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Fin heat transfer- II

So, we will continue with our discussion on fin heat transfer. In the last class, we derived

the fin equation and we also saw solutions, analytical solution to the one-dimensional fin

for constant area, constant cross section area. I told you, that if you have variable cross

section  area,  it  will  lead  to  Bezel  function  and  another  type  of  functions,  like

trigonometric  functions,  hyperbolic  function  and so on,  with lot  more  involved.  But

nowadays, all these fin problems can also be very, can also be easily solved using Mat

lab and other things, I mean (( )) and so on.

But we are looking at analytical solution basically, because they are elegant and you can

get a quick back of the envelope calculations, how many number of fins are required and

all these. So, for fine tuning the results, we can use sophisticated software.

(Refer Slide Time: 01:03)

to 1:24. If you look at the right, we derived this temperature distribution in the last class.



So, correct. So, this expansion for cos hm, cos hm L minus x is the numerator and cos

hm L is the denominator.

(Refer Slide Time: 02:08)

So, when the fin is very long, if we have a, if we have a case of a fin where the length is

very large, then we will have, for the case of a very long fin, m L is much greater than 1.

Therefore…

Student: to 03:28

Is it? So, we will call this as a long fin. So, what we are doing is, to derive the expression

for the temperature distribution, as well as for the fin efficiency for the long fin, you just

first consider it to be an adiabatic fin tip and start working on it. Now, it is ok for me, so I

will…



(Refer Slide Time: 04:01)

This is 1; 2. What happens when e ML is much, much greater than 1? What happens to e

to the power of minus 2ML?

(Refer Slide Time: 04:21)

to 4:42 When ML, theta b by, theta by theta b e to the power of minus mx, it turns out to

be  a  very  simple  case  of  exponential  distribution.  Even  otherwise,  the  temperature

distribution is exponential, but it has become very simple.

Now, but we will have to answer the question, how long is long? We will try to answer

that  question.  Now, we  can  work  out  the…,  agree?  e  to  the  power  of  minus  mx,



derivative is, m, minus m, e to the power of minus mx, substitute x equal to 0. So, this

minus and minus will get cancelled, so we will get plus… k is units of watts per meter

per Kelvin; A is meter square and m is 1 per meter. So, there is a 1 per meter in k, there is

1 per meter in m, there is a meter square in A. So, the meter square meter square get

cancelled, the whole expression is in watts, correct.

(Refer Slide Time: 06:29)

So, what is a Q max? The maximum heat transfer possible, the maximum heat transfer,

which  is  possible  from  the  fin  occurs,  happens  in  the  whole  fin,  is  at  the  base

temperature. That is, t equal to t b throughout or theta equal to theta b throughout. Please

remember, theta is a temperature excess t minus t infinity. So, this will this will be h PL

to 7:40



(Refer Slide Time: 07:14)

Therefore… What is this? 1 by, 1 by m square to 8:08

As expected, deficiency of the fin will decrease as the length of the fin increases because

theta is 1 by mL. We should not use long fins, long fin itself is an approximation, but we

should  use  less  number  of  short  fins  instead  of  small  number  of  long  fins  because

towards  the  end,  the  temperature  difference  will  be,  the  temperature  difference  with

respect to the ambient will become lower and lower consequent upon the temperature

distribution being like this.

(Refer Slide Time: 08:45)



So, if we divide the fin into 3 parts, if we take a 10 centimeter long fin, divide into 3

parts: 3.3, 3.3, 3.3 centimeters, the first 3.3 centimeters will give terrific heat transfer rate

because theta is very high; the second 3.3 will give ok; the last 3.3 will give very poor

heat transfer rate. Keep on increasing the fin length, the last portions of the fin are totally

useless because they will be at only a few degree above the ambient temperature,  no

point. Instead, you can cut them down and crowd the base with more fins; oh, I forgot,

that may locally affect the heat transfer coefficient, but you can put some fan, something

increases velocity and do something. That is what I showed you, the heat sink, with a fan

very closely packed fins.

