta V0 divided by rho g a square, okay. So,

with that let us talk about the capillary advancement in a capillary vest pump, okay. So, we

talk about here capillary pump advancement times.
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So, we consider a flat rectangular channel, okay. So you consider a flat rectangular channel it

looks like this and we have this is the top channel wall. The inlet of the channel is typically

larger in cross-section,  okay. So, this  is the channel wall  here we consider this to be the

interface  at  the  inlet  which  is  flat,  okay  let  us  consider  the  pressure  here  is  P0  is  the

atmospheric pressure since the interface is flat here the pressure let us consider this to be the

interface, okay.

So, pressure her also be P0 because this is the flat interface big interface. Let us consider this

to be the Z axis and this is X axis, this height here Z = H, okay. Now here pressure will be

again P0 because this is ambient this is the liquid and on this side the pressure will be P0 +

delta P, okay. So, this is the pressure that is pushing the liquid in this side, okay.



So, you know here we assume that flat rectangular channel cross section is w*h and we say h

is << w, right. So, we can apply Hagen–Poiseuille beta used. So, if you do that you can write

Q = h cube w in delta p over 12 eta l. So, here it is a horizontal channel, right it is a horizontal

channel. So, the Young Laplace pressure drop will balance the viscous pressure drop.

Because there is no gravitational force involve because of the horizontal channel. So, these 2

are equal, okay. So, you can write delta p surface is going to be 2 gamma over h*cos theta,

okay which will be = 2 over h gamma solid gas minus solid liquid,  okay. So, this is the

expression for the Young Laplace pressure drop, similarly you can write down the expression

for the viscous pressure drop.

So, if you do mass conservation you can write d L t over d t will be = V0 = Q divided by W h,

right and which will be = h square delta p surface divided by 12 eta. So, here you substitute

for the expression for Q that we got here for a Hagen–Poiseuille between 2 flat plates. So,

this is what you will get into 1 over L t. Now, if you introduce a characteristic time scale tau

advance as 6 zeta over delta p surface.

So, this will be 3 eta h divided by gamma cos theta or you can write it as 3 eta h divided by

gamma solid gas – gamma solid liquid. You can obtain a solution for this, okay. You can

obtain a solution for this equation, okay. You can write L t = h gamma cos theta divided by 3

eta*t square root which we can also write it as h*t divided by tau advance*square root. So,

here you see that the advancement takes place as square root of t.

So, in case of a horizontal channel, okay if you have capillary flow the pumping is going to

depend or the L t is going to depend as square root of t. So, for a circular channel you can

write L t as a*gamma cos theta*t divide by 2 eta square root which is a*t over tau advance,

okay. So, with that lets us stop here.


