
Conduction and Radiation

Prof. C. Balaji

Department of Mechanical Engineering

Indian Institute of Technology, Madras

Lecture No. # 35

Conduction – 1D, heat generation

 In the last class we looked at the simple problem of conduction in a one dimensional plane

wall without heat generation. But, we saw an interesting boundary conditions, we saw the

case  of  interesting  boundary  conditions  where  you  have  got  two  fluids  at  different

temperatures T infinity  one and T infinity  two on the two sides,  which give rise  to  two

different convective heat transfer coefficient h one and h two.

And, though the temperature profile was still linear, the algebra was quite involved. It took

quite some time for us to figure out the solution. Under the special case of h one and h two

turning to infinity, then you get the simple case; where q is equal to k into delta t by l. And,

the temperature distribution is simply that linear temperature distribution which T 1 and T 2

specified at the ends.

Towards the end of yesterday’s class, we looked at the problem of the same plane wall with a

variable thermal conductivity. The variable thermal conductivity can have two variants. The k

can be a function of x and the k can be a function of T. When k is a function of x, we figured

out a generic formulation to get the solution. And, we wrote it in terms of k of x d x, right, in

yesterday’s class. So, if I tell you, if somebody tells you what the k of x is, that is, if it is

written as a plus p x and a and b are specified to you either from experiments or from theory

or from theory, you will be in a position to calculate the temperature distribution and the heat

transfer rate for the case of variable thermal conductivity.

Right. So, please remember, we are able to work out analytical solutions because it is simple

enough and it is only one dimensional and so on. The moment it becomes two dimensional

unsteady or three dimensional unsteady and so on, then you have to solve it numerically.

Either you have to write your own code or you can take resource to software. 



So, now we look at the case of variable thermal conductivity where k is a function of T. So,

temperature is what you are seeking. That is the solution to the problem. That is a variable,

dependent  variable  in  the  problem  is  temperature  and  the  independent  variable  is  x.

Unfortunately the k which is the property, thermal conductivity itself depends on T.

Many times k is a function of temperature. Therefore, variable thermal conductivity is not

just an academic exercise. It is an important practical problem. So, we will look at a… not

such  a  simple,  not  a  very  elementary  case,  but  a  reasonable  linear  model  for  thermal

conductivity. So, it goes as k is equal to k naught into one plus alpha T. right. So, if you have

got, if you have done experiments, you got various values of k measured for various values of

temperature, you can do least square regression and get the values of alpha and k naught if

you have a model like this. right.

As you can see, as the temperature increases one plus alpha T increases. Therefore, k is; it is

an increasing model for thermal conductivity. Right. As temperature increases, k increases.

Right. Now, we will have to get the temperature distribution and the heat transfer rate for a

problem in which k exhibits this behavior. We will work out the generic solution and stop in

between, we will put we will put some values for all these alpha, k naught, the thickness of

the wall and all that. And, get a hang of the whole thing by solving a numerical example,

before going to the case of one dimensional plane wall with heat generation. So, I want to

take up two things today. One dimensional plane wall  variable thermal conductivity;  one

dimensional  plane  wall  constant  heat  generation  rate,  which  mimics  what  happens  in  a

nuclear fuel rod.
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Let us look at this equation. So, we have… sometimes I use q v, sometimes I use q triple

time. So, you can be consistent. So, whichever you prefer, you use. Basically, it is watts per

meter cube. Now, I told you it is steady. So, this term gets knocked off. I also told you q v

equal to zero. So, the two terms gets knocked off. Unfortunately, I cannot take k out of the

differential because k is a, k is the function of temperature. 

Therefore, B c’s boundary condition; we are understanding that T 1 is greater than T 2. Right.

It can also be the other way. So, please remember if T 1 equal to T 2, in this case there is no

heat transfer. It is not the case with radiation. They will continue to emit radiation because of

provost law, but net radiation will be zero. right. So, temperature difference is responsible for

heat transfer generally. Why I put generally because it is not applicable for radioactive heat

transfer. Ok.

So, now we will have to solve this. I can use the linear model for thermal conductivity k.

Before using the model, I can just start off with the generic formulation. So, d by d x. what is

k d t by d x? k minus of … correct. I would like to use q itself and q v for volumetric heat

generation rate. Suppose you do not like it, put the double prime so that, you are sure that it is

watts per meter square.

