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In yesterday’s class, we solved few problems in enclosure analysis, we started off with

one surface enclosure emissive, we just took a plate, which was having an emissivity of

epsilon or epsilon 1, temperature was T or T 1 and the outside was T infinity, you can

consider it to be a blackbody at T infinity.

(Refer Slide Time: 00:31)

We got the very familiar result, q equal to epsilon sigma T to the power of 4 minus T

infinity to the power of 4, then we went on to solve the problem of two zones or two

surface enclosures, where you have two parallel plates which are infinite in extent. So,

that F 1 2 equal to 1, then we wrote the radiosity relations, then we found that J 1 and J 2,

we founded q equal to J 1 minus J 1 equal to J 1 minus J 2, and we got the familiar this

parallel plate formula, this is very important result which can be used to module heat



transfer between two plates, when the convection between them can be neglected, even if

the convection is there, you can add the convection to the radiation and the addition is

possible, if the temperatures are known, if the temperatures are not known you have to

exploit the coupling, that become what is called a conjugate heat transfer problem.

Now, even in this case, in yesterday’s class we saw that 1 epsilon 2 equal to 1 and T 2

equal to T infinity, it reduces to the simple case of one surface enclosure. So, it is all

these results are consistent with common sense; they are also consistent with the way we

understood. So, it is called an internal consistency check. Now, if you have two parallel

plate  even  though  you  do  not  have  convection  between  them,  if  the  temperature

difference between these two plates is sufficiently large, then high radiation heat transfer

between them is inevitable, but many times we want to avoid this radiation heat transfer

between them, just because you have put vacuum, it does not mean that you have solve

the problem if both the services have good emissivity and they are at a good temperature,

and rather we have a good temperature difference, then the radiation heat transfer will

not be insignificant. 

Therefore, the challenge is now to come up with some method by which. you reduce the

radiation heat transfer between these surfaces,  therefore you can put some thin film,

which has got an emissivity equal to epsilon, epsilon 3 or epsilon shield, and we try to

find out, what will be the radiation heat transfer when such a shield is inserted between

two plates. Suppose, we derived the formula for the heat transfer, radiation heat transfer

with one extra shield,  then by induction we can find out what will be radiation heat

transfer if you have two shields three shields and n shield, and then we will solve the

numerical examples, so that you get an idea of, so that it reinforces the concepts you

have learnt.
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So, we will go to the problem of radiation shield. So, consider two vertical infinitely long

parallel plates, which are at temperatures T 1 and T 2 respectively with hemispherical

spectral  emissivity  epsilon  1  and epsilon  2,  the  intervening space  is  evacuated;  that

means, there is vacuum in between, in the absence of any shield or in the absence of any

medium, in between or in the presence of a radiatively transparent medium, you already

derived the radiation heat transfer between the two surfaces. Now, I insert a shield, now

insert a radiation shield, let the radiation shield have a known emissivity of epsilon 3 on

both the sides, I have to be very specific in saying that both sides have a same emissivity,

because emissivity is just a surface property I can have different coatings on two sides, I

can have different emissivity, but the whole shield may be at one temperature, but the

two sides may be at different emissivity, we are still talking about an opaque, we are not

talking about a transparent shield or something.

Now, let its temperature be T 3, now steady state prevails in the system so, the heat

transfer radiation heat transfer is taking place like that. So, is the configuration clear, now

the challenge is to come up with a mathematical expression for q with the shield.
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Now, q 1 3 can be written as, from the parallel plate formula q 1 3 can be written as

sigma T 1 power 4 minus T 3 power 4, nothing great so, but I may not know T 3 at this

point in time, T 3 is equilibrium temperature of the shield, we will talk about it little later,

by the same token what can you say about q 1 3 and q 3 2. Equally steady state.

