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Good morning. We will continue our discussion of sprays as multiphase flows.  
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Towards the end of the last class, we had derived a commoving derivative in a slightly 

general formulation involving not just advection through a special coordinates x 1, x 2, x 

3, but also through velocity coordinate V 1, V 2, V 3. As we said F 1, F 2, F 3 would 

have to be the force vector per unit mass for this advection through the velocity 

coordinates. The simplest of such force vector that you think of let us say is gravitational 

force. So, I have a an ensemble particles, that are setting with no interaction and let us 

say the I just remaining at rest and F 1 and F 3 are 0 and F 3 are some minus g.  

So, that would cause particles that were at rest at some time t equal to 0 to begin to 

accelerate and acquire of velocity and if I was to study this in the context of the 

probability density function of these particles, it would be were the initial velocity V 0, 

which in this particular example is 0 would have becomes V 1, at some later point in 

time following the rule that V 1 is V 0 plus a dt, a in the case minus g. So, the advection 

through the velocity coordinate happens due to an external force, not due to forces that 



may originate due to interaction between these particles. 

So, let us been clear about what F 1 F 2 F 3 are I will mark this in red, is this is the 

external force per unit mass or acting on the ensemble of particles on this population of 

particles. If I look at what happens due to the interaction between the particles. 
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So, we started look at in other example between a pair of particles. So, let us say take 

particle at of some mass m and another particle of mass m and my system, now is this 2 

particle system. And if I allow this 2 particle to come collide in elastically, the 

momentum is destroyed due to these forces that may originate at the point of collision 

and all the kinetic energy in these 2 particles is converted to heat, that is our classical 

mechanics understanding of this kind of collision.  

Now when I look at this in the probability density space, I have one direct delta function 

at plus v this is actually half direct delta function, because the sum total f dv going minus 

infinity to infinity; if I am only looking at 1 velocity coordinate, then f dv would have 

equal 1. So, this would be half direct delta function at v, I will call this v 0 just 

distinguished from the coordinate v and this would be half v minus minus v 0. If I was 

defined f 2 summation of these two that would ensure that the probability density 

function have integrate out over its appropriate limit to 1. 

So, when this collision happens, this probability density function which I have indicated 



in black becomes 1 probability density function given by delta v minus 0. The sum total 

area under the distribution of course remains the same, but it has adverted from this 2 

peak probability density function towards this 1 peak at 0. What is the cause of this 

advection? For go back to the formulation I had for the total derivative, none of these 

terms can be responsible for this because it was entirely an internal force. So, essentially 

this total derivative of f, is has an effect due to coalitions and any other systemic effects. 

So, if I rewrite this system equivalent of this, it has to equal some contributions due to 

collisions, plus any contributions due to changes at the system level. That is if I had 

ensemble of droplets that were let us you know of total mass m, if I was to draw a system 

boundary, by definition system boundary is where you do not allow mass transfer across 

it. What sort of effects can cause the system mass to go up, if I do not allow mass 

transfer across a system boundary? One such effect if I have nucleation of droplets inside 

due to condensation process. So, I had some vapor inside and the vapor condense to give 

me droplets. 

So, now as far as the droplet face is concerned, there is an increase in the mass due to 

this nucleation and condensation process. So, I could have some droplet generation, can I 

say generation, but it could also mean destruction due to evaporation. So, these are all 

the effects that can happen at the system level, these are all the reasons by which the 

probability density function of these droplets in the size velocity space, can move can 

change. So, if I combine the system level equation with version we had before from the 

advection form we find. 
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And I will write in a slightly compact fashion; this is in the spray literature, this is called 

the Williams Spray Equation due to a man name Forman Williams. And we must also 

mention that this is very similar in fact, has a very strong connection to the Boltzmann 

equation that fussiest used study gases. So, you can think of gases which is made of 

molecules, which are made of molecules and we can write a probability density function 

for the ensemble of particles, it is not I mean for an ensemble of particles in the size 

velocity space and that advect through the velocity coordinate, size coordinate due to 

respective forces and is altered due to the collision terms. So, this is also has connections 

to the Boltzmann equation, which is used in kinetic theory. 