Let us keep it like this. Is it correct? a is a constant integral d x zero d l, is that okay? People

who came late, we are doing this problem. That is, the thermal conductivity is varying with



temperature. That is the problem we have solved. I am proceeding from six. So, what can I

say about this?

(Refer Slide Time: 08:06)

 a is equal to… q is equal to minus a. I just changed T 1 to T 2. No, it is straight forward. If I

know the functional form of k of T, it is possible to insert it into the integral, integrate this

and substitute the limits T 2 and T 1 and we are home. But, that is only one part of the story.

If somebody says what is the temperature in between at the middle of the,  in the, at  the

middle of the slab or twenty five percent from the left side, seventy five percent from the

right side or left side, we are we are not done yet. But, if somebody wants heat transfer rate,

we have a, we have an answer to that. 

Now, can we say that, this also equal to some mean thermal conductivity k m multiplied by

the temperature difference divided by the width of the slab. I am proposing because it may be

very  useful  from an engineering  point  of  view to define  something like  a  mean thermal

conductivity, right. Where… Did you guys do this in the basic heat transfer course? three one

seven you have not done. people from outside you have done ok

So, now we get an expression for k m. What is k m? The first step in solving such a problem

would be to get the expression for k of T. Put it into the integral, evaluate the mean thermal

conductivity. And, mean thermal conductivity into delta T divided by L will directly give the

q.  First  part  of  the  problem  is  over.  The  second  part  involves  getting  the  temperature



distribution. It is slightly more involved. Is this clear now? Now, let us assign some value.

Otherwise, it is getting very dry. 

So, we will assign some values and try to solve this problem. Problem number Forty. New

notebook Vikram? Forty two. Problem number forty two. Good. Problem number forty two.

Consider  the  one  dimensional;  consider  the  one  dimensional  slab  given  in  the  figure.

Consider the one dimensional slab given in the figure. 
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So, k is 15 into 1 plus 6 into ten to the power of minus four T. Consider the one dimensional

slab given in the figure. The thermal conductivity of the slab material varies as k equals 15

into 1 plus 6, then the minus four into T. Consider the one dimensional plane wall given in

the figure. The thermal conductivity of the slab material varies as k equal to 15 into 1 plus

alpha into T, where alpha is 6 into ten to the minus four or 10 to the power of minus four.

The slab thickness L is 50 millimeter, the slab thickness L equal to 50 millimeters. The left

side temperature T 1 is 600 kelvin; the right side temperature T 2 is 300 kelvin. So, left side

temperature is 600 kelvin; right side temperature is 300 kelvin, q v equal to zero and steady

state exists in the slab. q v equal to zero and steady state exists in the slab. q v is equal to zero

and steady state exists in the slab. For these conditions for these conditions, determine the

heat flux across the wall. For these conditions, determine the heat flux heat flux across the

wall and the temperature at the mid plane and determine the heat flux across the wall and the



temperature at the mid plane and the temperature at the mid plane ok. We will we will start

solving the first part. 
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So, first get the mean thermal conductivity. Correct. Yes. Now, tell me the value of k m. 

(Refer Slide Time: 15:23)

So, k m; what is it Deepak? 19.05. 19.5. 19.5. Yeah. 19.05. 19.05 what? Watt per meters per

kelvin. Right. Now, we can substitute in the expression q. The heat flux is a product of mean



thermal conductivity into delta T by L. … quite something, some kilowatts, 114.3 kilowatt,

kilowatt  per  meter  square.  Correct.  114…  So,  it  is  a  reasonable  thermal  conductivity

corresponding to stainless steel, terrific temperature difference of 300 kelvin. So, we expect a

reasonable heat flux of 114 kilo watt per meter square. All right. But, this is not the full story. 

The second part is more involved. What is the temperature at the mid plane? That is, at x

equal  to  2.5  centimeter  or  x  equal  to  0.025 meter. So,  that  is  going to  be  a  little  more

involved. Let us see how it. So, this is okay, up to this. Rohit is it clear? kaustav.
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Now, the second part of the story is difficult. … So, we just now evaluated a is a constant,

heat flux is a constant; one dimensional plane wall, no heat generation steady state, whatever

is coming from the left side has to go on to the right side. Where else can it go?

