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Multiphase modelling – Governing equations 

 

Welcome back, we will continue our discussion of multiphase modeling of sprays. 

Towards the end of the last class, we had sort of arrived at a taxonomy of multiphase 

models, to see possible way by which you could based on the physics of your given 

problem choose an appropriate model - whether you should be using a Lagrangian model 

or whether you should be using an Eulerian multiphase or a mixture model or the exact 

model that we discussed as our choice number one. 

So, will start from there and look at the mathematics of some of these models and see 

what underlies the mathematics. 

(Refer Slide Time: 01:00) 

 

So, we said based on the particle relaxation time and the mean free path, these are the 

two parameters we defined based on which you could chose between the different 

models, and in the gray area of course you have to there is some room for engineering 

judgment apart from that, of course we said the exact model would be applicable in all 

these situations. 
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So, let us look at the governing equations for the mixture model. If you recall the mixture 

model is essentially a single phased version of a multi phase model, that is in reality we 

have drops laid an in air that are spray, but we believe due to certain physical laws that 

the spray seems to obey that we are able to make a simplification and look at a third 

equivalent fluid which is a mixture and we will only write our balance laws for the 

mixture. We are not at this level going to be concerned about individual droplets or air as 

being separate only going to write balance law for the mixture. 

So, the first balance law is the Conservation of mass; that you will see here, but before I 

go to the conservation of mass we need to be clear about our definition of alpha. Alpha is 

called the volume fraction and this is the fraction of a given infinitesimal spatial region 

that is occupied by either phase one or by alpha i is the volume fraction of the ith phase 

in the mixture, where a certain volume of an given infinitesimal volume is occupied by 

the ith phase and that fraction is given as alpha i. 

So, remember this is a field property that is it is a function of x y z and time in general, 

which means that at every point I am looking at a tiny infinitesimal volume surrounding 

that point and I envision alpha i as being the fraction of that infinitesimal volume, that is 

occupied by the ith phase. So, we already we sort of touched upon this, that the idea of 

our infinitesimal volume now is not our old calculus mathematical infinitesimal volume, 



but it is a volume small enough in comparison to the rate of variation of alpha i, but big 

enough in comparison to individual drop sizes. 

So, we cannot be talking about an infinitesimal volume that is on the order of the drop 

size, we are looking at an infinitesimal volume that is bigger than the drop size, so I can 

talk of a smudged out volume fraction. So, the first constrain that, is we have from that is 

this fact that the sum of all volume fractions has to equal 1. So, this is essentially what 

you might call Occupancy of space, I cannot have empty space. In a continuum 

formulation there is no such thing as emptiness. So, I have essentially all the space 

occupied by either air or my drop phase, we are not talking drops we are talking drop 

phase that is ours. So, if I was to only talk of a two phase problem, in the two phase case, 

M would be equal to 2 and then I can define alpha 1 and alpha 2 and alpha 1 plus alpha 2 

has to equal 1. 

Now, based on the local alpha i, I can define a Mixture density, and alpha and rho i is 

what we will call the Material density. So, that is the actual physical density of the liquid 

I am spraying and actual physical density of air the material, those are my rho is. Rho m 

is the local mixture density, that is the density of the constituent the mixture phase that is 

made up of these two materials. 

So, now I have my mixture density. So, will come back and define our conservation of 

mass, which looks very similar to our single phase conservation of mass equation, that 

we usually have accompanying a Navier-stokes equations, that the partial derivative of 

alpha i rho m with respect to time, plus the gradient of alpha i rho m V m is equal to 0, V 

m is the mixture velocity field. This mixture velocity field is basically based upon the 

idea that locally at that point both the air and drop phase are moving with the same 

velocity V m this is a velocity field of course, so, it could be a function in general x y z 

and time and alpha i rho m V m gradient of that quantity, plus the rate of change with 

respect to time of alpha i rho m is equal to 0. Now notice how I still have the subscript I, 

which means that this is an equation that we write for each of the two phases. 

So, alpha i rho m for each i you have a conservation mass equation. So, just to be clear 

about that fact, I will say this is a conservation of mass equation for phases i. Now if I 

take the simple two phase formulation and I take an equation just like this with i being 



equal to 0 and i being equal to 1 and i being equal to2 and add them up let see what we 

find. 
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If I take summation over all I, what I find is that I have rho m summation alpha I, plus 

gradient of rho m V m summation alpha i is equal to 0. You already know summation 

alpha is equal to 1, so I can write this as gradient of the mixture density plus, sorry 

derivative of mixture density with respect to time, plus the divergence of rho m V m is 

equal to 0. In fact, this is exactly the mass conservation equation for a compressible 

fluid; which means all we are saying in the mixture model is that, this effective fluid is a 

compressible fluid and the constituent of the compressible fluid these alphas and this rho 

m being equal to alpha i rho i summation is like my equation of state. 

