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Solution to the RTE

So, in today’s class, we look at solutions of the equation of Radiative Transfer. As you

can very well imagine, the radiation, RTE is, that is, Radiative Transfer Equation is very

formidable. It is very difficult to solve. Particularly, the left, the left, hand side has got a

simple d I by ds, but do not underestimate that. Right side, there are lots of scattering

terms, and if the scattering is not the same in all the directions, you have to use what is

called anisotropic scattering, and the scattering, and the scattering, varies with the size of

the particles. 

We saw we the wavelength of the radiation which are considering. So, there is what is

called  the  r  by  lambda  or  d  by  lambda  parameter.  Size  ratio  parameter  is  there.

Depending on that, you can have a relay scattering. You can have Mie’s scattering. You

have to use geometric optics and so on. So, it is very highly, as I told in the earlier, one of

the earlier classes, it is highly specialized field very pew, very few people work in that.

Most of the engineering gas radiation  is  well  understood,  but  astrophysics  planetary,

study of planetary atmospheres using satellites. The remotely measure rainfall and using

satellites remotely capture the track of a cyclone. 

Then,  using  satellites  to  infer  the  atmospheric  profiles  and  then  reconnaissance

applications, military applications, spy satellites, so many other technologies. This will

be (( )). What happens to this radiation is very very important. Even a simple night vision

camera used by army is based on the infrared. Say similarly, the Swine Flu detection in

the airport is based on the infrared which is emitted by. So, person having fever will have

more surface temperature near the nose and there are the certain portions. Then they have

a standard template. They will compare it to the reference benchmark. 



If it, if it, is off beyond the certain limit, then he suspected, he suspected, to have Swine

Flu, flu, and so on. Even you the CAT scan, the CT scan, and the CT scan is basically

looking at x-rays and then looking at 3D. You look at, we take the pictures in various

slices at various sections and then we reconstructed 3D. We reconstruct 3D image based

on that. So, tomography, that computerized, computerized, axial tomography, that is, cat.

That become CT scan and all that. Very advanced numerical method, advanced radiative

transfer and all that, and non-destructive testing, ultrasonics, lots of applications. 

Now, we will,  because this  is  only of first  level  goes will  see.  Look at  a  simplified

treatment  to the equation of transfer. We will  look at  a one-dimensional.  We look at

something where we do not worry about spectral effects. We do not consider scattering

and all that. A very very simplified solution for this was what we considered in the last

class, where I completely knocked off the emission term and I told what happens to

radiations which is absorb by of layer of water or in ocean and all that. What happens in

the sunlight, as it reaches the bottom and so on. Now, we will formally look at some

solutions of the equation of transfer and it will lead to some complicated integrals which

will see as we go long. 

(Refer Slide Time: 03:19)

So, this is basically you are considering black wall. Basically, I am starting with black

wall to otherwise that radiosity other things will come, and it will be epsilon sigma T to



the power of 4; it will lead to other problem. So, reflection component will be there and

so on.

Now, the temperature is T W. There is gas layer a plane glass layer, plane gas layer and

not plane glass layer. It could be glass, but this is gas. Thickness is l. It is infinity in the,

infinity in the direction. In this direction is infinitely deep in the direction perpendicular

to the plane of the board. So, essentially we are looking at how I or the intensity varies in

the direction x. x I have given some where now. So, this is x positive direction of x. That

is the positive direction of x. The gas is at a temperature. T g the wall at a temperature T

W, and the gas is going to absorb and emit radiation. So, it is gas radiation. Now, you

want to solve the equation of transfer. By solving the equation of transfer, we want to

find out how I or the intensity propagates with x correct. That is the goal. So, we have to

write down the equation is already known to us. 

(Refer Slide Time: 04:34)

So, d I lambda by ds plus kappa lambda I lambda equal to kappa lambda of T g. Did you

write like this? Correct. So, this is one. So, this is for the normal direction. If s is oriented

at an angle theta to dA, look at path 2 on the figure. So, the equation gets modified as cos

theta we have. Needless to say when theta equal to 0 equation 2 reduces to equation 1. 