Under steady state q 1 3 must be equal to q 3 2, it is also equal to q 1 2 with shield, it is

eventually the heat which is going from the left to the right. So, we can say it as, we can

qualify it as, and saying that its q 1 to 2 with shield, q 1 to 2 without shield is this.
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Now, q 1 2 comma shield, so that you do not get confuse. Therefore, (( )) three is not one

Why  From three is a radiation can go to 1 or 2 . Three as two surfaces, three itself has

two surfaces is it not. (( )) one It is, come again, somebody else may have the same

doubt, but they can come again, 3 2  three to two, there is nothing else, it cannot go on

the  back side,  because  there  surfaces,  it  may be  a  shield,  but  radiation  is  a  surface

property,  the  front  side  may  behave  differently  from  the  back  side  they  have  no

connection, the view factor on the front side and back side are not correlated at all, is it

clear, that is a good point. I am not very happy with this formula; which formula, this

one, because normally in engineering applications we are keeping two plates, it is easy

for  us  to  measure  the  temperature  of  the  two  plate,  if  I  put  some  shield,  why

unnecessarily take the trouble of putting a thermocouple and measuring the temperature.

So, for all practical purposes, we will treat the T 3 as unknown. So, the T 3 has to be

eliminated,  I do not like T 3, it  is useless for me, and with this expression I  cannot

calculate, is the point clear.

Now, we can do your mathematical manipulation, and eliminate T 3 and all that, but I

have again a very cheeky way of doing it.
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So,  I  will  say, if  1/2 is  equal  to  2/4,  is  also equal  to  is  a dividend component  rule.

Therefore,  q 1 2 shield is  also equal to the some of the numerator  and denominator

separately, you can get  the same result  with lot  of labor, if  you were not to use the

dividend or component rule, still it is possible when substitute for T 3 from here, we will

cross multiply, you can do all that. Now, you can assign numbers to this if you want,

therefore, is this clear?
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That  should  be  minus  2  there.  Yes,  so  what  I  did  was,  I  added  the  numerator  and

denominator separately, and then say say I am declaring that it is a same q 1 2 shield,

fortunately for us there is a minus T 3 to the power of 4, here it is a plus T 3 they are

getting cancel, q is that fine, if all the epsilons are equal, is it shrikanth arjun checking

check it check now all the epsilons are the same, what will be q 1 2 no shield.

If all the epsilons are the same then q 1 2 no shield will be sigma T 1 the 4 minus T 2 the

4 divided by 2 by epsilon minus 1, therefore, q 1 2 shield divided by q or q 1 2 shield is

equal to q 1 2 no shield divided by n plus 1, where n is the number of shields, is it clear

so we will write it out formally.
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Therefore, it is possible to insulate from surface radiatively by employing n number of

shields. So, just because you have vacuum, it does not mean that you already insulated, if

you have vacuum you remove the convection and there is no conduction, because there is

no medium, but radiation will  be there.  If  you have evacuated and you also have n

shields, you get what is called a radiation super insulation. This is the concept of a super

insulation, I can make some thin sheets and insert,  the position of the sheet does not

matter at all, so long as a thin finite in extent, otherwise the view factors will come in to

play and all that.



Let us solve a numerical example, while the heat transfer rate is straightforward, suppose

for some reason, I want to know whether this radiation shield I have introduced can

withstand some particular temperature, it is imperative on my part to evaluate the T 3.

The T 3 has to be evaluated as a post process quantity and see whether, that T 3 is for this

material, without the T 3 we got this result. So, now as a post processing step, we will

have to evaluate the T 3. Let, us solve a problem in which you determine both the q and

the T 3; problem number 32. Determine the steady state temperatures of two radiation

shields, placed in the evacuated space between two infinite plates at temperatures of 600

and 300 Kelvin respectively, all the surfaces are gray and diffuse with emissivity of point

85, please start solving, the figure is not required, nevertheless I will draw the figure for

the sake of completeness.