So, therefore… what is the a x we want to do? x equal to, x equal to 0.025 mid plane. Yeah.

Just get me the right side. Shall, we take this fellow also here? What do you say? Yes. Tell me

what is this? ketan right side? Watch out kilo watt. That is all, everything taken care of minus

190.5. Very good. If we do not get the final answer, we will catch Vikram. 190.5. Ok. 
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Now, left side. What about the left side? What is T 1? … What is happening now to the

temperature distribution? You have to solve a quadratic. See, you have to a very simple linear

temperature distribution. Now, linear temperature distribution, constant thermal conductivity;

linear  thermal  conductivity,  quadratic  temperature;  quadratic  thermal  conductivity,  cubic

temperature; so, it will keep on increasing, difficulty level will escalate. Now, I hope to get a

reasonable temperature. I do not know. So, let us see.

So, this is 3 into ten to the power of minus four T square plus T minus 600 minus 3 into ten to

the power of minus four into 600 square plus 190.5 equal to zero. Divide throughout by 3 into

ten to the power of minus four and make it into a decent quadratic equation. What do you

get? Four… Very good. 
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Now, let us write the quadratic. Minus… what is the quadratic? There is a provision in the

calculator is it? But, what is it? What is the c term? … On solving, T mid is 455.3 kelvin.

What is the big deal man? The lay man who has no knowledge of heat transfer will try to

guess that it will be 600 by 300 by 2. But, it is off by 5 kelvin. You may say what is there in 5

kelvin.  But,  suppose  the  k  and  the  variation  of  k  is  much  more  severe  and  the  two

temperature differences are too much, then the lay man approach will not work. You cannot

simply  take  the  arithmetic  mean  temperature  difference  and  say  that  because  there  is  a

Physics associated with this problem, you have got, you should know the Physics in order to

get this. Are you getting the point?

Therefore, this is 600, this is 300. Ok. 450, 600, 300. What did we get at the center now?

Slightly more than this. So, a linear model for thermal conductivity gives rise to the yellow

line. A linear model can also give rise to the orange line. The yellow line is for alpha greater

than  zero;  this  is  for  alpha  less  than  zero.  Thermal  conductivity  can  also  decrease  the

temperature right. Is this fundamental is clear? The beauty is the linear temperature profile is

disturbed. Now, we have a quadratic or a parabolic temperature profile. This is consistent

with the linear model for of a thermal conductivity. Right. Alpha equal to zero, it gives the

linear model. Fine.

We got it numerically; we can also explain it intuitively. Watch here, since the temperature is

the difference is the same, since the temperature difference is the same for a given heat flux



for the linear temperature profile; there is a temperature gradient here. To transfer the same

amount of heat at a higher temperature, if alpha is greater than zero the thermal conductivity

is more. So, q is equal to k d t by d x because q is the same and k is more; the d t by d x must

be lesser, it must be gentle for the case where alpha is greater than zero. By the same token,

for the same q if alpha is negative, then the k corresponding to the constant k model has to be

lower. therefore, the d t by d x has to be correspondingly higher to make up for the constant

heat .

Suppose I had told you like this, you may or may not believe me. That is why I took a

detailed this thing, where we numerically solved and proved that for alpha greater than zero,

the mid plane temperature will be always higher than what is predicted by the arithmetic

mean temperature difference. right. So, once linear, we can do we can have a quadratic fit for

thermal conductivity and all this. So, now you know the way of handling this. Right. And

often times, for large variations in temperature this constant thermal conductivity model is no

good. The temperature…, if the temperature difference is small it is alright to use this. Ok.

Now, let us take the one dimension plane wall with heat generation. The heat generation can

take place because of a nuclear fission or it can take place because of the chemical reaction

and so on. 
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So, consider a plane wall like this. So, it is infinite in extent. Now, I have a material which

has a constant thermal conductivity k. Let us not complicate it. But now, I have a fellow who

is generating heat at the rate of q v watts per meter cube. But, to make matter simple, I am

taking it infinitely deep in the direction perpendicular to the plane of the board. Volume will

be L into 1. Ok.

