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Good Morning. We will continue our discussion by starting to look at secondary 

atomization, and we will see briefly what secondary atomization is? What role it plays 

and then we will come back and look at some simplified analysis to start with, and you 

know what sort of techniques can be used to understand secondary atomization as a 

process. 
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So, we looked at several different, we looked at least two different analysis techniques 

that we can apply to primary atomization. We looked at one in great detail called linear 

instability analysis. 

So, this is where you have bulk liquid coming out of the spray nozzle and that bulk liquid 

is breaking up into drops, and these drops are somehow determined by the instability 

structure that occurs on this liquid sheet. That was the premise on which we learn the 

mathematical frame work in which we can do this analysis right. Now we want to study 

the life of these drops; what happens to these drops after they have formed is there a 



possibility that they could breakup further if. So, under what conditions and if after they 

breakup and if they do breakup what is the result of such breakup process.  

So, that is essentially what secondary atomization is like we said, primary atomization is 

a process of the bulk liquid breaking up into drops. Secondary atomization we will sort 

of loosely define anything that happens afterwards. 
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So, take a very simple example let us say I have this spray nozzle, and I have this liquid 

sheets. Let us say there is a sheet and there is a drop that has formed it may be a drop it 

may be like a rings structure depending on what sort of breakup happens. This ring is no 

longer in contact with the nozzle directly. 

In other words if I try to spray a conducting liquid and I can measure the connectivity of 

each blob of liquid to it is to the parent nozzle, this blob that is formed which let say a 

toroidal or semispherical whatever, a sort of quasi spherical is no longer in contact with 

the main with the nozzles. So, the subsequent breakup of these structures is what we will 

term secondary breakup or secondary atomization.  

So, there is a lot of secondary breakup that happens in a spray as you can imagine, 

because the drops that are formed form the primary breakup process may not and you 

know in most of the senses are not spherical, but the final resulting drops are mostly 

spherical; we will see why and how in a moment. 



(Refer Slide Time: 04:12) 

 

So, this is the sort of our loose definition, so let see where we can take this definition 

forward. So, let say why do I want to study primary atomization? If I go back to that I 

will take a couple of very simple examples. Here is an example of a rotary atomizer; 

rotary atomizer as we saw very briefly is the case where we have disk. So, this is I am 

gonna just draw the outline of the disks say, oh no this is the disk here, the disk is 

spinning. And you can see there is a nice periodic structure in that sense of the liquid that 

is purring out and this periodic structure is spaced as azimuthally for it because of the 

serrations on the disk. 

So, the primary breakup process is essentially a result of spilling liquid jet through those 

serrated edges and that spilling liquid jet breaking up due to capillary instability or due to 

some cross flow instability. So, I have basically a cylindrical jet that is being squeezed 

out of this rotation of the circular disk and this cylindrical jet is also moving in an 

azimuthally sense, which is similar to having an air across flow of air. So, I have a 

cylindrical jet with the cross flow of air that is gonna cause the breakup of this liquid jet. 

We saw from primary instability form linear instability considerations that the breakup 

of any liquid jet produces drops that are on the order of the size of the liquid jet itself. So, 

if I have a round liquid jet undergoing capillary instability the size of the drops form 

from that process will be on the order of the liquid jet diameter, it cannot be much 



smaller except if you have you know we saw in the share instability with like a diesel 

injector, but in a case like this the primary drop formed are very big. 

So, for example, on the right hand side here, I have the drop size distribution that the 

manufacturer are in this case ledebuhr claims to have measured in this rotary atomizer 

spray. The serrations in this particular case may be on the order of about 250 microns, 

which means the primary drops that are formed are on the order of about 250 microns. 

And if this is the distribution that was observed you can see that there are hardly any 

drops that are on the order of 250 microns. 

So, even though the primary process caused drops that are on the order of 250 microns, 

there are no drops in the real spray where measurable of that size. So, the question then 

one has to ask is what happened in the middle; that is why secondary atomization 

happened. 