So now, we started to define this f has being probability being our density function, we 

now have an equation that tells us how f changes in the spray. If I go back to what f is for 

a moment, we said f is a probability density function we did not quit pressingly define if 

it was number probability density or mass probability density, we can define f to be 

either of two and it worth just as well nothing in the equation would be different, if we 

make this mass probability density function as suppose to a number probability density 

function. 

Now if you look at this has mass probability density function. 
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So, I am now going to define f of R; of course I forgot writes my r terms let me include 

that. So, I will describe what each is this is basically due to growth of droplets, this is due 

to collisions, this is due to birth of droplet or death, this is advection in the velocity 

coordinate, this is the explicit time rate of change. 

So, if I now continue on and look at what the forms, if I define f has mass probability 

density function and the use of vector notation just too; so this is just to be clear it has 

units of kilograms per micrometer of the drop size, per meter of physical space, per 

meter per second of velocity. So, this is the units of this probability density function. If I 

integrate this over the appropriate limits of r let us say. So, I will take this equation. 

So, f is a probability density and I will just quickly write out the integral condition that 

we have in explicit form that is the probability of finding a drop in the size 0 to infinity 

with velocity components. So really this first integral is a triple integral. At a given point 

the probability of finding a drop from 0 to infinity and components minus infinity to 

infinity is 1. Now this is a little different from that I developed earlier, that I have written 

down here were the normalization factor for this probability is the total ensemble of 

drops in the volume x to x plus dx. 

So, in another words, the probability if I take the normalization factor has been the total 

set of drops in the entire spray, then I have a probability of finding a drop in volume of x 

to x plus dx. So, probability of finding any drop in my volume x to x plus dx, itself being 



less than one, if my normalization condition is the total set of drops in the entire spray, 

then the probability of finding set of finding any drop in the volume x to x plus dx is 

some number less than one of that count this integral minus infinity to plus infinity and 0 

infinity f, d R dv is a smaller this is the total number of drops found at that point in the 

volume x to x plus dx. So, really speaking this is normalized to the mass of drops to the 

volume x to x plus dx.  

So, if I take the normalization the denominator in my normalization condition, as been 

the total mass of drops in the volume x to x plus dx, then you know that is how you get 

this integral to V 1, in fact this is the total mass of drops. So, the units of this f or not 

same as the written here, you would not have this per meter; oh sorry that per meter is a 

probability density function in the special coordinates. So, I if I want ask the question I 

have a spray, I want to ask the question what is the distribution in the droplets in the 

spray? I do not care what they are size is I do not care what there velocity is, how is the 

mass distributed in this spray? Which is f is a mass pdf, if I ask the question how is the 

mass distributed, I may find that there is a more mass here in the edges and that there is 

less mass somewhere here in the middle let us say.  

So, in a contour sense I might say, there is a contour inside which there is low mass 

density, outside which there is high mass density, this is a special mass pdf. If I take this 

special mass pdf and if I take a small point and I look at what the special mass what the 

distribution is within the mass that is concentrated at this point. So, I am now not 

concerned that there is less mass here, if I took the mass concentrated at this point and I 

want to see how is this mass distributed in the size and velocity coordinates I can create a 

pdf and that pdf is given by this integral. So, if I now say just mass pdf is defined point 

wise. 

So the difference is, if I treat x as a pdf variable that is as variable in which I am also 

accounting for the probability density, then I get this per meter actually is if I am only 

dealing with special dimension, but per meter cube if I am dealing with 3 special 

dimensions, just like this would be per meter per second, if I am only dealing with one 

dimensions. So, this is for a 1D case, this is the units are this. If I am not dealing with 

space with a special coordinate, explicitly as being part of my pdf that is I am not 

interested in how this pdf, how the mass is distributed probability density of mass 

distribution specially, but I will treats space just like time and take a snapshots this is 



how we did earlier discussion. 
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So, f is function of R and v with x and t as parameters. So, if this is a case then only r and 

v are my parameters, where as if this is a case then I have another triple integral minus 

infinity to infinity of dx, if have to normalize, if x is also part of my pdf independent 

variable list, then this is a condition that I have to satisfy this will also be a triple integral. 

If on the other hand I want to treat x is only a parameter. So, at every point I create a pdf 

of only size and velocity, this is how let us say we do a p d p a data set, we are not doing 

a p d p a data set treating x as a depend as one of the independent variable list in the pdf. 

