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Oblique shock waves

So, we begin a new chapter today on oblique shock waves. So, we will start this chapter with

recap of what we learnt about normal shock waves and we will see how an oblique shock

wave differs from a normal shock wave. The application and other uses of oblique shock

waves and where they occur and so on, we will  discuss afterwards.  So, if  you recall  we

started over discussion on normal shock waves.

(Refer Slide Time: 00:13)

I considering the situation like this where a normal shock propagated with a velocity v is into

quiescent medium and this was in a frame of reference that they observer is stationary and as

a result of passage of the shock wave, so the shock wave is propagating like this and as a

result of passage of the shock wave, the fluid in this section attains a certain velocity, there is

increase in pressure, increase in temperature and so on.

But, the fluid ahead of this is quiescent without any velocity. So, this was the scenario that we

were looking it and then, we changed the frame of reference. We said that you know, we will

get into a frame of reference where the observer moves along with the shock wave, so it

moves along with the shock wave, then we drew this kind of a sketch.



Now, the shock wave appears stationary as the observer is moving along the shock wave, the

force seems to approach the certain velocity and received with the certain other velocity. So,

the velocity with reach the flow approach is shock wave is we labeled that as u1 which is

actually equal to the shock speed. So, this was labeled as 1 and this was labeled as 2 and so,

state 2 here the flow receives with the certain velocity u2.

(Refer Slide Time: 01:47)

And we saw that or we showed that u2 is < u1 that is the permitted solution and the process is

the  compression  process.  An  expansion  shock  wave  was  forbidden  by  second  law  of

thermodynamics. So, these are the highlights of our discussion on normal shock wave. What

is that the velocity vector both before and after in this frame of reference where the observer

moves.

In this frame of reference, notice that the velocity both before and after is normal to the shock

wave and hence the name normal shock wave and there is no change in the direction of the

fluid after it passes through the shock wave, right. These are the highlights of the normal

shock wave of compression process. Oblique shock wave, we start with the same scenario,

okay.

(Refer Slide Time: 03:27)



We start with the same scenario, the only difference is, so let it be draw this here the oblique

shock wave and let us label this as 1 just likes before label this as 2, so this is in a frame of

reference where the observer is stationary. Now, let us say that the observer now gets on to a

frame where not only does the observer moves along with the shock wave, the observer also

moves along the shock wave.

Please notice the difference, here the observer moves along with the shock wave, here the

observer moves along with the shock wave and along the shock wave. Meaning, the observer

also let us say travels this wave with the certain speed, which I am going to label as V sub t,

the observer can go this way or that way, both are equivalent that is not an issue. So, the

observer now moves along the shock wave, in addition to moving along with the shock wave,

okay.

Now, when we go to this frame of reference where the observer is moving in this manner.

Now, I  see  that  the  velocity  of  the  fluid  that  is  approaching  me  as  2  components,  one

component in one direction and another one which is normal to this. So, let me draw the

shock wave. So, because the observer is moving this way, the flow seems to approach the

observer in this direction with the velocity which is equal to this velocity, correct.

(Refer Slide Time: 05:02)



So, this is the tangential component of velocity which I can label like this. Now, because the

observer is also moving this way, the flow seems to approach with the velocity in the normal

direction  with  the  value  =  vs  just  like  what  we  saw  here,  correct  that  is  the  normal

component. So, I am going to show the normal component like this. So, I am going to use the

subscript n, here I use the subscript t to denote tangential component.

Here, I am going to use subscript n to denote normal component, this normal component is =

vs, right. The observer has 2 component of motion, one which is along the shock wave. So,

the fluid acquires that in the opposite direction, one along with the shock wave or normal to

the shock wave. So, the fluid acquires that velocity in the opposite direction. This is quiescent

medium, so it looks like this.

So, the resultant velocity vector in this case is going to be like this. So, this is u1, this is

vector u1. What is that u1 is not normal to the shock wave, here u1 is normal to the shock

wave, here u1 is not normal to the shock wave. Now, what happens to the flow after the

passage of the shock wave that is state 2. Now, there is no shear force or any other force

acting in the tangential direction to the shock wave.