Let us take one more example and see what we will learn. This is the size distribution 

measured in a real rain. So, this we are now talking of the grandest of all sprays a very 

heavy down poor of rain. So, if you take rain falling from the sky you have and if I had a 

way of sampling drop sizes in the rain, and in fact these people Marshal and Palmer; 

Palmer did that in this 1948 paper. They made measurements of the rain drops and 

showed that the number density which is now a probability density function of the drop 

sizes in a real rain follow a graph approximately like this. 

A point to note is that is this exponential tail where you have you know the ordinate is 

logarithmic and they emphasize linear which means this is a case where, the number 

density goes us e power minus d over some d bar. We have seen this in our studies of 

probability density functions. And different amount of rain fall, so this is 1 mm per hour, 

this is 5 mm per hour, and 25 mm per hour; 25 mm per hour is like a huge down just to 

give you an idea. 

So, the indifferent instances the size distributions are different, but qualitatively they are 

all very similar in their shapes. You can even go all the way back to the very small sizes 

and you can see that there is a similar structure irrespective of the rate of rain fall. The 

point, we are going to focus on is the fact that this slope is linear as you get towards 

larger and larger drop sizes. If I plot this data in an axis like that essentially what I am 



looking at is a long tail just like that. So, essentially this would be an e power minus d 

over d bar type tail. 

So, whether it is a rotary atomized spray or rains which are obviously coming from very 

different sources. The behavior towards larger drops seems to be that you have this long 

exponential tail. 

Now, you can show I just took examples that are very contrasting, but you can take real 

sprays coming out of an air blast atomizer, a simplest atomizer, and many other different 

mechanisms of atomization and you will find that there is a long exponential tail that of 

the probability density as the drop size increases. This is a standard feature of most 

sprays. So, the question done is like if all these are mechanistically so different why is 

the measure drop size distribution showing such similar features. The answer to that is 

that when drops are produced by primary atomization processes they are relatively still 

unstable. 

So, we really mean unstable in the sense of a linear instability analysis, showing a 

positive growth rate. And therefore, they are likely to breakup; so we will see the 

moment under what conditions are there likely to breakup and how. So, therefore, this is 

like I said the last part is just a hypothesis it would be very care full when you listen to 

hypothesis, that in most sprays secondary atomization processes are really responsible 

for drop sizes and their distributions much more than even the primary processes. 

So, even if I did not do all the linear instability calculations, but I just assume that this 

spray nozzle is producing drop on the size of the liquid sheet, or on the order of 

magnitude of the phase diameter, in the case of a diesel injector or on the order of 

magnitude of the liquid sheet, in the case of either an air blast or a simplest atomizer. But 

did a more thorough job of the secondary atomization process is modeling; I might end 

up getting the better answer. So, I might end up getting a reasonably correct answer I 

should not say better. 

So, that is the hypothesis under which we will learn secondary atomization. And clearly I 

did not present this hypothesis when I was describing linear instability analysis, because 

that is also an important process at least to know under what conditions jet is even likely 

to breakup. We cannot predict that or without the help of a linear instability analysis. So, 



we will come back to the rest of this a little later let me close this. So, with that premise, 

let see why would a drop breakup? 
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So, let us ask a question, say I have formed the drop and I am going to assume an initial 

drop is spherical. Let us say the drop is moving with the velocity U d surrounded by an 

air flow that is at some velocity U a. So, we are gonna to ask the question, why would 

the drop breakup? If I assume for a moment a well even before you ask the question why 

would the drop breakup we will answer the question what causes deformation. So, 

breakup is like an extremely went of a deformation process that I that has to initiate we 

initiated on the drop. 

So, we will see what causes deformation of the drop, clearly for that we need a stress you 

need a force. So, what causes the force as you can see I have a drag force, the drag force 

on this drop is some drag coefficient times pi d squared over 4, let me keep the notation 

right half rho I know you are going to say u squared, but we have to be care full it is 

essentially a result of a relative velocity between the phases. So, in this one dimensional 

sense the relative velocity is just U d minus U a square, this is the magnitude of the drag 

force this is not getting indicating the direction. 