Remember we need an equation of state for the compressible fluid to close the set of 

equations. So, essentially this rho m being equal to summation alpha i rho i is like my 

equation of state, it is not to at completely formulated as the equation of state, because I 

need another property that says, rho i itself is a constant. So, if i know that rho i itself is 

constant. So, if I treat my air and my liquid as individually being in compressible in the 

material sense, rho m being equal to alpha 1 rho 1, plus alpha 2 rho 2 is an equation of 

state that relates the density of this mixture to a property a field variable called alpha 1. 

Remember I do really only alpha 1 is an independent variable; alpha 2 has to be 1 minus 

alpha 1, in the 2 phase description.   



So, rho m is equal to alpha 1, let us write this out and just we clear about it. So, rho m is 

equal to alpha 1 rho 1 plus 1 minus alpha 1 rho 2. If I let this be accompany by rho 1 

equal to constant and rho 2. So, if I say rho 1 rho 2 are individually constants, this is 

saying both the individual phases are themselves in compressible, then rho m equals 

alpha 1 rho 1, plus 1 minus alpha 1 rho 2, is the mixture density and this is essentially 

sufficient to be called an equation of state because I am relating the mixture density to a 

field property called alpha. 

So, far as this mixture conservation equation is concerned, this mixture conservation 

equation, the mixture is a compressible fluid in this is a conservation equation for that 

compressible fluid. The property of that mixture is related to another field variable called 

alpha 1, for which this is my transport equation this is my conservation equation for that 

alpha 1. 

So, this is now as far as conservation of mass is concerned, the way defines what the 

fluid is looking like. Now in the momentum sense, this is essentially my conservation of 

momentum equation partial derivative with. So, this is again familiar, there is 2 parts to 

this, I have a now a mixture pressure and the mixture stress field shear stress field these 

have to be related to my field properties. So, the pressure let us just quickly think of what 

this pressure is. This is the pressure in the mixture that is arising out of the stress field in 

the air phase plus some super post stress field in the drop phase. 

That is if I now separate the two phases, the stress field in the air phase is easy to 

understand that is the (Refer Time: 15:09) traditionally understood as the hydrostatic 

static pressure field in a single phase. The stress field in the drop phase is what we talked 

about earlier, this is a result of the coalitional process is that occur between the 

individual drops. So it is like it is a stress that arises, it could be a normal stress that 

arises out of drop being in some sense crowded in one place or drops being agitated 

locally in some point. 

So, I have to have a model to relate this drop phase stress field to some other drop phase 

properties such as for example, alpha gradients. So, gradient of the velocity field I could 

even define sort of a temperature which is a measure of this agitation level in the drop 

phase. So, I could locally have a very high even though the mean velocity may be 0, so I 

have a locally very high movement within the drops this is like a granular temperature or 



a dispersed phase temperature that you could define, that is very often defined in 

granular phase’s granular flows as a matter of fact. 

So, I could define all these field variables and come up with relationship between the 

mixture pressure and these other properties, mind you the hydrostatic pressure. So, if I 

was do the exact model, the actual hydrostatic pressure in the air is only one component 

of this mixture pressure and then there is also a stress field that has to be related to some 

argument list and these are called Constitutive relationships. So, these relate you know 

you will recognize the mixture shear stress being related to the gradient of the velocity 

field is like our Newtonian viscosity model. 

So, if I make that viscosity be a function of the local volume fraction of alpha 1, let us 

say in the simple two phase formulation, that is an extension of our Newtonian viscosity 

model to a mixture level. Now these constitutive relationships are required before I can 

close the set of equations, because if you look at just these I have p equations in to 

unknowns, I have my unknowns are alpha 1, alpha 2 V m P m and tau m and I only have 

3 equations in the conservation form these are my as conservation equations, these are 

my conservation of mass for alpha phase, alpha phase 1 phase 2 and the conservation of 

momentum for the whole mixture. If you look at the mixture conservation of momentum 

equation, that does not have any subscript i. So, we are only writing one momentum 

equation, one balance of momentum for the whole mixture. 