Now, we have to find out the story. At the radiation arriving at an element dA which is

located at distance l,  the gas layer thickness is l.  Therefore,  the radiation arriving at,

arriving at a consists of two components - one is a radiation from the wall which is sigma



T W to the power 4 by pi, that is a I; q will be sigma T W to the power of 4. I will be

sigma T W to the power 4 by pi which is going to going through the gas gets attenuated;

that  means  it  strength  is  reduce  because  the  gas  is  absorbing or  participating  in  the

radiation  and it  is  arriving  here.  Then  there  is  also  separately  there  is  a  component

because of the emission from the gas which is also arriving here. There is transmission

by the gas and there is emission from the gas. 

(Refer Slide Time: 06:55)

So, let us look at. Consider an area element. Now, let us simplify this. Let us say that d I

for a, for a, plane gas layer dI plus dX. I have done several things here. Can you tell me 1

2 3? I have done several things here.

Student: (( )) gas is gray.

I am assuming that the grass, gas is gray first point, yes, because I knocked off kappa

lambda and put it as kappa. So, kappa is equal to kappa lambda. Second, I am using

something called I plus. What does it mean? I am looking at positive direction of x. So,

what else? I am replacing the I b lambda by I b by sigma t g to the power of 4 by pi,

nothing spectacular. There is nothing which was applied, which we did not know. 

Now, we can write the, we solve the equation of transfer for the straight path and then

will infer what the solution will be for the slant path. So, let us try and solve equation 3

for  the  straight  path.  The  solution  to  three  consists  of  two  parts  namely:  the



complimentary  function  plus  the  particular  integral.  The  complementary  function  is

obtained by setting the right hand side equal to 0 equation 3. Let me do that general

solution to get the complimentary function.  

(Refer Slide Time: 09:20)

I also made one more change. I am using x instead of s. The original equation had s. I am

using x. That is ok. This is right. I plus is a. I hope all of you remember this one way of

solving ODE’s. You can set the right side equal to 0, and first, get the CF and then you

get the particular integral, and then combined the complimentary function of particular

integral. Get the general solution; apply the boundary condition and get the constant of

the integration. As far as particular integral is concerned, will you agree with me? The

particular integral I plus equal sigma T g to the power of 4 T g to the power of 4 by pi is

evident. How do you check it? Now, put this particular integral back into equation three.

What will be the first term? dI by dX plus 0. Second term is K sigma T g to the power of

4 by 5. Therefore, this is a particular integral to this problem. Therefore, the general

solution consist of the sum of both the CF and the PI. Seven, how do you get a? What is I

at x equal to 0?



(Refer Slide Time: 11:27)

Student: (( )).

It is not sigma T W to the power 4. Be more accurate.

Student: (( )) T W minus (( ))

I, I am not talking about e.

Student: By pi

By pi; at x is equal to 0, I is basically that is originating from the wall. We are looking at

the story. What is happing to the sigma T W to the power of 4 by pi as it goes through the

gas layer? So, at x equal to 0.



(Refer Slide Time: 13:24)

Now, therefore, I plus of x equal to is it ok? Is it fine? Jaydev, I just picked the a into a

collected terms with T g common. Where did we start the exercise? We want to find out I

plus at x equal to l. So, we will have to obtain the expression for I plus at x equal to l.

Any problem? What are the units of kappa?

Student: (( ))

Meter inverse L meter. So, the product of kappa into L, kappa into x frequently appears

in radiative heat transfer. So, it is called the optical depth k into L. So, if for two media,

the optical depth of one medium is higher compared to the other, what does it mean? Its

capacity to absorb gas, absorb radiation is much more.

An optically thin gas, an optically thin gas is one in which tau is very small; that means it

absorbs minimum. An optically thick gas is something which is got a terrific tau. Little

will emerge out of a optically thick gas, but beware optically thin or thick. The tau is

dimensionless. I you are also tempted, you are almost tempted to believe that tau should

have units of meter when I say optically thin and optically thick. Kappa is units of meter

minus tau is dimensionless. 



(Refer Slide Time: 16:42)

Now, so, therefore, in general, it is tau subscript l. So, this is tau x. So, what is this ratio?