Now, does it matter if U d is greater than U a or U a is greater than U d not really, 

because all I care about is the relative velocity I could have a stationary drop be impacted 

by a sudden by a velose, by high speed air or I could have the drop being injected at a 



high velocity into quiescent there it does not matter. Now this drag force, if the drop was 

perfectly spherical and if the drop was let us say rigid that is now we are looking at a 

rigid sphere, I can draw like a pressure profile around the drop something like that you 

can clearly see that the pressure on the front part would be larger than the pressure 

elsewhere etcetera. 

Now, if I have a perfect stokes drag then it will be a symmetric profile all around, but 

anything that has a finite Reynolds number, you are not going to see symmetric pressure 

distribution around the sphere. So, now, what does this pressure distribution do since we 

are now, since we are allowing the drop to deform this drop is likely to deform in the 

direction of the exerted force sort of like that, because they send the pressure force is 

now just trying to flat an out this into a pancake, and if you let this process continue all 

the way forward it is going to breakup. Now are there any other forces that are important 

yes the answer is we have a surface tension force.  

So, on one side we have the drag force and we have the surface tension force which is 

given by sigma times pi d, if pi d is the circumference of this drop, if I have to deform 

this drop from the black shape to the blue shape I have to increase the surface area, and 

any increase in a surface area comes at the penalty of increased surface energy and that is 

work done against surface tension force which is of this magnitude. 

So, if I allow these forces two forces to compete with each other which is what is 

actually happening, let us see what happens if I have a competition between these two 

forces, by the way this what is this rho? This rho is that of the air let us be very clear 

about that. So, when these two forces are equal in magnitude are on the order of the same 

are on the order of the same magnitude, then you have something interesting happening 

in term it is basically like a fight between equals drag force trying to deform this drop 

and surface tension force trying to resist the deformation. 
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So, and when would that condition occur when this mathematical condition occurs, and 

what you see on the left hand side is what we often called Weber number, and this 8 over 

C D is a is another number for drag over is drag around sphere if I plot C D; C D 

happens to be a function of the Reynolds number of the say Reynolds number around the 

flow, and you know you can look up any standard text books and you will see a graph 

that looks something like that, for C D as a function of Reynolds number. 

So, essentially C D is like a number that comes from either empirical measurements or 

some source of some other source, the point is this that really the value of C D is 

important, but not as important as the idea that when this Weber number is one the order 

of some critical Weber number. So, we will call this 8 over C D as some critical Weber 

number. So, when this when the real Weber number around my off the flow around the 

drop is on the order of the critical Weber number, then I start to see deformation effects 

scraping is just surface tension force sigma times pi d is much greater than the drag 

force, essentially I have a very very rigid sphere that refuses to deform because it is 

surface tension force is. So, high that it is able to keep the drop in time. 

So, it is almost like a perfectly spherical body moving through air on the other hand if 

the drag force is very large in comparison to the surface tension force, it is as though I do 

not even have a liquid drop it is just going to be pulverized it is as though I have a for 

lack of another way of saying it like I have a little mass of gas, that is being impacted by 



some other stream of fluid and this mass of gas is just going to disintegrate without 

knowing any idea, without having any effect of a restorative surface tension force, these 

are the extremes of what the Weber number looks in the Weber number space. 

If the Weber number is very large; that means, the surface tension forces is insignificant 

in comparison to the aerodynamic force that is trying to deform the drop, and if Weber 

number is very small the surface tension force is. So, large that I would not have any 

kind of breakup the transition between these two regimes happens at this critical value of 

the Weber number. 

Now, very often people ask me the question even if I write Weber number is rho u 

square d over sigma done a little bit of simplification u here is a relative velocity, but for 

the remainder of this lecture in the next few we are going to assume that the drop is 

stationary. So, in other words if I impose a coordinate system that is moving with the 

drop at the velocity of U d then I all I care about is U a minus U d. So, u is that relative 

velocity measured in the frame moving with the drop, and if I write down the Weber 

number as rho u square d over sigma what is this rho should it be rho a or rho l the 

answer it is it depends on what you want the Weber number to convey. 

