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Fanno Flow/Quasi One Dimensional Flows

In the previous class, we looked at supersonic flow through a duct.
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So the duct was square in cross section and at entry, the conditions were given and we were

asked to determine the conditions at the exit. The duct length was given to be 2 meters and other

inlet conditions were also given. So it was given that T1 = 300 kelvin and the static at the inlet

was given to be 100 kilopascal and we calculated M1 in this case to be = 2.6, and from Fanno

tables for this value of M1, we obtained FL*/D to be = 0.4526.

And since D here is the hydraulic diameter of the duct, so with Dh, the hydraulic diameter of the

duct to be 5 cm. We get L1* to be or L* to be = 1.1315 meters, so this comes out to be 1.1315

meters, which is < this length. So L1* corresponding to this then. So let me label this as L1*

because we are going to have multiple values of L*, so we will label this as L1* meaning this is

L* corresponding to M1. So this is 1.1315 meter.



So let  us  say this  is  1.1315 meters.  So  we know that  there  is  going to  be  a  normal  shock

somewhere in the duct and so we assume a position and then we start the calculation. We are

going to do this in a systematic manner. So we create a table.
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So let us say that this is our guess for Ls, which is the distance of the shock. If you remember,

yesterday we said that the shock will sit, let us say somewhere here like this and we call this

distance Ls and this state was x, this state is y and if you remember, this distance actually we

assume the exit mark number to be 1. Let us write that down. We assume M2 to be = 1. So with

that assumption, this distance will become Ly*.

So let us put all these things in to table form, then we will go from there. So Lx* as we said

yesterday, Lx* is going to be L1*-Ls in meters and we get Mx from Fanno table and then we get

My from the normal shock table. Once I get My, I can get Ly* from Fanno table and then I

compare Ly* with L-Ls. Notice that Ly* should be = the total length L-Ls. So iteratively, we

guess a value for Ls and then we proceed like this.

Once we guess a value for Ls, I know L1*-Ls*, so that is Lx*. For this value of Lx*, I go to the

Fanno table, get my Mx, then get my My, then get my Ly*, compare and then keep going like

this. If you remember Ly*, the last 2 columns should be equal, so this should be = Ly* until we



reach that value, we keep continuing. So begin the iteration, we need to assume the shock to be

positioned somewhere.

Since we have no idea where it is, the best way is to use bisection method. Bisection methods

starts by saying, so the length of the duct is 2 m, so we assume the shock to be right in the

middle. It is like opening a dictionary. If you want to look up a word in a dictionary, that is how

you do. Either you start looking at the first half or the second half depending upon where the

word is. So bisection method works that way. We start right from the middle.

So we assume the shock to be positioned at Ls = 1 meter. This then gives me Lx* to be L1*-Ls,

L1* is 1.1315. so L1*-Ls is going to be 0.1315. Now I go to Fanno table corresponding to this

value of L*. Remember we have to calculate F* this/Dh, where we use the hydraulic diameter of

the duct. So corresponding to that value, I get my mark number Mx to be approximately 1.26. I

now go the normal shock table corresponding to this value of M1, I get my M2 to be 0.8071.

Now I go to the Fanno table corresponding to this value of M, Ly* comes out to be 0.166 and L-

Ls, what is L-Ls? L is 2 meter. We have assumed Ls to be 1 meter, so L-Ls is 1 meter. So you can

see that obviously Ly* is not = L-Ls. That means we have to change our guess. Which way do

we position the shock now. We said it is in the middle. Now do we go this way or that way? That

is really not known. We have to try both and then see which way the solution proceeds.

Let us assume that the shock is now located at 0.5. If you are lucky, this will be a lucky guess. So

we proceed that way. We can also kind of try to draw some inferences from the numbers that you

have. For example, you notice that for this choice of the shock location, I get my Ly* to be much

less, which means it actually seems that we need to move this a little bit to the left, so that the

Ly* will come out to be larger and comparable to L-Ls.