So, the tangential component of the velocity will remain the same across the shock wave,

there is no change, right. Only the normal component of the velocity is reduced as a result of

compression across the shock wave. So, normal component reduces, tangential component

remains the same, okay. So that means if this is my tangential component, which remains the

same, my normal component is < what it was before. Let us say something like this.



So, let us called this un2 this is normal to the shock wave. So, now the resultant vector, this is

u2 is that clear. Tangential velocity vector or tangential component remains the same. Normal

component  alone  decreases  just  like  it  decrease  in  going from here  to  here.  In  fact,  the

reduction is actually the same. If you consider only the normal component, it is as if it is

going through a normal shock wave.

Whatever, we have developed here the theory is applicable here also. Only thing is we have

to now worry about directions, okay. This direction, so now, another thing that we must keep

in mind is when the observer starts moving along the shock wave this way. The shock way

also appears to  slide upwards,  right.  So,  the shock wave now, you know that  acquires  a

direction.

So, the shock wave goes like this because the observer is moving along the shock wave like

this. The shock wave seems to slide above the observer. So that it means the shock wave has

the direction now in contrast to what we had before. There was no directionality to the shock

wave before now. There is the directionality to the shock wave in this frame of reference (())

(09:08) this is the observer moving frame of reference, okay.

This angle is usually denoted as beta or the wave angle that is the angle that the shock wave,

this vector makes with the vector u1, the acute angle between that shock wave vector and this

vector  u1.  I  will  show this  in  a  slightly  different  orientation,  so  that  you  become  more

comfortable, but this is the picture that you will see if you go from this frame of reference to

this frame of reference.

Now, you want to find out one more thing is the flow deflected or not is the other thing that

we want to see, here there was no change in the flow direction. Flow was not deflected at all.

Here, we wish to see if it is deflected or not and by how much. We can easily see that the

velocity vectors are not parallel to each other obviously because un2 is smaller, so which way

is the flow deflected towards the shock wave or away from the shock wave?

If you take this length and put it here, right, this will come up to let us say somewhere up to

there, this would be un1. If I superimpose this on this, this would be approximately un1.

Then,  the  resultant  velocity  would  look  like  this.  So  that  means  the  flow upon  passing



through the shock wave is deflected towards the shock wave via certain angle. That angle is

called the flow deflection angle.

This angle is called the wave angle. I am going to make this more clear in a minute. Now, the

important point here is this angle is measured with respective to u1 and the direction of the

shock wave that is why it is called the wave angle or the shock angle. Now, lies become easy

if I rotate this figure. If I rotate this figure, so that u1 becomes horizontal, then things are little

bit clearer to see, okay.

So, what is that this is the true picture, for our convenience and ease of use, we are going to

rotate this through an angle beta. So, that this becomes horizontal. So, the flow deflection

becomes easy to see. Flow reflection is not so easy to see in this diagram. So, I am going to

rotate this diagram this way counter clockwise by an angle beta, right. So, if I rotate this in

the counter clockwise direction, when I do that my shock wave rotates through an angle like

this, right.

(Refer Slide Time: 11:50)

This is the direction and this angle is, what is this angle? Beta. Thus, I have rotate through

beta, so this angle is beta and so, this is my u1, which has become horizontal now, this is my

ut and this is my un1, okay. So, I have rotated this. This is not a new reference frame. This is

the same reference frame, but instead of looking at this figure like this, if you will,  I am

looking at the figure like this, so that u1 is horizontal, you must understand that.



This is not a new reference frame, this is the same reference frame, okay. I am tilting my

head, so that u1 becomes horizontal, so that is what has happened here. So this is u1, this

angle is beta and again notice that this angle is also beta. Now, when I draw the diagram on

this side, again this is ut. I am sorry, un2 is slightly, this is ut, this is u2, okay. Notice that, ut

remains the same, un2 is < un1 and now, you can see that this was the original velocity vector

direction.