So, we have to have to more relationships which are my constitutive relationships to 

complete to close the set of equations and have p m related to some other fields, alpha i 

gradient of v m etcetera. So, this part is an area of active research even today, if I want to 

use mixture model you if you look if you look at the literature there is lots of papers that 

use mixture models to study sprays or bubbly flows. If this, lots of different multiphase 

flows that use mixture model, but you will see the level of simplicity that goes in to these 

constitutive relationships and if you begin to question the physical reasons for such 

simplistic arguments, you will find yourself in an area where, you will find yourself in 

unsorted territory. Because the reason such simple forms are employed is because that is 

the best we can do as far as trying to employ our intuition from single phase flows, we 

are basically in the process of extending our intuition from single phase flows to multi 

phase flows. 



Now, how do I get these constitutive relationships, really one way usually is 

experiments, but in this case experimentally to get these kinds of relationships 

experimentally is very difficult. So, the other way is to go to the exact model and do like 

fully resolve droplet level simulations and extract the local pressure field as a function of 

some other arguments and that is of tractable approach and is quite widely being use 

today. To extract realistic constitutive relationships that relates the stress field to some 

other field variables. 

This is the simplest of multiphase models, so if I take the constitutive relationships and 

say my P m is independent of the simplest of constitutive relationships, could be that P m 

is dependent of all alpha and gradients. So, it is just like my hydrostatic pressure field in 

the air phase or I could relate tau m to i simplest forms of the relating P i P m to only 

alphas and relating tau ms to only gradient of the m, just like a Newtonian fluid would 

behave. 
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So, let us move on and we look at the next level of complexity, which is my Eulerian 

multi phase model. The Eulerian multiphase model again starts by writing a conservation 

of mass equation for each of the. So, this is for the i equal to 0 phase, there is a particular 

reason I have written this in this form, but really it does not matter, I could have let this i 

go from 0 to m and it would not make any difference. 



So, now I have this conservation of mass for each of the phases constituted constituting 

the mixture, but the difference now is that we are going to write a separate conservation 

of momentum equation for each of the phases. What have we done in this process let us 

look at our list of depended variables, if I simply take M equal to 1, here m equal to 1 

would mean a 2 phase flow, because i equal to 0 is one phase, and i equal to 1 is another 

phase. So, I write an equation like the top two here for my l equal to 0 and an equation 

like this for i equal to 1 and i have alpha 0 is one of my unknowns, rho 0 is just the 

material density of the fluid, V 0 is the velocity field that is unknown for the phase 0 

likewise I have a alpha 1 V 1, I have P 0 P 1, tau 0 tau 1 these are my unknowns. 

I can come up with a relationship or we will have to come up with the relationship 

between P 0 tau 0 and alpha 1 alpha 0 in the gradients of the velocities that is what we 

called are constitutive relationship. We also know that alpha 0 plus alpha 1 has to equal 1 

that is occupancy of space relationship. 

So, we essentially created as suppose the mixture model, we now have one more new 

velocity field here which is my V 1 which is new. So, we have in three dimensions, we 

have three velocity components and alpha for each of the 2 phases. So, this is I have 8 

unknowns at every point in space, apart from the 2 pressures. So, once I relate the 

pressures to some other field variables, I have 2 pressures, 6 velocity components in all 

and 2 volume fractions, that is my complete list of unknown variables as suppose to the 

mixture where mixture formulation, where we had 2 volume fractions, 3 velocity 

components and 1 pressure. 

So, we essentially added 4 more unknowns to the list. The problem is not just at the 

addition of 4 more unknowns, it is the numerical complexity and the solution complexity 

that comes with it that in that process some convergence challenges, for this kind of a 

model formulation the simplest assumption made. So, now, look at the pressures for a 

moment, we are able to postulate an individual pressure field in each of the 2 phases in 

this kind of a formulation, but they are not really completely independent of each other 

and so the list of unknowns become smaller through algebraic relationship that exist 

between these kinds of other variables. 