(Refer Slide Time: 18:55)

So, there are two plates, 1 and 2, there is no need to call the emissivity are as epsilon 1

epsilon 2 epsilon 3 epsilon 4, all are equal to point 8 5 epsilon is enough, T 2 equal to

300 Kelvin. Now, I have put two shields, how many surfaces are there in this problem

totally. Six surfaces are there, there are two surfaces for the two shields, which make

them four surfaces, and one surface each, we do not care about the left side of one and

the right side of two, we do not care about these two, but we do care about the left side

and right side of the intermediate fellows. So, point T 3 equal to not known, T 4 equal to

not  known,  simply  write  the  no  shield  formula,  divided  by n  plus  1,  n  equal  to  2,



therefore n plus 1 is 3, we will get the q with two shields, then this q with two shields, we

locally apply between one and three to get the temperature of three, we locally apply

between three and four to get the temperature four, we have to do it systematically this

will take somewhere between 10 to 15 minutes, it is pretty straightforward.
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First we will write the q 1 2 no shield 5091 point 9, what are the units, watts per meter

square area, this is the first step. Now, we have to do q 1 2 2 shields 5091 point 9 divided

by 3.
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546 point 3, if all the emissivity is not the same more labor is involved, it will become

more pain for that is all, but most of the relations will hold good, everybody got this 546

point 3. So, the interesting thing is, if both the surfaces are black, and you have a shield,

the equilibrium temperature T 3 will be T 1 to the power of 4 plus T 2 to the power of 4

divided by 2, whole to the power of point 25, I do not know, it is not harmonic, what

mean is it i do not know. You take the fourth part, you take the fourth part. Take the

average and then take the fourth root, tell me. Fourth part to the arithmetic place

So, it is, that is a way it works. So, you will get an approximate idea of, T 1one to the

power of 4 plus T 2 to the power of 4 divided by 2, whole to the power of point 25, do

not take it as a formula, only if the two are black and other things, this is asymptotic

case, always when you do some engineering analysis, you must look at the asymptotic

case what happens; what happens if both are black,  what happens if  emissivity zero,

what happens if T 2 is equal to T infinity, somewhere you must get an answer which is

consistent with their common sense, then you know this must be right.

Now, we will  do the last  part  q,  the other way of checking is  T 3 and T 4 must be

between T 1 and T 2, otherwise you are in trouble, there is no heat generation in the

problem, heat is flowing from left to right. So, from left to right the temperatures have to

continuously decrease. So, these are what are called common sense checks.
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Now, T 4, 169 point 4. So, now, we have got all the answers, what will be the heat flux

without  the  shield,  what  is  a  heat  flux  with  two  shields,  what  are  the  intermediate

temperatures, you answered all the questions. Now, let us solve a problem involving a

two zone enclosure is slightly more involved.

Shrikanth the value of T actually, we just use the fact that they are equal, for finding out

the temperatures we did not use point 85, it is get cancelled where, we got the surface we

do not need the (( )). As long as they are equally (( ))

As long as they are equal, otherwise you have to do take that, because what he is saying

was 1697 point 3, itself you are taking to be epsilon minus 1, the epsilon will. So, it some

sort  of  an  equilibrium  temperature,  we  just  mostly  determine  by  the  other  two

temperature that is all. Even if the emissivity is something else, finally it will remain the

temperature.

But, I am not sure what you are saying I agreed with what you are saying, but if epsilon 3

1 is different from epsilon 3 2 1 epsilon 4 3 is different from epsilon 4 2, then we are in

trouble, and then if each of this is different from epsilon 1 epsilon 2. So, what he is

saying is, he is qualifying whatever I told a little earlier further, I told you they have to be

black, but he says so long as all are having equal emissivity, whatever I told T 1 to the

power of 4 plus T 2 to the power of 4, divided by 2 whole to the power of point 25 holds,



but you can call it as T e q, what is e q equilibrium temperature. In fact, a reradiating

surface will also behave like this; these are the two shields reradiating surfaces.