(Refer Slide Time: 09:49)

Now, how long is long, that question has to be answered 

Student: to 10:25

Yeah, can you tell me, when mL equal to 5? 0.9999, right? The 1st step in technology is

to calculate the m of the fin multiplied by L, get m L. The mL is 5 or above, straightaway

use the long fin, release, there is no need to worry whether it will be adiabatic fin tip. It is

so long, that the tip of the fin will be just few degrees above, above the ambient and the

tip, tip area is also less; the area is less, the theta is also less, why would it lose so much

of heat.



Let  us  solve  a  problem,  problem  number  44;  problem  number  44.  A long  circular

aluminum rod, problem number 44, a long circular aluminum rod, k equal to 205 watt

per meter per Kelvin; a long circular aluminum rod k equal to 205 watt per meter per

Kelvin is attached at one end, is attached at one end to a heated wall.  Long circular

aluminum rod k equal to 205 watt per meter per Kelvin is attached at one end to a heated

wall, full stop. The fin transfers heat by convection; the fin transfers heat by convection

to a fluid, full stop. The fin transfers heat by convection to a fluid, to a cold fluid, full

stop. a, if the diameter of the rod is tripled; a, if the diameter of the rod is tripled, how

much will the heat transfer rate change. If the diameter of the rod is tripled, how much

will the heat transfer rate change, question mark. b, if a copper rod is used, if a copper

rod, within brackets, k equal to 390, 390 watt per meter per Kelvin, if a copper rod,

bracket  k  equal  to  390 watt  per  meter  per  Kelvin,  close  bracket,  is  used  instead  of

aluminum; if a copper rod is used in the place of aluminum, then how much will the heat

transfer rate change, then how much will the heat transfer rate change?

This is a simple problem, which gives you a practical aspect of what is an effect of the

change in the geometry on the heat transfer performance of a fin, part a. Part b, what is a

change in the material used in fins? I have already told you, a long, you have to watch,

you have to look out for the buzz words, a long copper rod, a long aluminum rod, means

it is a long fin and it is attached to the base, you do not have to write the governing

equation  for, governing energy equation for  conduction and cylindrical  coordinate  to

solve and all that, simple; simple problem.

At  this  point  I  would  like  to,  I  would  like  to  caution  you when we solve  the  one-

dimensional  problems.  If  you,  I  do  not  know  how  I  expected  this  question  from

somebody, when we solve this fin equation, we already spent 1, 1 full hour, full hour

trying to take a control volume, identifying what is the energy term inside this thing,

moving velocity and all that and got the energy equation. And then, we started looking at

slab without conduction, without heat generation, with heat generation and we applied

boundary  condition  and  solved  the  problems.  Why  would  we  have  to  derive  the

governing equation separately for a fin, why cannot we use governing equation, which

derives the generic governing equation, nobody asks this question.

Yeah, there, the, the problem is, what we are doing is you can still solve the fin equation

using the concept of general, using the general energy equation, but you have to say, that



t is a function of x and y and then apply the boundary condition, apply the boundary

condition separately in each of the wall. But here, we took minus k dt by dx is entering,

minus  k  dt  by  is  leaving  and  then,  in  other  direction  we  are  just  lumping  it  by  a

convective heat transfer process directly, we are supplying the rate. Therefore, by energy

balance, which used to come as boundary condition, at the boundary convection is equal

to conduction that is now integrated because we are lumping.

If on the other hand, if you want to use t, if  want to solve the fin problem as t is a

function of x and y, then go ahead and use the original governing equation,  are you

getting the point?  So, the general  governing equation cannot,  can,  cannot be used to

solve the one-dimensional fin equation. To derive the one-dimensional fin equation you

have  to  do  it  separately  because  we  are  lumping  the  heat  transfer  across  the  wide

direction,  because  we  are  saying,  that  the  thickness  is  so  small,  that  there  is  no

temperature distribution in this. If there is no temperature distribution in this, but there is

a convection, which is taking place, how to factor in this, h p d, h p d x into theta; we, we

put it into the equation, is it ok?

(Refer Slide Time: 16:58)

Student: to 17:03; 17:04 to 17:16; 17:22 to 17:50

So, correct, in the 1st case, we are changing only the m Q1 is k. There is a, there is a

mnemonic here; Q is root of hPAK theta b, so you can remember like that. Q is equal to

root of hPAK theta b, I would, ok.