What is this angle? That is the flow deflection angle, usually denoted by theta. So, this is the

flow deflection angle theta. So, let us write it down explicitly theta is the flow deflection

angle and beta is the wave angle. What is that, both these angles are measured with respect to

u1. Please bear this in mind, just because we have drawn this horizontally does not mean that

these angles are measured from the horizontal;

Both the angles are measured with respect to u1. So, the flow deflection angle is the angle

through which the flow is turn with the respect to vector u1 and wave angle is the angle that

the vector long away makes with u1, not the horizontal. This is only for ease of illustration,

nothing more than that, okay. So, let us write done few ideas from these 2 of them, we will go

from here, okay.

(Refer Slide Time: 16:01)

Notice that in so far as the normal component is concern, the oblique shock wave and the

normal shock wave are the same, okay. So, as far as, the normal components are concern,

they are both the same, the oblique shock wave and the normal shock wave are identical.

Why is this important?



Because if I have a flow that is approaching a shock wave like this with let us say static

pressure p1 and static temperature t1 and velocity u1 with the normal component equal to

this. How do I get the static pressure? and static temperature after the passage of the shock. I

used the normal shock table, but instead of using m1, when I go to the normal shock table, I

used this Mach number, mn1 is what I used when I go there.

Remember, static quantities are frame independent, right. So, the static pressure and static

temperature that I calculate using the normal shock relationship for this will be the same as

for this frame of reference also. Stagnation pressure will not be the same. Static pressures will

be the same, so that is why this is very important. So, static quantities across the oblique

shock waves can be calculated using the normal velocity component.

Just like you will do for normal shock waves, okay. Next, flow is deflected after passage

through the  shock wave.  In  fact,  which  way is  the  flow deflected,  the  flow is  deflected

towards the wave, right or equivalently, there is another terminology that is usually use, the

flow is turned into itself is what people use, although that is very confusing. I preferred this,

because this has the direction.

So, we can easily see whether the vector is shifting towards this direction or moving away

from this direction. So, I do not like this other terminology, but that is also used. Flow is

turned into itself. This is little bit confusing because when you look at some complicated

situations, you really do not know which is turning into itself and which is turning away from

itself. Whereas, this one irrespective of the orientation.

Once you draw this, sketch the direction is always clear whether what you are drawing is a

shock wave or not. Because later on, we are going to look at expansion waves also, not the

counter parts of this, but infinitesimally strong expansion waves, which will actually deflect

the flow away from itself. So, it can be confusing, so towards the wave is a much better way

to describe the flow deflection, okay.

Next, probably most important point, let us say that we consider a situation where we have

something like this and something like this and let us further state that u1 is same in both

cases, p1 is a same, t1 is a same that means m1 there and m1 here also same. However, mn1



is always going to be < m1, right. So, the loss of stagnation pressure across this shock wave is

going to be < the loss of stagnation pressure across this  shock wave for the same Mach

number.

Because the normal component  is  always less,  okay. Since the normal  component  of the

velocity < the magnitude of the velocity itself, loss of stagnation pressure is less in an oblique

shock wave. Why is this important? This is important because in practical devices, we saw

that beyond the Mach number of 2, the loss of stagnation pressure in the normal shock wave

was 70% as much as 70% or so.

(Refer Slide Time: 20:11)

But, it is actually not possible or very impractical to compress flows at high Mach number

using  a  normal  shock wave.  So,  the  strategy in  practical  devices,  is  to  exploit  this  fact,

compress them through a series of oblique shock waves and once a Mach number gets below

2, terminate with the normal shock wave that is very effective, very efficient, not efficient,

but very effective (()) (21:43) normal shock is effective, but not efficient, so utilize the best

aspect.

Decelerate the flow from a Mach number of let us say 4 or 5, may be 2 using a series of

oblique shock waves which has a lesser loss of stagnation pressure and then terminate with

the normal shock wave. So, oblique shock waves find a lot of use mainly because of this

reason, otherwise everything is similar to this, pressure rises across the oblique shock wave,

temperature increases and the normal component of velocity decreases.



The  tangential  component  of  velocity  remains  the  same,  okay. Now because  the  normal

component of velocity alone decreases and not the tangential component across an oblique

shock wave, the flow becomes subsonic only with the respective to a normal component, not

the total velocity component, mn1 is supersonic, mn2 is always subsonic because that is the

normal shock wave. However, m1 is supersonic and m2 can also be supersonic.