I want to find out the intensity at x divided by the intensity at 0. What is the intensity at

0? Sigma T T W to the power 4 by

Student: Pi

 Pi. If you do that, what we get is, This is a performance metric for the gas layer of

thickness l. If T g by T W is much less than 1, that is the gas temperature is, if the gas

temperature is 300 kelvin and the wall temperature is 1500 Kelvin. Therefore, T g to the

power of 4 by T W to the power 4 is very small. What happens in the second term and

then this reduces to what?

Student: (( ))

What does it reduces to?

Student: Beer-Lambert’s law

It reduces to the Beer-Lambert’s law. Then, all right, fine. So, why should we always

worry about the straight path? Radiation can arrive at that elemental area df from the

other paths also, is not it? So, but we did not want, we did not want to work with the

general path and get into the mess. Now, we worked out for a simple path one, and then

we can by induction or inference or whatever, you can, you, can guess what this I plus



will be for a slant path, for a slant path, no. mu is equal to 1 represent the straight path.

Mu is very easy to handle. Normally in radiative heat transfer, we use the mu, and also

when you are looking at, did you study fin heat transfer? If you have a variable fin area,

you will  get  the cos theta  frequently. Cos theta  comes frequently in several  areas  of

radiation heat transfer. I am not sure about stress analysis and all that. Cos theta is an

important  fellow in  many  works  of  life.  Therefore,  your  treat  cos  theta  as  mu,  and

therefore, sin theta can be treated as...

Student: (( ))

Minus d mu? Sin theta d theta can be treated. Why am I worrying about sin theta and d

theta,  because  I  am  looking  at  I  plus  arriving  from  all  angles,  and  then  for  a

hemispherical average quantity, I have to find out integral, integral, over the solid angle.

So, I will get sin theta cos theta d theta d 5. Then I can convert it to d mu. Once you have

d mu, already you can expect that. You have got e to the power of minus e to the power

of something by mu d mu all  that,  and then beyond a certain point,  it  becomes un-

integrable or non-integrable  is  not integrable.  Then we have to  resort  to some table.

These are  called  the exponential  integral  tables  which are introduce shortly. So,  this

basically the general, this basically the solution of the equation of transfer. You can see

that even for a simple, simple, case of there is only one wall which is black. There is gas

layer which is gray, and we looking at one positive direction of x. It is quite formidable,

but of course, we can do it with a chalk and talk. I am, we are able to do it with pencil

and  paper.  For  the  more  difficult  things,  we  will  have  to  program.  Little  bit  of

complications  we can handle.  Now, let  us try  to find out what  will  be the heat  flux

arriving at the area, elementally area dA. It is clear up to this stage.

Student: There should be (( ))

Which one?

Student: (( )).

I plus

Student: (( ))

I do not understand.



Student: (( ))

Yeah, yeah, but kappa is always, always there. Since kappa is a constant, I can call it is a

function of tau x. What is the problem? I can change my variable, is not it? If x is the

variable, I multiply x by K and call it a new variable x 1, I mean it is perfectly legal,

because K is anyway is a constant. We have to worry about the heat fluxes. 

(Refer Slide Time: 25:08)

So, the heat fluxes are little more involved. Now, if you have to write the heat flux, heat

flux at x equal to 0, which is going in a positive direction of x, is given by sigma T W to

the power of 4. No problem, 16 q L plus will be...

Student: (( ))

I L plus, correct? I am saying I L is function only of mu. I am not having the function

with the respect to...  I  am not saying it  is a function of x because I  am specifically

evaluating the integral at x equal to L. Once I have L, I can make a general x. Let us not

get confused. We should not, we do not want to handle so many variables at a time. Why,

why cannot is I l be taken out? I l is a function of mu guarantee because we saw that tau

x by mu and all that. So, it cannot be pulled out of the integral, but if it azimuthal, if you

have azimuthal symmetry, then integration with respect to d 5, the azimuthal angle can

be done. So, the first simplification is I will pull the d 5 out and put the 2 pi. Can I do



that? Let us do that. So, q L plus, Is it allowed? Is it allowed, and cos theta can, no, no,

this is what?