Like for example, alpha 0 plus alpha 1 has to equal 1. So, through relationship between 

these individual field variables, the total number of independent unknowns comes downs 



slightly. But we have into a touched upon this term here that did not exist in the previous 

formulation. So, now, that I have 2 phases, let us just take i equal to 0 and equal to 1 and 

the 2 phases are moving with different velocities, they become sources and sinks of 

momentum to each other   

So, I can have inter phase momentum transfer, that now becomes important; notice the 

form of this term K 0i is like a drag coefficient and that coefficient multiplied by the 

differential velocity, the relative velocity between the two phases, is a simple constitutive 

model for a force a drag force that exist between the 2. So, drag is the simplest of these 

inter phase momentum transfer terms, now again if I assume i equal to 1, there is a K 01 

which is depended on the relative velocity between the 2 phases that takes on a positive 

sign in one equation and the negative sign in the other. 

This is basically saying the force acting on 1 phase is equal and opposite of the force 

acting on the other. And if I take all the equations, all the balance laws for each of the 

different phases and add them up that gives me the even in this formulation I can derive a 

mixture level balance law, but that would have the individual velocity components 

(Refer Time: 29:24). So, I could still define sort of a velocity of the center of mass of the 

mixture, I know now that the 0 th phase i equal to 0 is moving with 1 velocity V 0, i 

equal to 1 is moving with a different velocity V 1, but based on the relative volume 

fractions and mixture densities, we can define what is called a Barycentric velocity of the 

mixture. 

And we can write a formulation for the bar centric velocities of the mixture and in that 

formulation these inter phase drag terms vanish. So, inter phase drag cannot effect the 

Barycentric velocity of the mixture because it is a force internal to the whole mixture, 

but it does effect the individual physic movement, velocity fields in the individual 

phases. So, let us for a moment look at this shear stress terms tau 0 and tau I, tau i is 

specifically what is tau i? Tau i is basically the shear stress field that exist in the drop 

phase. 

So, if I take a collection of drops with no air in between, if I try to put a hook on one of 

the drops and drag it, does this drag other drops with it that is the basic definition of 

shearing; So, if I pull one drop with me or a you know small group of drops, what does it 

due to the other drops? If there is no effect on the other drops that means, the effective 



viscosity of this collection of drops is 0, there is shear stress that can be sustained in this 

mix in that collection of drops. 

So, if i now take this collection of how do I now find the viscosity of this collection of 

drops, one would have to do or the effective viscosity of this collection of drops, one 

would have to do fully resolve simulations to look at the effect of collision between 

drops, which is basically responsible for this effective viscosity and derive from sort of 

an inverse from a regression these kinds of constitutive relationships and this is like I 

said an active area of research in itself that would be (Refer Time: 31:52) pursuing to 

complete to bring these model formulations up to some level of applicability, where they 

are more realistic for dens sprays. 

So, why do I say dens sprays, if I look at real fight sprays and do this same thought 

experiment of putting a hook on a small group of drops and dragging them, because they 

are a very high Knudsen number collection of drops, the effective viscosity of something 

like that would be basically 0. Whereas if you are in the dens spray reason, where 

collisions are more frequent then if I try to do this thought experiment in the dens spray 

region, you can imagine that the effective viscosity of this mixture would be nonzero. 

So, this shear stress term sustains itself in the den spray region, while it goes to nearly 0 

in the rarified region.  

(Refer Slide Time: 33:04) 

 



I want to look at, I want to pause here for a moment and show you one possible way by 

which you could look at modeling what use are these kinds of models, in a real spray. 

What use are these Eulerian models in a real spray. 

So one of the areas of applicability of these Eulerian multiphase models in sprays, 

especially when you have breakup and coalescence is to look at population balance 

modeling, we look at what population balance modeling is for a moment; let us say I 

have a little box with lots of different drops and this for the sake of convenience I am 

going to derive divide these drops in to different bins. So, I have let us say drops 

spanning from some d min to some d max, I am going to divide this into different bins. 

So, this is my ith bin, this i plus 1 th bin, this is i plus 2. 

So, if I want to look at how to model breakup let us say. So, initially all the drops are of 

this large size and these some process that is causing these drops to breakup. 

So, if I take the number of drops in the ith bin and that is sum n i why would n i change. 

N i changes because of two reasons, because drops in the ith bin are breaking up, so if 

gamma i which is often call the a breakage frequency, so if the ith drops are breaking up 

at, if the drops in the ith bin are breaking up at some rate. So, gamma i is a rate of 

breakup of drops, then gamma i times n i with the negative sign is the rate of breakup of 

drops and that is essentially with the negative sign taking drops out of the ith bin.  