Most of the situations m2 is also supersonic, okay. That is the next important point, which we

will write down here. Mn1>1, mn2<1 always, m1>1, m2>1 most of the time, we will see

when this is not satisfy. So, where are normal shocks used, as I said normal shocks, I am

sorry. Where are oblique shocks used? Oblique shocks are very effective for decelerating and

compressing a supersonic flow.

(Refer Slide Time: 23:09)

So, they are used in diffuses and also turbomachinery blade passages, if you have a transonic

stage,  where the  stage  handles  mixed flows,  then it  is  used in  transonic stages  also;  for

example, transonic compressive stages. So in this application, you design the geometry, so

that you generate shock waves of a certain angle and strength. So, this is controlled. You

controlled the shock wave angle and the flow deflection and the strength of the shock waves

in this application.

There are other applications, where you do not really control this and that is what we saw

when we discuss nozzle flows, over expanded nozzles, when it comes outside there is a shock

wave that  is  oblique shock waves that is generated which compresses the flow, right.  So



there,  the  strength  is  determined  by the  back  pressure  and  the  nozzle  geometry,  so  this

appears also in over expanded nozzles. So, here we do not really control the angle.

It  is  determined  by  other  fluid  dynamic  parameters.  Here,  the  geometry  is  designed  to

generate or trigger an oblique shock at a certain angle to accomplish a certain amount of fluid

deflection, okay. We are going to see the dynamics of this. Basically, what we want to do is,

just like what we did for the normal shock wave. Given m1, we were able to find everything

else, the pressure wise across the shock wave, m2, temperature wise, p02 or p01.

We are going to do the same thing here, but here there is one additional quantity, what is that?

There are two additional quantities that is wave angle and the flow deflection angle. So, given

m1, theta and beta, how are we going to determine, how do we determine the downstream

Mach number and all other flow properties that is our next task. So, how do you actually

trigger an oblique shock in a practical application?

(Refer Slide Time: 26:35)

And, we said that in some cases, we design; so that we trigger an oblique shock at the certain

angle. Let us consider the following situation, let us say that we have supersonic flow, we just

flowing along the surface like this and it encounters a corner like this. So, let us say that in at

the corner, it  is  inclined  at  an angle theta  to the horizontal.  So,  when a supersonic  flow

encounters a corner like this, the flow has to be deflected through an angle theta or it has to

be turned into itself.



So, what happens is, so something is generated from this corner and in this case, you know

that after  passage through the wave. Let us say that this is some wave, we do not know

whether  it  is  an expansion process or a compression process,  but we do know that after

passing through the wave, the flow is deflected towards the wave, right. We can see that it is

deflected the wave through an angle theta.

Remember the wave direction itself is like this, so a wave is generated from the corner goes

like this,  right.  So,  the flow is deflected towards the wave, so that means that this  is  an

oblique shock. So, this is how we trigger an oblique shock wave of a certain strength and

angle. So, this is the deflection angle. This angle is the wave angle beta. So, if I design this

theta then for a given Mach number, I fix the theta, I get a wave of certain strength and the

properties are also for certain value.

So, I trigger a series of shocks like this, I can successively decelerate the flow and bring it to

a value that I want, that is how we trigger oblique shock waves in practical applications. So,

the corner is design to generate an oblique shock wave which deflects the flow through this

angle and a wave angle beta. What is that the opposite version, where we have an expansion

fan, which deflects the flow through an angle theta away from itself is forbidden, okay.

So, the oblique shock is a compressive wave which deflects the flow towards the wave by a

finite angle theta. Now, the counterpart to this where a wave deflects the flow away from

itself through a finite angle theta, which should be an expansion process is not allowed by

second law of thermodynamics. Let us write that down also. So, an expansion wave which

turns the flow away from the wave through a finite angle is forbidden by the second law.