Student: (( )) it is correct sir (( )) will come minus (( ))

(( )) d f cos theta means

Student: Cos theta minus sin theta (( )) minus sin theta, no, (( )) is 0 to 1, no.

It is not 0 to pi by 2, cos theta ranging from. So, there was a minus, minus, was taken

care 0 to 1 everything is done now. Several things have got into this, correct? The sin

theta,  only two things,  correct.  The sin theta  was taken as  minus of  d  of  cos  theta.

Therefore, the limits where changed for instead of we swapped from 0 to pi by 2 to pi by

2 to 0, and because it was instead of theta, it was cos theta. We change it 0 to 1 and we pi

by t to 0 again we swapped and we took care of the minus.

(Refer Slide Time: 28:58)

Now, instead of d of cos theta, I can put it as d of mu. Therefore, q L plus equal to...

Now, we have to substitute for I L of mu. We have to substitute for I L of mu and try to

accomplish the integration. As engineers ultimately were interested in the flux so many

watts  per  meter  square,  why  are  you  worried  about  watts  per  meter  square  per

micrometer per steradian all that. So, we have, we have, to get this q L plus equal to 2 pi

plus correct? Fine? Is it correct? Am I doing all right? I took the second term. Yeah, is it

ok? Have you written it out properly? Now, so, first term therefore...



Student: (( ))

(Refer Slide Time: 31:58)

That is all plus 2 sigma as 2. I can take the T L to the power of 4; T g can be taken out.

So, you get mu e to the power of minus tau L by mu d mu. It cannot be integrated. Do

whatever you want, do whatever you want integral u dv u v minus integral v d u. Then it

will e to power e to power e to the power. It will give period whatever all g e stuff will

not work, none of it at all, nothing of it all. So, the integral mu into e to the power minus

is an integral which frequently appears in radiative heat transfer is called an exponential

integral. So, what happen to that? I left a pi.

Student: (( ))

Sigma so, frequently appears in radiation. It is known as the exponential integral of order

3.

Student: (( ))

There that, correct, what is minus?

Student: (( )) T W (( ))

T W minus T g (( )), T W minus T g, is it?

Student: Yes (( ))



No

Student:  (( )) T W minus T g

Yeah, yeah, I do not want to write what I do not believe in. Let us see. So, what happen?

Student: (( )).

Morning when I worked out at 5 o’clock, it was T g minus T W. I think I made a mistake.

Now, this mu e to the power minus tau L by mu d mu frequently appears. It is called

exponential integral of order 3. So, what does it mean? There are exponential integrals of

other order also, other orders also. 

(Refer Slide Time: 36:04)

So, so the general exponential integral is given like this mu to the power of n minus 2

into e to the power of minus t by mu. That is the general exponential integral of order n.

Mu is basically a dummy variable, mu is basically a dummy variable. So, this is what we

got. No, I think we are, it should be 20. The exponential integrals have been worked out

and they are tabulated and I am going to give table now. Yeah, please, the left most now

number has not come out well. It got cut in the photo copying but it is. 



(Refer Slide Time: 37:56)

So, this is the, you will  take it.  This is the exponential  integral you can see the first

column. You see the value of x. The second column is E 1; third column is E 2, E 3, E 4.

As far as this course is concerned, we are worried about the first column and the fourth

column, fourth column.

 (Refer Slide Time: 38:46)

Fine, what are the salient properties of this E 3 as observed from the table? E 3 of 0 is

0.5. Please check. So that means that t is very small. What is our T? Our T is actually tau

optical depth. So, the optical depth is very small. Then this exponential integral reduces



to half minus t which is a great boon for us. So, the limit where the t approaches 0; that

means the gas is not so heavily absorbing is called the optically thin limit or radiation. It

is the optically thin limit; it is optically thin enough to allow that approximation, but it is

not thin enough to neglect gas radiation 1 by 1 plus 10. The 10 is very, the 1 is very small

compared to the 10. Therefore, 1 by 1 plus 10 equal to 0.1, but we cannot say 1 is very

small compared to the 10. Therefore, whole thing is 0. There are two different stories. It

is like this. It makes it handle able and e 3 of infinity at 3., what happen that 3.5 itself it

become, it became what? 005. Therefore, E 3 of 10 20 30 will tend to, very good. 