So that kind of gives us a clue that we should actually take the other choice that we should go

this way. So let us make it to be 0.5, then this becomes 0.6315. We follow the same procedure

corresponding to this value of Lx*, I get my mark number to be approximately 1.84 and My



comes out to be 0.6078. This then comes out to be 1.155, but L-Ls is now 2-0.5, so that is 1.5,

but the number seem to be getting closer.

So our  inferences  from these  numbers  seem to be okay. What  we can  conclude  from these

numbers is that this mark number is actually reasonably close to M=1, which is why we are

getting this Ly* to be very small. So if you want to increase this Ly*, this mark number should

be lesser. If you want this mark number to be lesser, then this mark number should be more.

Remember from normal shock, the higher the initial mark number, the lower the final after shock

mark number.

So that means this must occur earlier in the duct. Again you can see that this M is also very close

to 1 actually, so that means this is not going to be strong, so we want it to be moved upstream,

which is why we made a guess 0.5. So what I am trying to tell you is, I started out by saying that

the guess may be a lucky guess, but now I am telling you how to make it an intelligent guess.

These numbers are actually trying to tell us something.

There is a physical reason and meaning behind each 1 of these numbers, which we obtained from

our knowledge of the theory, from our discussion of the theory. So each 1 of these numbers, we

should be able to interpret, then adjust our initial guess. So it need not be a blind or lucky guess.

We can actually make an intelligent guess. So now we try to do a little bit more. So these seem to

be getting better, which way do we go now? Further to the left.

Because this number is still < this, so same argument. So we go more to the left. Let us make it

0.25  and  you  go  through  the  sequence,  we  get  this  to  be  0.8815.  This  comes  out  to  be

approximately 2.15, 0.5540, 1.76875 and L-Ls is 1.75. Now what do these numbers suggest to

you? Now they are kind of overshot this value for the first time. So that means we have no

bracket at the solution. So the shock is between 0.5 and 0.25. This seems to be reasonably close.

We will try one more value to see whether we can improve this guess. So let us make it 0.26. If

you do that and you go through the sequence, you get 0.8715 approximately. Actually, the tables

and these numbers are highly non-linear, so sometimes you know we make a small adjustment,



we are interpolating in the tables and the behavior is also highly non-linear. So what we can

conclude from this exercise is that these 2, we will accept these 2 to be reasonably close to each

other. We say that this is acceptable and we take the position of the shock to be 0.25 meters.
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So we will accept this guess and say that Mx=2.15 and we take My to be = 0.5540, Ls to be 0.25

meters. Now we need to determine the exit properties. So we say that Tx = Tx/T1* * T1*/T1*T1.

Now since I know Mx, I can calculate these quantities from the Fanno table and I get this to be

0.6235/0.5102*300, so this  gives me 367 kelvin for Tx. This is from the Fanno table.  I can

calculate Px in the same manner. The static pressure just before the shock is.

Once  again,  if  you  retrieve  these  quantities  from  the  Fanno  table,  you  get  this  to  be

0.3673/0.2747*100, which gives me 133.71 kilopascal. There is no change in T0. So we need not

worry about it, but there is a change in P0, so I need to calculate P0x in the same manner. P0x =

P0x/P01* * P01*/P01 * P01/P1*P1. So this value I can get from Fanno tables. This also I can get

from Fanno tables. This I can get from isentropic tables. This is known to me already.

So I can retrieve each 1 of these quantity from different tables and if I plug in the numbers, I get

this to be 1.919/2.896*19.95*100, which is =1322 kilopascal. So now, we have to calculate these

quantities across the shock wave and then from there we go to the end of the duct to calculate the

exit properties. Let us do that.
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Flow properties just downstream of the normal shock. So this we get from the normal shock

table Ty = Ty/Tx * Tx and from the normal shock table, we get this to be 1.813*367, which is

665 kelvin. Py can be written as Py/Px *Px and from the normal shock table, we get this to be

5.226*133.71, which gives me 699 kilopascal and P0y=P0y/P0x *P0x, so 0.6511*1322 and that

is = 860.75 kilopascal. So we have gone from the inlet state.