Because p d p a definition is a point measurement instrument, where as I am looking at 

something that measures specially I may be able to do the x, I may be able to find x as 

part of my independent variable list.  

So, if I now write revolution equation for this f not revolution equation, a normalization 

condition for this f then and this is true at every point, again this is a triple integral. If I 

take my William spray equation, I am going to take the case of dilute spray with no 

evaporation condensation. So, the S C and S D are 0 in this is what we called a dilute 

spray, Dilute non-evaporating spray. Dilute essentially means no chance of collisions 

happening. So, collisions are so rare in occurrence that I can ignore that effect. So, if I 

said this equal to 0 on the right hand side and perform this integration over the size 

coordinates. 
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So, I want to now see if I only integrate this equation, in the R coordinate, we saw from 

our discussion of multivariate probability of densities, that this will also be probability 

density in only the velocity coordinate. Because whatever this function is a function of 

only the velocity v and that will also probability density because integral of that over the 

appropriate limits of velocity would become 1. We saw that in an example earlier, notice 

how some instances brought the integral inside the integration and in an other instances I 

did not, the reason for this just understand that, in this case integral integration O R and 

time derivation are commuted. So, I can exchange to operation in order. 

So, if I now define this has being some sort of probability density function in velocity. 

So, since we said this will have all the status of our probability density function, we are 

able to do this. So, if I rewrite this, what do I get? Sorry, this was 0 to infinity. Notice 

have I have still left with some f terms I do not have any equation only in g terms, 

because I know integral 0 to infinity, let us say have replaced integral 0 to infinity, f d R 

with some g of v, it is like a probability density function in the velocity coordinate and 

am able to take care of the first two terms, but the last two still have this f part remaining. 

If you look at especially the third term, I still have f because, if F j the force acting on a 

set of particles external force is a function of R, then if it is not a function of R, I can take 

that out and write this as F j times g.  

So, if F j is not function of R I can write this as F j times g. if it is function of R then I am 



in trouble because I have F j from I earlier formulation as a external force per unit mass 

acting on these particles, and if there is size dependence on it, then this becomes little 

tricky to write. If we think of an external force per unit mass on a set of droplets, where 

there is size dependence, the simplest of such forces is drag. When you write the drag on 

a spear for example, the drag on a spear scales as the size of this spear. So, you 

essentially have to have I mean this is not something that is out of the ordinary very 

commonly found in sprays, that this F j is a function of R and as a result I am not able to 

do this integration right away, this is the start of what is often called the closer problem. 
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So, this part say for example, I will said R dot 0 will come back look that later, but this 

part here were I am unable to write F j this integral F j f d r. In terms of g is what is the 

reason for what we call are closer problem; so, what we will do in a next class is will 

start from here and the governing equations that we are used to see are our Navier stoke 

equations. So, we want to see how to go from something that looks like the Boltzmann 

equation or in this case William spray equation and arrive at a multiphase or even a 2 

phase set of equation, 2 sets of equations describing the gas phase and the droplet phase.  

So, we going to do that mathematics in the next class, but before that we want to 

understand what are the phase. So, if I take a spray wave done this many times you know 

we have air in the interstitial phase between drops. But if I take all the drops with 

vacuum in between and the air alone, in some sense they look alike; in the sense that 



drops are macroscopic distinct entities that are separated by emptiness in the case I 

talked about where the drops are taken out with vacuum in the middle. Now if I really 

zoom into the air part, the air is also discreet molecules with emptiness in the middle. 

So, really the only difference between air and the drop phase is the size of the particles, 

were molecules of oxygen and nitrogen may be a few tens of angstroms, drops of liquid 

may be fraction of micron to several hundreds of micrometers, and the interstitial phase 

also scales. But other than these scaling effects, the nature or morphology is somewhat 

similar. We will use this argument our building block, to replace the drops with the 

continuum; just as we replaced as discreet set of oxygen molecules and nitrogen 

molecules with this continuum idea called air. 

We will replace set of drops with the continuum for today we will call it as spray or call 

it drop fluid. So, this drop fluid plus air put together makes our spray. We will see how to 

get this far from the Williams Spray Equation in the next class. 