(Refer Slide Time: 18:12)

 

to 18:24; 18:26 to 19:09; Now, Q2… Therefore… correct. So, the diameter is doubled,

oh,  tripled,  tripled  ((  )),  5  point,  very  impressive.  But  suppose,  we are  trying  to  do

something like this in a satellite, which is placed in the PSLV, you want to do some heat

sink design and all that, (( )) what happened, is it not clear? The heat transfer rate is

increased by 5 times, very good, but the weight has increased by 9 times. (( )) 100s of

fins, it  is not commensurate with this. So, just because if hard, very good, the things

have, the fins have become thicker and become heavy. So, there is a penalty associated

every time you try to do something, that there is some other penalty. Now, part b, so the

weight has increased 9 times because the diameter is tripled. So it goes, diameter square,

weight into 3 into 3, 9 times.

Student: (( ))

You want Q to be constant; what I am saying is, suppose you want to increase the Q

itself; what I am, what I am saying is, if you want to Q, increase the Q itself, I am saying

that this just because you tripled this 3, this 5.2 times is not coming for free, that is a

point I want to emphasize.



(Refer Slide Time: 21:31)

 b is… to 21:56. All other things are the same. How much is it? 1 point… Again, what is

the density of copper? 8099 kilogram per meter cube. What is the density of aluminum?

2000 (( )).

So, if you replace aluminum by copper, there are several dangers, weight is increased.

So, copper is very expensive. Now, you can see, this sort of exercise gives you an idea of

the  basic  heat  transfer  processes,  how  each  of  these  parameters  influences  the  heat

transfer rate.

So, we, this gives you a good idea of the role of various parameters. I can also use this, I

can also conduct some experiments, where I have long fin, I measure the temperature at

2 places, then I know the theta, theta by theta b e to the power of minus m x.

Now, I can solve it as an inverse problem and get the value of m, from the value of m I

can get  the value of thermal  conductivity. So,  you can do some additional,  I  do not

normally do a problem like this, I do not have time now, that is, you have a fin, you have

a fin setup and measure some temperatures,  then you keep on guessing the value of

thermal conductivity, it will give you theta minus, it will give a theta versus x like this

for various values of k. There will be only 1 value of k, which gives a curve, which is

closest to the experiment and that curve should be the best representation of the thermal

conductivity. So, that is a basically, what is called an inverse problem.



(Refer Slide Time: 23:43)

Now, we will go to… to 24:06. We have to look at the energy equation in cylindrical and

spherical coordinates, I do not have time to derive that, but it will, they, they can be

derived in a manner analogous to how, how it was derived for the Cartesian coordinate.

to 24:50. So, if you have something like this, this sort of geometry occurs basically in

double pipe heat exchanges, that is, concentric tube heat exchanges, nuclear fuel rods,

they are mostly like this. So, the temperature could be a function of the radius r, the

temperature  can  change  along  the  axial  length,  axial  distance  z,  then  there  is  this

coordinate. So, this we call theta, this angle. So, t of r, it is called r theta z coordinate,

theta r z, mostly, unless you have a spherical, a circumferentially varying heat flux, theta

will not be a function of or t will not be a function of this angle theta unless you have

special heat flux, sinusoidal varign heat flux or some non-uniform heat flux. Generally, it

will be uniformed along the azimuth, but temperature will vary, usually across the radius

it will vary and often times it will vary with z also.



(Refer Slide Time: 26:07)

So, the governing equation for this will be rho Cp. to 26:42. This is for, uniform thermal,

uniform thermal conductivity K. So, please note the essential differences between this

equation and Cartesian coordinate equation; have you written this down? The essential

differences are the left hand side is same as the right hand side, you got 1 by r dou by

dou r of r dt by dr, we used to get d square t by dx square there.

(Refer Slide Time: 27:24)

But why is it 1 by r is coming is basically, if you take a section r, if you section, if you

take a section r plus dr, there we put minus small q at x is equal to minus small q at x



plus dx, here you cannot put that, it will (( )), you have to put minus capital Qr equal to

because capital Qr is small q r into 2 pi r d r 2 pi 2 pi r plus d r. So, that is why the dou by

dou r of r dt by dr is coming. The area continuously changes, it is not a constant, heat

flux across the radius constant. There may be constant heat transfer rate, but heat flux is

not.  Then, theta  is  dimensionless  there;  therefore d square,  d square theta by d theta

square has to be multiplied by 1 by r square because it is not dimensionally consistent;

dimensionally consistent, then d square t by d z square.