We have calculated state x using Fanno table, we went across the shock wave, calculated state y

using normal shock tables, now we go up to the exit. This is a little bit easy to do because the exit

state itself is the sonic state. So we can directly get the values from the table. Let us go ahead and

do that.
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So I can write the exit T2=T2*=T2*/Ty * Ty. Ty is known. T2*/Ty I can get from Fanno table, so

this  gives  me  665/1.1305,  which  is  588  kelvin  is  the  exit  static  temperature.  Similarly,

P2=P2*=P2*/Py *  Py and this  is  699/1.9202,  which  gives  me  364 kilopascal  for  the  static

pressure and stagnation pressure can be calculated in the same way P02=P02* and that is =

P02*/P0y * P0y and this if you substitute the numbers, you get this to be 689 kilopascal.

So I have calculated the exit properties also. So you can see how much the values change. The

inlet  stagnation pressure as you can see has changed so much. It has eventually become 689

kilopascal from quite a high value, so there is loss of stagnation pressure due to friction and also

due to the normal shock. With that we come to the conclusion of the discussion on Fanno flows.

What we will do next is look at Quasi 1 dimensional flow.

So all the solutions that we have arrived at so far can be categorized as 1D flows. In 1D flow, the

underlying implicit assumption in 1D flow is that there is only 1 non-zero velocity component

present in the flow, which we took to be velocity along the flow direction or x-direction. We said

U was the only component that was present, which means that area term is not present in any of

the solutions that we did so far.

All the governing equations had other terms, but area was not present. Even in the case of Fanno

flow, we had hydraulic diameter, but not the area itself to be present. So area variation was not



considered so far in our calculations. What we are going to do next is look at compressible flow

through passages of varying cross sectional area. Now this kind of application or this kind of

situation arises in many different practical applications.

So we are not going from 1 dimensional flow to quasi 1 dimensional flow. I will explain in a

minute why we call this quasi 1 dimensional flow. So we will see that and this type of flow

occurs in compressible flow in varying area passages.
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So we are looking at passages where the cross sectional area changes along the direction of the

flow, then we want to account for the effects due to the change in area of cross section and this

happens in  many different  applications,  for  example  blade  passages  in  turbo machinery  and

propulsion nozzles, diffusers. So this is an extremely important class of flow that we are going to

look at and it has very far reaching implications and applications.

Both are very important in this particular class of flows. So let us look at a very simple scenario.

Let us say that the passage instead of being constant area.
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Let us say that we have a situation where the area varies along the direction of flow. So we are

going to look at flow comes in like this. Let us say this is state 1 just like before, flow leaves

here, let us say this is state 2 and as you can see, the passage area varies in some manner along

the cross section. Let us say that this is my center line. Now what effect does this changing area

have on the flow. That is the first thing that we will look at.

If you sketch a few streamlines in this situation, what do the streamlines look like. So if I sketch

a streamline along the axis, that is going to be. The streamline will look like this. It is just a

horizontal straight line that we can easily see. So I am going to draw an arrow like this. Now if I

draw a streamline, which is very close to the wall, remember we are talking about still calorically

perfect gas without viscosity.

So deceleration of the velocity due to the presence of the wall is not present in this case. So the

streamline next to the wall will actually follow the contour of the wall, right. So the streamline

next to the wall, if I sketch the streamline, the streamline will look like this. Now you know from

your undergraduate fluid mechanics that the velocity vector at  any point in the flow field is

always tangential to the streamline.

So if I draw a tangent to the streamline at say some point here, then you can see that the velocity

component is non-zero not only in the axial direction, but also in the vertical direction. So you



can see that tangent to this, will look something like this. A tangent at this point will look like

this.  So that means it is going to have a component like this and a component like this.  So

contrary  to  what  we  have  seen  so  far,  now  we  are  having  a  situation  where  2  velocity

components are non-zero.