The other possibility is that I have some drop in the i plus pth bin, breaking up and 

putting some mass, putting some number of drops in the ith bin. So, when a drop that is 

larger than the ith size class, breaks up it puts drops in the ith bins. So, i have some other 

jth size class breaking up at the same rate gamma j N j and a fraction of that gamma j N j 

which is given by this n i j coming in to the ith bin. And I could have this go over all the 

drops from i to M, really speaking it should be i plus 1, I cannot have the ith bin breaking 

up to give drops in the ith bin. 

So, at best I could have the i plus 1 th bin breaking up to put drops in the ith bin or I 

could have the i plus 2 th bin, breaking up put in drops in the ith bin etcetera. So, this n i 

j is a fraction of drops, that result that end up in the ith bin from a breakage event in the 

jth bin. So, this n i j is a fraction of drops that end up in the ith bin, originating from a 

breakage event in the jth bin. Some drop in the jth bin jth bin broke up and it breaks up in 



to lots of fragments, it could break up in to 2 equal half, it could break up in to one big 

drop and one tiny fragment flying of it could break do lots of different things. 

And this break up event now puts some fraction of those drops originating from the jth 

bin in to the ith bin. So, this is a balance of the number of drops in the ith bin, which due 

to breakup. So, when I have some break up process causing these drops to break up, 

some physical process we do not know, that physical process has to obey something like 

this. 

Now, this is called a phenomena logical model, notice how I am not yet brought in any 

physics of what is causing this break up. The physics is essentially hidden in these 

constitutive coefficients gamma i and n i j, this is my opportunity to bring in the physics. 

Say for example, I might believe through a physical process that a larger drop is likely to 

break up more frequently than a smaller drop. So, for example, if I believe that there is a 

smallest size drop, that just does not break up.  

Then I might say that gamma 1 which is the break up frequency of the smallest size class 

is 0 and I might write a relationship between gamma i and d i the size of the drop or I 

might write a relationship between gamma i and some other property that is imparting 

this energy for break up to the drops and n i j is our phenomena la phenomenology of 

how a given size of drop breaks up. 

So, if a drops breaks ups is it likely to break up in to 2 equal halves, in which case my n i 

j. So, if it is exactly breaking up in to 2 equal halves, then say for example, n 24 would 

be 1 and all other n i 4 where i is not equal to 2 is 0, so if for the case of j equal to 4. So, i 

am just looking at drops originating from break up happening in the 4th bin and if let us 

say for a moment that all the diameters are spaced equally in an arithmetic progression, 

then a drop breaking up in the 4th bin only puts drops in the second bin because it is 

breaking up in to 2 equal halves and it cannot put drops in the third bin or the first bin. 

A drop breaking up in the 100th bin, puts drops only in the 50th bin and in no other bins. 

So, this is a phenomenology that is based on some physical understanding of that 

particular break up process. So, the population balance model that we wrote this part is 

only a frame work, it is a phenomena logical frame work, the physics comes in the form 

of these gamma is and n i js and over the course of the last lecture decade or so, the 

various models have been developed for both gamma i and n i j to accurately capture the 



physics of a given physical problem. Say for example, we have a multiphase a reactor 

bubble column, where you have bubbles of some size coming in at the bottom of the 

column and they may break up and leave and we want to look at the phenomenology of 

the breakup of these bubbles because that is important to creation of surface area, to 

creation of surface area is important to mass transfer. 

So, if I look at the mass transfer pro process and if I want to model that mass transfer 

process, I need to model the evolution of the size distribution of let say drops or bubbles 

or whatever the case may be. So, what we are going to do now is look at how we can 

take our regular Eulerian multiphase model governing equations and include this 

population balance a terms. So, essentially we look at drag as been the only coupling 

between these two. In fact, if I take a 2 phase formulation of this there is only 2 coupling 

mechanisms between the individual phases, as it is apparent in this case one is through 

drag and other is through occupancy a volume. So, alpha 0 plus alpha 1 has to equal 1. 

(Refer Slide Time: 43:16) 

 

If I now look at what happens if I include population balance, I have these drag terms, 

but I also have additional coupling in the form of these population balance source terms. 

So, think of what this means if I have the drops in a box, the left hand side of the drops in 

a box population balance was just d n i d t. Which is the rate of change of the number of 

drops in the ith bin as a function of time; when I now have a flow field super imposed 



over these drops, I have to go I have to write the material derivative of that of that 

flowing field. 