(Refer Slide Time: 41:21)

So, we have these properties. Now, you can write the general expression for q L plus, can

you write? Therefore, q L plus the sigma E 3 of...

Student: (( ))

That is all. E 3 of, correct, no, I am making mistakes again and again. This is, yeah, plus

1  minus,  all  right.  Now, what  can  you  say  from  this  1  minus?  Can  you  interpret

something from this? Can you interpret something from this? Let me see. Now, we will

apply for the optically, now, 20 for the optically thin gas. What is E 3?

Student: Half minus T

Half minus T. Therefore, this will be...



Student: (( ))

1 minus 2 T 

Student: (( ))

 1 minus 2.

Student: (( ))

Tau 1 by 2.

Student: (( ))

plus tau l, 2 tau l

2 tau l. The 2 is not leaving us know. What is the big deal man now? What is the big

deal? The radiation arriving at, the radiation arriving at x equal to l consists of two part -

the radiation which is coming from the wall,  which is attenuated by the gas, and the

radiation which is directly coming from the gas. Fortunately, for us, now we have an

expression which gives two independent things. The first seems to be, the first seems to

concern the radiation from the wall. The second seem to concern the radiation from the

from the gas.  Therefore,  this  tau L can be,  if  we assume if  we say this  tau L is  an

equivalent gas emissivity, then the second term is epsilon g sigma T g to the power of 4.

What is that? What is that radiation which is emitted by the gas which is arriving at the

elemental area at x equal to l. So, this can be consist, treated as a transitive of the gas.
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So, no, no, no, what is the relationship between this? Tau g is 1 minus, 1 minus, epsilon

g. Epsilon g itself two times kappa into L is 2 time kappa, 2 times L into kappa. Now,

comes the killer stroke. For all this, the goal of anything is to finally simplify. The goal

of anything is finally to simplify. Now, at the end, we, we, are able to define equivalent

gas emissivity which consisted of two parts 2 L into kappa. I put intentionally I put 2 L

within brackets and kappa within bracket. 

The 2 L is basically  related to the geometry. The kappa, the kappa,  is related to the

capacity of the gas to absorb. Therefore, when I combined this geometric part and the

thermal part, I am able to get then equivalent gas absorptivity with which I can use my

radiosity formulation, which I, which I use for evacuated enclosure. I can modify it and

use it for this. What is this 2 L? This 2 L represents the mean path travel by all rays in

arriving at the area element a which was located exactly at a minimum distances of L

from the wall, because for cos theta equal to 1, it will be just L. For all the others, it will

be L by cos theta and L by cos theta keeps changing. 

So, this 2 L is some sort of an average or a mean length which rate travels before hitting

this area element dL area element dA. So, this is called the mean beam length. So, this is

the terrific progress we have made in the last 50 minutes that we started out the equation

to transfer and it all mathematics exponential integral, but I did so many things. We did

optically thin gas and all that. We arrived at a. 



Now, the formulation is reach the critical stage where the gas, the gas, emissivity can be

composed into two distinct parts and the thermal part can be can be completely separated

from the geometric part. So, this 2 L is the, 2 L is the, mean beam length for a plane gas

layer. This mean beam length will change for a cylinder for sphere and so on. So, if you

are able to calculate the mean beam length and if you also know the kappa, you have

handle; you can calculate equivalent gas emissivity, and then from the gas emissivity, use

this relation and gas and calculate the gas absorptivity and you can proceed further. 

In tomorrow’s class, we will see how we can use the theory of evacuated enclosure,

modify this and then solve problems of enclosures with absorbing, absorbing emitting

gases. Anyway, to reinforce our concepts and the solutions of RTE. Tomorrow we will

solve two problems involving basic plane, plane layer, plane gas layer and then proceed

to theory of evacuated enclosure. 

Thank you. 

I will just...