(Refer Slide Time: 28:21)

Now, for the spherical coordinates, we saw this spherical coordinates in our discussion

on radiation. So, there is r.



(Refer Slide Time: 28:55)

So instead of 1 by r, what do you expect for spherical coordinate? 1 by r square plus 1 by

r square sin theta to 29:41. So, I have asked the derivation of this equation as a question

to examination 8, 10 years back, do not worry, nowadays I do not do, this thing can we

derived, but it is very painful, takes a long time, just a conduction course, we can do it

now.

Please keep this, suppose in the exam I ask questions on simplified forms of this, you

start from this equation and if it is unsteady, remove the left hand side, no qv, remove the

qv term on the right hand side. But if it is only one-dimensional, remove the functional

variation with respect to, here in this case theta and z and proceed.

Let us get some analytical solutions for simple cases.



(Refer Slide Time: 30:49)

So, let us consider a double pipe heat exchanger, we are not worried about temperature as

function of z or theta, temperature is a function of r only. So, I have a solid material here,

so it is an annulus; it is an annulus. The temperature here is T1 at r1, this is r 2, it is T2.

This, why it is T1 and T2 is because basically, because some fluids may be changed in

face. The correct description would be to give a heat transfer h1 and t infinity 1 and h2

and t infinity 2, but if I give you that it becomes very messy, but we will incorporate that

into our analysis by using our resistance concept. But first, we will solve the simplified

form of the governing equation; is the situation clear? So, it is 1 d steady q e equal to 0, t

is a function of r only.

There is a pipe, which is like this, I am taking the sectional view, it is the sectional view

of the pipe. So, that is, this is a thickness of the pipe material or tube material.



(Refer Slide Time: 32:07)

Now, please reduce the governing equation will be, the governing equation is from this

dou by dou r of r dt by dr equal to 0, that is it. I can make it d also, no need for dou, is

everybody through with this? The left side unsteady term 0, right side, right side d square

theta by d theta square 0 d square t by d s square 0 q v equal to 0 because everything else

is 0, dou by dou r can be changed, d into d by dr. Now, integrating once… to 33:23

(Refer Slide Time: 33:27)

Now, integrating again, t equal to A log r plus b, substitute the 2 boundary conditions at r

equal to r 1, t  equal to T1; at  r equal to r 2, T equal to T 2, that is specified to us.



Subtracting 6 from 5, the B will get cancelled, you can straight away evaluate A. Is it ok?

log of r1 minus log of r2 is log of r1 by r2.

(Refer Slide Time: 35:07)

Student: to 35:47

Is it correct, Anirban, is it correct?

Student: to 37:04

(Refer Slide Time: 36:12)



Therefore, yeah it is easy to see, but r is equal to r 1, what is lon of r by r 1? (( )) where?

(( )), ok. That r is equal to r1, lon of 1 is 0, so T equal to T1, r is equal to r2, this will

become r2 by r1, this will be minus 1, so t2 minus t1 plus t2, so the equation is correct.

So, we check it for asymptotic correctness. So, we got the temperature distribution. We

are interested in heat transfer rate.

(Refer Slide Time: 38:04)

Student: to 38:12

This has to be correct, that is how, that is how we wrote the equation d by dr of r dt by dr

is equal to 0, so this is the case. What is dt by dr? A by r; A by r dt by dr at r1 is A by r1;

A by r1. What is A? T1 minus T2, that is it, by r1. I can take care of the minus sign by

writing the denominator lon of r2 by r1.

Student: to 39:43



(Refer Slide Time: 39:35)

When  I  say  Q  equal  to  delta  t  by  something,  what  is  that  delta  t  by  something?

Resistance; that is the resistance. What is the only, only resistance, which is occurring in

this  problem? This is a conduction resistance because of finite conduction across the

thickness of the tube; that resistance will vanish in the event of thermal conductivity of

the material tending to infinity. 