So, in the Eulerian formulation where I have these drops coming in to a control volume 

and leaving, while these break up process is are happening; the first thing that you see is 

that the left hand side is now of the form with the material derivative, where alpha i is the 

volume fraction of the ith phase and if you look at what you see on the right hand side of 

these equation you see this alpha i by x i, x i is essentially size of drops in the ith bin, it is 

actually let us been even more clear it is not just any size, it is the actual volume of a 

drop in the ith bin. 

So, volume of a drop in the ith bin, alpha i is the total volume fraction, alpha i by x i 

gives me the number fraction of drops at a given point that reside in the ith bin. So, you 

see that the rest of this equation looks very similar to the population balance form except 

I have this i have this gamma i n i what looks like n I, when gamma j n j times some n i j 

which is a fraction of the drops that come over in to the ith bin. And because I am 

looking at a multi phase formulation, where I say each of the size classes is also allowed 

to move with its own velocity field. 

If we go to that level of generalization of the flow field, then drops breaking up in one 

phase resulting in showing up in a smaller size class are also bringing in momentum with 

them because total momentum over the entire mixture has to be conserved. The breakup 

of drops from a larger size class, putting drops in to a smaller size class is completely 

internal to the whole air plus drop mixture. 

So, whatever momentum exchange process is that happen are suppose to be equal and 

opposite. So, that is the reason for these 2 terms that you see in the red ellipses, where 

any momentum leaving the jth phase, accompanying the mass transfer from the jth phase 

to the ith phase ends up in the ith phase. Likewise any momentum leaving the ith phase 

due to breakup of drops in the ith phase leaves the ith phase again these are only 

phenomena logical. 

So, this is some break up process this is some process, it is like a balance law that tells 

me mass coming into the ith phase and mass leaving the ith phase mass and number of 

drops are sort of related. So, how do I let this mass come in and go, is where the physics 



of the problem comes in. So, for example, in a general flow situation like this, the actual 

break up of drops is due to a relative velocity between the air and the drop phase. 

So, we could relate the gammas to some kind of a relative velocity in the drop phase and 

when you do that essentially this is a model of secondary atomization that follows your 

primary atomization process. So, you have some primary atomization that produces a 

distribution of drops and from there on you could look at studying the secondary process 

is using a phenomena logical model like this. This is where you can take multiphase 

models and apply it to atomizing sprays, without this atomizing part they this red is 

essentially the atomization part of the multiphase formulation, without the atomization 

part these are my governing equations, where if I have the balance laws and the 

appropriate constitutive relationships and I know the size of the particulate phase 

because these drag coefficient is going to require some information of the size of my 

disperse phase drops. 

So, if I know the size of the disperse phase drops, I have this equations complete that I 

can look at transport of drops in the spray. I cannot include how the process of these 

drops breaking up without the help of something like a population balance model. This 

completes our discussion of multiphase models and you know mixture model Eulerian 

model, that I just want to leave your cell leave you with the sort of a thought, you went 

through this process of asking (Refer Time: 49:46) some physics based questions and 

finding and arriving at a model choice that is appropriate. In reality though most of our 

models are neither here nor there or they involve both. 
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So, I will just take a simple hour glass that is flowing sand, if we look at the Knudsen 

number which is the distance traveled by a given particle between 2 collisions. If I look 

at the Knudsen number in this region verses the Knudsen number in this region they have 

vastly different, this is the case where if you imagine this sand particles are all giggling 

and this giggling sand particle are going to colloid very frequently. So, this part is right 

for our kind of a continuum model, this part after you gone pass the constriction is 

essentially where individual particles are moving with no knowledge of their neighboring 

particles, there all falling in this same gravitational field with about the same terminal 

velocity, if they have (Refer Time: 51:07) a terminal velocity. 

But the mean free path which is the distance between collisions has gone up significantly 

during this process. So, if I ask the question what model is appropriate for this? This is 

actually a very very close representation for real spray, we have a very den spray region 

where we require a continuum model where I mean because of the frequency of 

collisions, you either require a model to handle the frequencies of collisions in the 

individual particle like a in a discreet particle model or you go to a continuum. 

And on the other count when you have reached in to the rarified region, you require 

something that defaults to where individual particles are moving with no knowledge of 

other particles around. This is an area that is research wise very active. To patch rarified 

spray models like Lagrangian particle tracking, is a very good choice for rarified spray 



models, but you requires some kind of an Eulerian model in the discreet in the den spray 

region. Patching these two together is what real life research these days looks like.  

We will continue our discussion in the next class. 