So here, this velocity component is 0, but as I go towards the wall, the streamline begins to

deflect. The deflection increases until I am very close to the wall. So that means the y component

or  the  vertical  component  of  velocity  is  0  at  the  central  line  and  then  increases,  reaches  a

maximum near the wall. This is inviscid flow so it reaches a maximum near the wall. Now for

the kind of application, this means the 2 velocity components both x and y are non-zero.

If I say that this is my x coordinate direction and this is my y coordinate direction, both x and y

components of velocity are non-zero. But it so happens that in many of these applications that we

talked about and many of these applications, the actual physical situation is somewhat favourable

for us to make an assumption about the nature of flow. So one such thing is shown here.
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Here I have shown convergent divergent nozzle that is typically used in a rocket engine, as you

can see from here. So the flow accelerates as it goes through the nozzle and if you look at the x

component of velocity and compare that with the y component of velocity, let us say here or over



here as the flow accelerates wherever the y component of velocity is large, the x component of

velocity is even larger.

So  as  the  flow  accelerates,  the  x  component  of  velocity  increases  much  more  than  the  y

component of velocity. So in fact if you draw a streamline near the wall here, you will notice that

the y component of velocity is going to be high near the wall. However, the x component of

velocity is even larger in a typical rocket nozzle like this, the x component of velocity at the exit

is usually of the order of a few kilometers per second, that is like 2000 or 3000 meters/second.

So even in the y component of velocity is 100 meter/second that is still negligible compared to

the x component of velocity, which tells you that the effect of area change is to accelerate the

flow in the x direction much, much more than the acceleration in the y direction. So in most of

these applications,  we can actually ignore the y component of velocity, can be ignored when

compared to the x component.

This  is  an approximation  and it  turns  out  to  be a  very  good engineering  approximation  for

practical calculation purposes.
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So the assumption is u, which is the x component of velocity to be much, much larger than v,

which is the y component of velocity. So our governing equations will have only one component



of velocity, but however area will be allowed to change now. Because they are now accounting

for area change through changes in x velocity, so which is why we call this, it is neither a 1D

flow nor a 2D. it is not a 1D flow because we are allowing the cross sectional area to change.

So there are changes in the y direction. So it is not strictly a 1D flow. With this in mind, it is also

not a 2D. So it is in between 1D and 2D flow, which is why it is called a quasi 1 dimensional

flow. So this concept is extremely important because as we go along and as we move further and

further into the chapter, we have a tendency to forget this. Please remember that we are not

saying v is 0. We are only saying that u is much large compared to v, v is still non-zero.

That is quasi 1 dimensional assumption. So with this in mind, I will write down the governing

equations for quasi 1 dimensional flow in a varying area passage, let us see what that looks like.

So if I look at a varying area passage, just like what I did before, let us say that I look at a

passage like this. Let us call this as state 1. Let us call this exit state 2. If I take control volume,

which is like this. I sketch a control volume.

If this is my control volume, then I can apply mass balance to this and write the mass balance

equation as rho1a1u1=rho2a2u2. Notice that for the first time in our governing equations, the

area  explicitly  appears.  Now if  I  do  a  force  balance  on  this  control  volume,  force  balance

meaning, rate of change of momentum of the fluid as it goes through the control volume, should

be = force exerted on the control volume.

So if I apply this, then I have pressure forces which are acting on different parts of the control

volume, fluid comes in and goes out, so there is a change of momentum of the fluid as it comes

in and goes out.
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So I can write this force balance as P1+rho1u1 square *a1+integral 1 to 2 Pda. Let us say that we

take the x component of this force = P2+rho2u2 square * a2. Notice that the pressure force acts

normal to the surface and there is a component of that force which acts in the x direction. So we

are writing force balance in the x direction because this is a quasi 1 dimensional flow. We are not

worried about the y direction. This is only the force balance in the x direction.