Yes whatever heat they receive from the left side they give it to the right side. So, the q

net from that surface is zero. q net is whatever is going from right, when whatever is

going from left, whatever is coming from the left is positive, whatever is going from the

right is negative, so they cancel out. So, in fact, to the radiation shields are reradiating

surfaces. Two different surfaces.

But  if  you  considered  them as  one  body, because  they  have  only  one  temperature,

because they are reradiating surface, that temperature or radiosity must be independent of

the  emissivity  that  is  what  we  derived  in  yesterday’s  class.  See,  if  you  work  out

problems, you can understand the subject; you can appreciate a subject better. So, the

common complaint that people are using software, software is not true very correctly.

Suppose, you continuously keep on using fluent, it is possible that your fluid mechanics

knowledge will increase, because you will learn how to interpret, but you repeatedly use

fluent for a longtime, then hopefully your knowledge of fluid dynamics also improves.
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Now, we look at a very interesting problem, where I will explain the configuration to

you, I have a flat bottomed hole, a hole has been bored in to a plate, the depth of the hole

is 24 millimeter, and the diameter of the hole is 6 millimeters, it is evacuated or it is



filled with air, which is radiatively nonparticipating. The temperature of the surface one,

which includes the bottom as well as the lateral surface area of the bored hole is basically

1000 Kelvin, and this has an emissivity of point 6. 

Let us say, this has an emissivity of point 6, it is opening this hole, this bored hole is

opening to the surroundings at 300 Kelvin. Now, we can treat it as a two zone enclosure

problem, that is this whole thing is surface one, that is one two three, that is this lateral

area and the bottom is surface one, which is having a emissivity of point 6, it is at 1000

Kelvin, surroundings are at 3000 Kelvin, you treat the surroundings to be a blackbody at

300 Kelvin, two zone enclosure we can solve and get the resultant heat transfer from one

to two, but the beauty of this problem is, suppose this hole were not there, and you have

this surface alone, you just have the surface two, that is you have something like this.

This is basically a circle with a radius of 6 millimeters, but now I say, this circle of 6

millimeters radius is a surface which is a blackbody. 

Now, this is at 1000 Kelvin, it is also loosing heat to the surroundings at 300 Kelvin, this

will dissipate a certain quantity of heat to the surrounding, I want to see compared to

this, how much this will dissipate; the ratio of these two, the ratio of these two is called

the effective emissivity, why is it so, because we saw the hole run, if I make it like this,

there is  so much of  internal  reflection,  but  the radiation coming out  of  this,  will  be

equivalent to the radiation coming out from a blackbody at this temperature. Therefore,

as the depth of the whole keeps increasing further and further, its effective emissivity

will approach one. So, why so much pain and difficulty we want to take, suppose we do

not get a surface which is having a good emissivity, it is possible for us to bore holes in a

few  places  and  increase  or  augment  the  heat  transfer,  passively  without  using  any

pumping power, is the concept clear.

Now, please take down the problem, a flat bottomed hole 6 millimeters in diameter is

bored to a depth of 24 millimeter in a gray diffuse material, now all the problem this will

come gray diffuse.  In  a  gray diffuse material  having an emissivity  of  point  6  under

uniform temperature of 1000 Kelvin, the surroundings are at 300 Kelvin, gray diffuse

material emissivity point 6 temperatures 1000 Kelvin. Surroundings are at a temperature

of  300 Kelvin.  A;  determine the net  radiant  heat  transfer  leaving the opening of the

cavity.
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B; the effective emissivity epsilon e f f of a cavity is defined as, I am giving you the

definition, the effective emissivity of a cavity is defined as the ratio of the radiant heat

transfer from the cavity, that is what we calculated in part A, the effective emissivity is

defined as the ratio of the radiant heat transfer from the cavity to that from a blackbody,

having the area of the cavity opening under temperature of the inner surfaces of the

cavity.  So,  the  concept  I  have  already  explain,  what  I  given  is  the  mathematical

definition. Calculate epsilon effect, effective for this cavity.