(Refer Slide Time: 29:58)



The important  point  here is  that  turning through a finite  angle.  You will  see in  the next

chapter  that  if  the flow turning is  through an infinitesimally  small  angle,  then expansion

waves are  allowed that  is  an isentropic process,  entropic and remain the same. This will

actually require the entropy to decrease that is not allowed in an adiabatic flow. If the flow

turning is through an infinitesimally small angle, then such expansion waves are allowed,

okay.

(Refer Slide Time: 31:29)

So, most important point here is that what is not allowed is turning through a finite angle in

an expansion corner is not allowed, okay. So, the situation that we are talking about is the

exact opposite of this. So, if we have and instead of corner which goes like this, let us say we

have a corner goes like this. So, this is deflected, trying to deflect the flow away from itself

through an angle theta, right.



So, an expansion wave which can accomplish this just like this of a finite strength is not

allowed. So, this is an expansion wave which deflects the flow through a finite angle. This is

not allowed by second law of thermodynamics.  “Professor - student conversation starts”

yes,  sir  the  value  of  un1  will  it  be  always  >1,  un1,  yes  because  as  far  as  the  normal

component is concern, we said that this is the normal shock wave.

So, normal shock wave, the Mach number approaching a flow is always >1. If u1 is letting

near to 1 and it is a component, then it will become an acoustic wave, it will become a shock

wave of infinitesimally small strength, right. It cannot be subsonic. Because if it subsonic,

then we have other problem, right, that is not allowed by second law. It has to be either an

expansion process, we cannot have a compression process where the flow is subsonic and it is

compressed further.

The shock wave always moves with supersonic speed in a quiescent medium, which is why

the flow always approaches the shock wave with the supersonic Mach number. The smallest

possible is an acoustic wave which moves with the speed of sound, so that cannot be < that. A

wave solution as we discussed in our earlier chapter, a wave solution is permitted only if the

speed is sonic or supersonic.

The nature of the governing equations is such that the equations are hyperbolic when the

velocities  are  supersonic.  So,  it  is  only  when  the  flow  the  equations  behave  with  the

hyperbolic character that wave solutions are permitted. The flow velocity is subsonic, then

the equations behave in a manner called elliptic and there is no wave solution for an elliptic

equation. Wave solutions are permissible or permitted only for hyperbolic equations.

“Professor - student conversation ends”. Okay, so what we are going to do know is relate

m1  beta  and  theta  to  m2  and  other  downstream  properties.  So,  let  us  write  down  the

governing equations. They are almost as same as what we wrote down for normal shock. So,

we  are  going  to  write  it  in  terms  of  the  normal  components.  Rho1un1 =  rho2un2,  p1+

rho1un1 square = p2+ rho2un2 square.
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Energy equation remains the same, h1+ one half un1 square+ ut square = h2+ one half un2

square+ ut square and ut remains the same across we know that, so ut square cancels out. So,

we are left with the almost the same thing as what we had before. In addition, so this implies

that t02, in the eval, we can leave this, we will pick it up later this is fine. So, this is the

governing equation.

And,  what  we  want  to  do  is,  obtain  a  solution  which  relates  m1 theta  and  beta  to  the

downstream properties, okay. Now, if you look at the velocity triangles here, you can see that

this  angle,  we  have  to  calculate  this  angle,  this  is  90  degrees,  right,  u1  and  ut  are

perpendicular to each other, so this is 90 degrees and this angle is beta, so that this angle is,

what is this angle? Beta- theta, right.

So, I am going to write down the following equation from this velocity triangle. Un1 = u1

cosine beta and un2 = u2sine beta- theta. “Professor - student conversation starts” yet I do

this right, oh, sine beta, thank you. “Professor - student conversation ends”. And, we also

have ut = u1 cosine beta which is also equal to u2 cosine beta- theta. So, from these 2, I can

write this as un1 over un2 = tangent beta divided by tangent of beta- theta, okay.
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That is u1 over u2, so if I divide these 2 expressions, I get u1 over u2 and I can get u1 over u2

as cosine beta- theta divided by cosine beta. So, I have eliminated that, so I end up with

something like this. This is one relationship for un1 over un2, but I can also see from here

that un1 over un2 = rho2 over rho1, so I can do that also. So, from the continuity equation, I

can write the following and if I use the equation of state.