Energy equation remains the same as before. There is no heat addition or heat removal, so energy

equation is h1+u1 square/2=h2+u2 square/2 and it is also a good engineering approximation to

assume that  the entropy that  the  flow is  isentropic  and the  entropy remains  constant,  which

means S2=S1. However, we also allow for the possibility that under some operating condition,

there may be a normal shock sitting somewhere, anywhere, maybe here, here, anywhere in the

passage.

So which means that the entropy remains constant up to the shock, increases across the shock

and  then  remains  constant  afterwards.  So  we  can  handle  this  kind  of  situation  within  the

framework of this theory, but for now we will put down S2=S1 with the underlying assumption

that we can handle situations like this. You know how to handle changes in properties across the

shock wave. So I can calculate changes in property up to here.



And then I can go across the shock wave, do the other things, that is possible. Now the first

important thing because we are talking about propulsion in this course, thrust of course is the

most important quantity that we are interested in. So we are going to look at the force balance.

Rewrite the force balance in a slightly different way to get an insight on thrust. I can rewrite the

force balance equation like this.

(Refer Slide Time: 37:11)

So I can rewrite the force balance equation as integral 1 to 2 Pdax=P2+rho2u2 square * a2-

P1rho1u1 square * a1. Now this suggests that I define new quantity called impulse or impulse

function, i is defined as P+rho * u square * a, where a is the cross sectional area at that point. So

I can define this quantity P+rho u square * a, which then allows me to rewrite this equation as

integral 1 to 2 P da x component=i2-i1. 

Now if you think about a propulsion application, let us say this is a rocket engine or an air craft

engine and this is a kind of scenario that we are looking at. Then the net change in the impulse

function between the outlet and the inlet is nothing but the thrust that is produced by the engine.

So I can identify the thrust that is produced by the engine as being the difference between the

outlet and the inlet, but this equation tells me that I can also evaluate thrust by integrating the

forces that act on the surface.



So I  look at  the  pressure  forces  that  act  on  the  metal  surface  and if  I  take  the  appropriate

component and integrate them, that also gives me the net force that is exerted on the nozzle or on

the air frame. So the left hand side is also=thrust. So I now have a way in which I can determine

thrust, either I calculate the impulse function and do it this way or I calculate the net force on the

walls or metal surfaces and then calculate the thrust. It is easy to do this in most applications.

It is very difficult to do this in most applications. It is actually very instructive to take a closer

look and see where this term comes from and what this does. Notice that the impulse function

has a pressure term also P*a. There is a pressure force here, but this force is the pressure force

that acts on the inlet phase and the exit phase of the control volume. So that pressure force acts

on the fluid surface. It does not act on the wall or the solid surface.

Whereas the pressure force that appears on the left hand side of this equation is the pressure

force that is exerted on the walls. This is pressure force exerted on the walls. So if you mount the

engine on an air frame, this pressure force is what the engine would transfer to the airframe,

which will then be realized as thrust by the engine. Let us take a closer look, this concept is very

important although this quantity is very difficult to calculate in a practical sense.

It is very important to have an understanding of what this force is and where it comes from. We

now  turn  to  this  slide,  which  shows  this  for  a  simple  situation  first  and  then  complicated

situation. So on the left you see completely closed pressure vessel and you see the arrows on the

outside, which correspond to pressure force exerted by the ambient and you see the pressure

force on the inside, which correspond to the pressure force exerted by the high pressure gas,

which is inside.

Now, we can see that in this case everything is in equilibrium, so the vessel stays stationary, it

does not move. Same thing,  I open up this part  of the vessel and allow the flow to expand

through a nozzle. So I make an opening here attach a nozzle, which is what I have done here,

now we can see a pressure imbalance of forces. So you see the ambient pressure that vector

remains the same. So here we can see high pressure.