Now, for convenience, I am starting x from here. Please look at the board. I am starting, 

origin is here. So, this is L, this is also L, the slab is of thickness 2 L. If I leave him like this 

what will happen? Without anything on the boundary? Both sides are insulated what will 

happen? It is continuously generating heat, temperature increase; no steady state. Therefore, I

am cooling it on both sides. I am bathing it with a fluid, the cold fluid which has a 

temperature of T infinity and which gives a heat transfer coefficient of h.

Suppose,  I  have  a  fan or  a  blower  or  a  pump which  will  pump the  liquid,  it  has  to  be

continuously removed. Otherwise, I am in trouble. So, I have h, not h one, h, T infinity on

both sides. So, is the situation clear? Now, I want to find out what is the total heat which is

transferred in the situation; number one. Number two, what will be the temperature at the

surface  at  the  interface  between  the  solid  between  the  solid  and  the  liquid.  And  most

importantly, what will be the maximum temperature anywhere inside the solid and whether

the maximum temperature anywhere in the solid respects or obeys the design limits. ok.
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So, the Sodium can… In a nuclear reactor, you have lot of fuel rod like this. Right. If we look

at  the  top  view,  one  of  this  top  view,  there  will  be…  what  is  called  hexagonal  fuel

subassembly? It is called haf… each of this hexagonal fuel assembly; there will be lot of

circular tubes. There will be sheet. Like that, you will have several hexagonal assemblies. Ok

 There will be small gaps in between these tubes and there will be gaps between these two

hexagonal subassemblies. So, that is called the inter wrapper distance. Then, there will be…

because packing density cannot be hundred percent, there will be some gap in between. So,

the Sodium will flow from bottom to top. I am talking about Sodium because Indian reactor

is Sodium. So, bottom to top the Sodium will flow, it will pick up the heat. Then, it will go to

a heat exchanger and then the secondary heat exchanger where another, secondary Sodium

will pick up the heat from the primary Sodium. It will get heated. Then at the third stage, this

Sodium will transfer the heat to the water. Water will become steam and then it becomes

regular cycle. Ok.

Now, this pumping of Sodium, this is the primary place where the fission heat is taken away

by the Sodium. So, this heat transfer process is accomplished by the Sodium pump. In the

event of a Tsunami or an earthquake or in  the event  of a station blackout,  this  pumping

system will fail. When this pumping system fails, the high values of h which we got with

force convection will suddenly go down.

Then what happens is,  this  core,  this  temperature will  dramatically  increase.  All  right.  If

immediately after there is a station blackout, there will be operators who will ensure that

control  rods  are  control  rods  are  lifted  and so  that  the  reactor  goes  through sub critical

conditions. But, it is not like this. If you switch off this light, it will go. But, nuclear reaction

is not like that. There is a half-life. It will continue to generate heat for the next twenty four to

forty eight hours. It may not be at critical conditions. Therefore, it at a reduced power, new

fission heat will continue to be generated.

Now in the absence of a pump, can natural convection sustain? Temperature will no doubt

increase. But it will not, it should not increase to a level at which it leads to what is called the

core meltdown temperature. When the core meltdown takes place, here they have all this …

this they will have all this, what is called the core catch up plate made of stainless steel all.

Once it is so hot it will just penetrate, just make a hole and go deep and then it will it will

invade the soil and get in. Once it goes in, then it will horizontally spread. It will enter all



your aquifers, this thing; it will enter the water, this thing, then with lethal radiation doses

everywhere.

So, this core meltdown is what everybody is afraid of. So, ultimately it is a… the nuclear

react… whatever happened in Japan, it is a heat transfer problem. It is a heat transfer. Your

inability to transfer heat leads to all these. So, so heat transfer can be very critical. Now, let us

do this. 
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 So, this is one dimension, T is a function of constant q v, then k is constant. Ok. Now… Ok.

So, rho C p steady state. Steady state, which term can be knocked off? Left side. So, we have

got… So, this will be the equation if the fuel rod is basically, infinitely deep in the other

direction. For one fuel rod, what is the temperature distribution inside the rod subject to the

convective boundary conditions outside? 
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So, we can integrate it twice. Integrating once… Correct. Is it correct? Now, you will be able,

you will be easily able to see why I took the x equal to zero at the center. At this, do you

expect  a  symmetric  temperature  distribution  about  the  center?  If  you  have  a  symmetric

temperature around the center, d t by d x at x equal to zero has to be zero. Therefore, which

term will get knocked off here? a is zero. Ok. At x equal to zero… So, T… q v x squared.