Part C; if the depth of the cavity increases, will epsilon effective increase, if so, what is

the asymptotic limit. So, lot of fundas are inbuilt into this problem, the first part of the

problem is simple two zone enclosure. Now, please retain up to three or four decimal

places, it is very tricky. Now, let us start solving, so what is a first step in an enclosure

problem, it is view factors.
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Solution, F 1 1 I do not know, F 2 1 is 1, F 2 2 is 0. So, A 1. So, r equal to 3 millimeters,

h equal to 24, full or half, is it fine. Please tell me A 1 and A 2, 4 point 8 into 10 to the

power minus 4, is it calculated, just check A 2 first, tell me if I made a mistake just 2 pi r

square.
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So, F 1 2, point 0 5 8, point 0 5 8, we have 1 1, that is F 1.
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Now, we write the radiosity relations J 1, what is J 2; J 2 is a blackbody at T infinity

sigma T 2 to the sigma 459 point 3, what is the value, 5 point 67, 10 the minus 8 into 300

of power 4 power, 459 point 3. So, certain values you should remember, for 1000 Kelvin

you will get 56700 watts per meter square, that is clear 5 point 67 into 10 to the power of

minus 8, into 10 to the power of 12. Now, we can use this. Let us, get J 1 now, please do

the algebra. So, you will have point 4 into point 942. So, 56000, 55000, no we have to be

careful, 54606 Point 3, all of you should get this radiosity.
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So, q 1 is 3140 point 5, this is only the flux, this is the heat transfer rate, how much is 

that, into 4 point 8 into ten the minus 4, its 1 point 5 watts, how much is it?

Student: 1 point 51 watts.

1 point 51 watts. So, this is the solution of the part A of the problem, net radiation heat

transfer, I  hope it  is  clear, but we will  have to revise this.  Now, as far as part  B is

concerned, what will be q 1 for the blackbody, there is a six mm dia surface which is

having a temperature of 1000 Kelvin, which is radiating to outside 300 Kelvin. So, this

is, how much is this.

Student: 1 point 59 watts

1 point 59 watts, A 2 is area of the opening pi d square by 4, where d is 6 millimeter

Stefan-Boltzmann constant 1000 Kelvin minus 300, please be careful to multiply only

the area A 2, because that is from the definition given in the part B of the question. Now,

epsilon effective equal to how much is it, point 95.

Very significant result, I have this surface, please look at me for a minute i have this

surface, if I take a 6 millimeter hole, the area is pi d square by 4, it can emit only pi d

square by 4 into sigma into point 6 into 5 point 67 into 10 to the power of minus 8, the

maximum will be 1 into sigma into 8 into 5 point 67 into 10 to the power minus 8. Now,

if if i have a great diffuse material with an emissivity of point 6, which has for example,

for a hole of 6 millimeters diameter, there is only this much, there is a finite amount of

heat transfer it can emit it can lose to the surrounding, suppose I bore a hole then I can

get a heat transfer rate of 1 point 51 watts. Suppose, I just leave an area at the top like

this, if it is a blackbody the heat transfer rate is 1 point 59, if it is a body with emissivity

of point 6 the heat transfer is only 1 watt, are you getting the point. Therefore, by drilling

a boring a hole from 1 watt we are able to take it up to 1 point 51.

So, if I keep on increasing the depth further, it is possible for me to reach the asymptotic

limit of 1 point 59, but never will I be able to exceed sigma T to the power of 4 minus T

infinity to the power of 4 into pi d square by 4, all this increase of the effective area,

because of the increase in the depth,  is  only helping me overcome my deficiency of

having a poor emitter of point 6, because it  is very difficult to get a blackbody, and

suppose from point 6 to point 9 I have to put some costly coatings or something, if the



material is thick enough, I will put a hole in several places and passively increase a heat

transfer rate, this is a technique adopted. For fluid mechanics also in golf balls they put

dimples and all that, to increase heat transfer rate also to, and somebody is doing a b tech

project on golf balls I remember.