The length of the arrow is proportional to the magnitude of the pressure force and then as the

flow expands in the nozzle, which we will show as we go along, the pressure decreases and we

can see that the length of this arrows also decreases as we go along the nozzle. We can see that

much more clearly here.  We can see the length of the arrow decreasing as we go along the

nozzle, but the length of the ambient pressure arrow remains the same.

So the net force, if we take a small element here or here, or here, anywhere, if we take a small

element of metal or wall, the net force exerted on this wall is actually due to the difference in

pressure across. So this – this pressure * the area is the net force that is acting on the metal wall.

This  is  an extremely  subtle  concept.  Notice that  I  can redraw this  picture or this  picture by

simply subtracting this arrow from this arrow and then removing everything here.

And then redrawing the picture. So if I measure all the pressure with respect to the local ambient,

I can subtract the ambient pressure from this that would be the net pressure or net thrust. So this

is a notion that we will use when we derive the equation, that if I measure the pressure with

respect to the local ambient that will directly give you the net thrust force that is exerted on the

metal surface. So you can actually see it is quite interesting to see from this.

Remember  if  this  were  to  be  used  in  a  rocket,  in  which  direction  will  the  thrust  force  be

developed. Thrust force should be developed upwards, but you notice that the convergent portion

of  the  nozzle  actually  develops  net  thrust  force  in  the  opposite  direction,  so the  convergent

portion of the nozzle actually produces drag. It is only the divergent portion of the nozzle that

produces thrust because after I subtract this ambient pressure from these arrows.

Now I have a substantial component in the flow direction, which produces thrust.
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Notice that thrust is the force along the negative x direction assuming flow to be in the positive x

direction. So if the flow is in the positive x direction, thrust acts in the positive direction. When I

do i2-i1 and I get a positive value that to me tells that I am producing thrust. If I get a negative

value to me tells that I am actually producing drag. So you can see that the unbalanced pressure

forces produce the thrust as a result of which the vehicle moves or the airframe moves.

I  can calculate  the force either  by integrating  the pressure force on the surfaces.  I  take this

integral evaluate it along each one of the surface. So I can evaluate the integral along each one of

the surface, calculate the net force, if it is possible or I can calculate this as i2-i1. How difficult is

this to do for aircraft engine? We are talking about aircraft engines in this course. How difficult is

this to do for an aircraft engine?
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Can you imagine calculating the pressure force exerted on the walls for an air craft engine that

looks like this. It is very difficult to do, but if you have to do it, it is a very instructive thing to do

because you now realize.  Here is  a very interesting slide from the jet  engine book by Rolls

Royce. You see here a very interesting fact that emerges from this. Notice that positive thrust is

produced by components like compressor, the diffuser and the turbine.

So that produces positive thrust. Whereas components like the turbine and the propulsion nozzle

actually  produce the negative thrust or drag,  which is  a very unsettling thing to think about

because the nozzle is called a propulsion nozzle. It is supposed to produce thrust not drag. So

you have to bear that in mind that this is a very subtle concept and you can see that the exhaust

cone here also produces positive thrust.

So you get a net positive force in this direction as you can see from here from all these arrows

from these components and you get drag from these components on this side, but if you calculate

i2 here – i1 here, you will get the thrust to be correct in the negative x direction and a positive

number, which is = as you can see from here 11,158 pounds. You can calculate it  using the

pressure method or you can also calculate it using the impulse function method.

Both will  give the same answer, but the pressure method gives us more insights into which

components of the engine are producing thrust and which components are producing drag. Just



because these components  are producing drag,  for example just  because these are producing

drag, we cannot do away with them. The turbine has to be present to drag the compressor and the

nozzle has to be present to increase the momentum of the fluid, to convert the enthalpy of the

fluid into velocity.

That is a different perspective, this is a different perspective. So you must understand both. In the

actual course, we will use this formula extensively and exclusively, because it is impossible to

calculate this quantity in a practical situation, but you must understand that both will give you

the same answer. So this is how impulse function is related to thrust. So thrust = i2-i1, we will

expand this formula in the next class and continue.