How will I get the b? How do I get the b? What boundary conditions? Convective boundary

condition. You can apply minus k d t by d x at x equal to zero, x equal to minus l or x is equal

to plus l will be equal to… ok.
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But, I have a simpler way of doing it. Whatever heat is generated by the fuel rod must be

taken away by the fluid. By energy balance, what is the heat which is generated by the fuel

rod? q v into one; 2 L is the thickness, one is this; watts per meter cube, meter meter square

watts. This will be equal to h into… h into 2 into 1 into… What is 2 into 1? One is a one

meter square; 2 is left side, right side. 

So,. So, can I get the… h is known, q v is known, can I get T l straight away? Yes. But fine.

But  instead  of  doing  mathematically,  I  am doing  physically.  If  you  apply  the  boundary

condition also you will get the same thing. That boundary condition is energy balance. Is not

it? right. 
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So, so what is this? T L will be equal to T infinity plus q v. Comparing six and eight… this is

fine. right. So, this is known to us. Plus b, right. Is it correct or I am making a mistake? Is it

okay?
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Therefore, T is equal to minus q v x square by 2 k plus T L plus q v L square by 2 k. What is

the unit of this? Watts per meter cube meter square. So, numerator is watts per meter, this is



watts per meter per kelvin. Therefore, the unit is Kelvin. So, this is something called the

reference temperature excess. the reference temperature difference for the problem.

This gives you the power of the heat generation to increase the temperature inside the wall.

Correct. This is called the temperature excess parameter. So, easily it can be seen that at x

equal to zero… at x equal to zero the temperature is maximum; at x equal to l this term

becomes zero. T is equal to T L. that already you know. What is T L? T L comes from the

energy balance. Let us solve an example.
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Problem  number  forty  three:  consider  a  one  dimensional  plane  wall  with  constant  q  v.

consider a one dimensional plane wall with constant q v. Consider a plane wall consider a

plane wall  with a constant q v. All  the pertinent details  are shown on the figure.  All  the

pertinent details are shown on the figure. All the pertinent details are shown on the figure.

Determine a. All details are shown on figure. Determine a) surface temperature and b) center

temperature.

This is the representative. This is not, these are not the actual values encountered in a nuclear

reactor. I did not choose to give you an example, but this will give you an idea.
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Now, you can get T L equal to T infinity plus q v L by h. right. That is what we got. How

much is this? 500, 500 kelvin. 300 plus 200? Deepak you have used 0.04. That is not correct.

0.04 is 2 L; L is 0.02 right. Now, T center equal to 500 plus… What is T center? 506. 67. So,

what does it what does it show? This…, this fuel rod or whatever is generating heat; you are

having a cooling medium which affords a heat transfer coefficient of fifty which is available

at  twenty  seven  degree  centigrade  at  three  hundred  kelvin  to  do  the  cooling.  So,  the

conduction is better.

That is why from this surface to the center, the difference is only 6.67 kelvin. But, there is a

mismatch between the heat generation and the capacity to absorb the heat by convection. That

is why from three hundred, the temperature rises to five hundred. So, a temperature difference

of two hundred degree centigrade is required at the surface in order to accomplish the heat

transfer. 

But, now, let us take a situation. Now, let us say this is force convection. The Fukushima

reactor or whatever; this all… Let us say from fifty because the natural convection suddenly

drops to five, what happens?
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 If h drops to five, how much is T L? 2300 kelvin. What will happen to the fuel rod? Do not

worry about one dimensional governing equation inside the rod. At the surface itself... This is

what happens, where if the pump fails. Of course, we assume lot of things, steady state and

all that. But this will be the starting story. Immediately, some operator will put control rod, he

will put boron and something, they will do all that. But, immediately the first thing is there

will be a thermal shock. Right. The h drops, and suddenly the fuel rod temperature they will

start rising like mad. ok.

Fine. We will stop here. In tomorrow’s class, we will look at extended surface heat transfer.

That is fine.