So, this is, therefore, the conduction resistance involves a log of ratio of the radii. So, the

natural log occurs naturally in the case of conduction in cylindrical coordinates. This did

not come in the case of conduction in Cartesian coordinates; it is basically the, the only

source. The only culprit for this is the changing area 2 pi r dr, that led to A by r, which

led to A lon r, which may also lead to problems. When you are solving for conduction

within a solid, then what will happen to the temperature at the center? So, you have to,

you have to take care of the boundary condition at the center.

You may say, dt by dr 0 at the center if it is a solid cylinder; dt by dr does not mean it is

insulated, sometime what we do is at the center, we apply what is called the finiteness of

temperature condition, the temperature has to be finite. If there, if time permits, we will

solve the problems where we take a solid cylinder.

Now, this is pretty straight forward, now we go to the actual case, what is actual case? h1

t infinity 1 r 1 r 2 h 2 t infinity 2. So, I do not know the boundary, I do not know the

temperatures T 1 and T 2 at r 1 and r 2 respectively, rather I know the temperature of the



fluids, which are flowing in the inside and the outside and the heat transfer coefficient.

This is possible in a double pipe heat exchanger where cold fluid is flowing inside and

hot fluid is  flowing outside,  you are trying to accomplish heat transfer putting the 2

fluids. Why cannot you mix the fluids? We do not want to do that, one could be oil, one

could, one could be sodium, it happens, sodium to water heat exchanger or something.

(Refer Slide Time: 42:36)

Now, what is a heat transfer rate? What is the L I am keeping, talking some L? L is the

length in the direction perpendicular to the plane of the board. So, yes, ok.

Student: to 43:39

So, now, we use the dividendo-componendo rule and say, it is a same Q, which is coming

outside from inside outside, it is the same Q. Therefore…

 Student: to 44:32

Using the dividendo-componendo rule,  we can add the numerators and denominators

separately; still the resulting expression will be equal to the Q, which is occurring across

the Q. Therefore... to 45:10



(Refer Slide Time: 44:44)

So, the 3 terms in the denominator are, the 1st term represents the convective resistance

on the inside, the 2nd term represents the conduction resistance across the thickness of

the tube and the 3rd term represents the convection resistance on the outside. The 1st and

3rd terms are also called  as the,  yeah,  the 1st  and 3rd terms are also called  surface

resistances. So, using the concept of electrical analogy… 

(Refer Slide Time:45:55)



So, we can say, so your potential difference T infinity 1 to T infinity 2…. to 46:33. In the

event of h 1 equal to h 2 equal to infinity, it will reduce the simple expression, which we

derived some few minutes ago.

Now, we can have a composite wall, where apart from the inside and outside surface

resistances we can pack this with insulation. Therefore, you can have a, you can have

terms like lon of r 2 by r 1 2 pi k A into l plus lon of r 3 by r 2 into 2 pi k B into l, that is

you have got. Suppose, you are looking at an insulation design, you are using 2, 3 types

of insulation, there is a metallic wall, then you put glass, then you put something else,

what is the idea behind this? In all these industry establishments, when you are carrying

hot fluid, the outside temperature cannot exceed 65 degrees because that is a temperature

at which people will get hurt. So, the outside temperature should not be more than 65, all

these open end because somebody will go and touch it. So, you will have to keep on

insulating and also, you do not want, by the time it leaves this boiler room and goes to

the turbine room, you do not want it to get cool, you want to, you want to expect the full

enthalpy of the steam.

So, when you come to the insulation design all these things will come. There is also a

point of critical; you can also work out what is called the critical insulation thickness,

which you, may, must have done in your undergraduate heat transfer course. So, we can

use the dividendo-componendo rule and I have got the results like this in an exactly

analogous equation fashion. You can derive basic relation analytical solutions for one-

dimensional heat transfer across its spherical shell.

Why spherical shell is so important? Because you want to carry cryogenic fluids, you

want to carry nuclear, nuclear fuel waste and all that, then if you want to put several

layers, there can be k a, k b, k c. So, if you are not able to solve, we can solve problems

in the exam also, the class. So, there are lots of opportunities for me to ask question on

conduction in the exam. Now, we will stop here.