I can write this as p2 over p1 times t1 over t2. Now in the right hand side, remember these are

static quantities and we already wrote down relationships when we discuss normal shock

waves. We already wrote down relationships for these 2 in terms of m1 and m2 at the time, so

the m1 and m2 that we used there, now become mn1 and mn2, fine that is what we are going

to do.

So, if you rewrite this, this can be written as if you use those relationships from normal shock

wave, I can actually write this as gamma+ 1 times mn1 square divided by 2 gamma- 1 times

mn1 square. So, this we obtain in the right hand side, we have obtained from normal shock

relations after replacing the m1 and m2 there with mn1 and mn2, okay. Remember, we knew

mn2 also; we had eventually solve the equation.
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So, we know mn2, so I have written everything in terms of mn1. But, we also know that mn1

from these velocity triangles or if you look at this relationship divided both sides by square

root of gamma rt1, what do I get, I get mn1 here, right. I get m1 here, mn1 = m1 sine beta.

So, this is the same relationship, I am not doing anything different, so mn1 is m1 sine beta

and mn2 = m2 sine beta- theta.

(Refer Slide Time: 41:13)

Speed of sound is the same, irrespective of the velocity component, right, which is why I can

divide both sides of this also by square root of gamma rt2 and we will get mn2 = m2sinebeta-

theta, so I have all things, so I take this, I substitute that here and equate that to here. We

finally get if you equate the 2 relationship for un1 over un2, I get tan beta divided by tan beta-

theta = gamma+ 1 times m1 square sin square beta divided by 2+ gamma- 1 times m1 square

sine square beta and this was pretty much what I wanted, correct.



I wanted a relationship which connected m1 with beta and theta, m1beta and theta with m2

and other downstream properties,  so that is what I have now. So, once you give me one

quantity or two quantities in this, I can evaluate all the other things. It is easy to rewrite this

slightly. If it is better to rewrite this slightly like this just simple rearrangement gives you tan

theta  = cotangent  beta  times  m1 square sine square beta-  1  divided by m1 square times

gamma+ cosine2 beta+ 2.
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So, previously in the normal shock wave, there was only one quantity given m1, we wanted

to calculate m2 and all the other properties. Here, there is one more, given m1 and either beta

or theta, I can calculate all the other quantities. That is what this is telling you. So, given m1

or given any two quantities  here from the  list  theta,  beta,  m1,  the other  quantity  can be

calculated from this relationship and this relationship is known famously as the theta, beta, m

relationship.
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So, this is known as the, what we need to do next is look at this solution and then see what

the constraints are for practical application. For example, things like for any Mach number

m1, can I deflect the flow through any angle that I want, number 1 or for a wave angle, given

wave angle and m1 what kind of flow deflection angles are possible. Can I deflect the flow

through any angle I want?
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So, there are many such inferences and questions that we need to look at. Another important

question is this appears to be a nonlinear equation. The trouble with nonlinear equations is

they usually have more than one solution that is the case which are the solutions which are

meaningful and do not violate second law and so those are the one that are going to be seen in

real life application.



So, there is more than one solution which does not violate second law, then which one will be

see in an application that is also important. So, those are the kinds of issues that we need to

look at next when we solve these equations. And, try to obtain solutions and then infer the

behavior of this equation. It is easier not to solve this equation, but though actually look at

this equation in the parametric way.

So, I keep m1 fixed and I keep let us say theta fixed and I vary beta, then I look at the values,

the range of values that (()) (46:58). So, I can do things like that then construct curves m =

constant curves as the value vary through the other 2 extremes. I can look at m = constant

curves and then infer the behavior  of the solution from that  other  than solving for them

directly. Remember that has been our strategy throughout.

We do not want avoid solving equations even when we looked at really flow or fan of flow or

normal shock wave, we prefer to tabulate rather than solve that is the much more practical

strategy. Here also we will do the same thing. You will not attempt to solve this equation. But,

we will try to tabulate the solutions or draw curves and then draw inferences from that. So

inferences from the theta, beta, m curve is something that we will take up in the next class.