In this particular x position, I have shown Weber number as coming out of a competition 

between the aerodynamic drag force and surface tension force therefore, you should this 

becomes rho a. Now if I was trying to in and this is typically what you will define Weber 

number as, I mean where as if any sort of a dimensionless number should come out of 

physical arguments like this and we will do that we will look at other such arguments in 

the next couple of we will look at other such dimensionless numbers that will fall out of 

other fall out of similar arguments. 
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If I take the next instance let me go back to my drops. So, we know now that Weber 

number is important, and that this Weber number has to exceeds some critical value and 

that critical value could be a function of the Reynolds number, if C D is a function of the 

Reynolds number right the critical value is a function of the Reynolds number right, what 

is Reynolds number in this particular case it would be rho a minus u e. So, I will use the 

u calculation. 

So, I ask the same question I would answer it, but I will ask the question and then answer 

if I write Reynolds number as rho U d over mu is rho rho a or rho l and is mu mu a or mu 

l that depends on again what you want the Reynolds number to convey. We will see a 

couple of instances, if I want to talk of this Reynolds number I will make the distinction 

that this is the drop Reynolds number, this is the Reynolds number of essentially the drag 

coefficient acting on a spherical drop. 

So, if I want to talk of this then R e d is rho a U d over mu a because, I am looking at the 

drag on a steel ball of diameter d that is what this sort of C D versus Reynolds number 

comes. So, if I want to understand how this critical Weber number behaves as a function 

of the Reynolds number, that Reynolds number is rho a U d over mu a which is the 

viscosity of the air. We will see another, but for the breakup of the drop itself is the 

Reynolds number associated with the liquid viscosity important. 
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So, in other words let us ask another question what role does liquid viscosity play in this 

whole process, we saw the role of the liquid surface tension, let us see what role does 

viscosity play. So, if I take a drop and if I want to deform it slightly now these are all in 

the coordinate system moving with the drop. 

So, the drop is stationary and it is just deforming as this deformation process happens I 

have to set up relative velocity field inside the drop. So, if every point in this drop is 

moving at exactly the same velocity there will be no deformation of the drop in the frame 

of reference fixed at this o, if I have to have deformation of this drop in the frame of 

reference fixed at some center of mass with the drop let us say, then different points in 

the drop have to be moving at different velocities, something like that the moment I have 

different points inside the drop moving at different velocities, I automatically I am 

implying that there is a velocity gradient field which means you are going to create a 

stress field viscous stress field. 

So, let us see if we can estimate that viscous stress field. So, if again take a drop of the 

diameter d, the viscous stress field inside the liquid drop is what I now thinking of, is 

what I am now trying to model. So, that goes as mu the liquid viscosity times any sort of 

a velocity gradient that you can set up inside the drop. 

So, let us take the extreme case, where this u now we are looking at a stationary drop 

impacted by a velocity u right. So, if this u is the velocity of the farther most for further 



point on the drop and I will take the extreme case where my o is at rest. So, over a 

distance r radius of the drop the velocity is going from some u to all most 0. So, the 

viscous stress is going to be on the order of that, we have only estimating the order of 

magnitude. 

So, just to like if I put 1 mm drop in a relative velocity of field let say 10 meters per 

second, if I put plug in the numbers here that will give me an order of magnitude of the 

stress that is expected, since we are dealing with d for diameter in the previous example 

values is the same d, because we are only establishing an order of magnitude that factor 

of two really does not matter. So, this is the stress field, and the similar and the surface 

tension field surface tension pressure that is resisting this deformation if sigma over d. 

Now, notice both of these have units of stress force per unit area I can compare this 

stresses or I can compare the areas it does not really I mean I can compare the forces, or 

it does not really matter. So, all I will do is multiply it by like a pi d squared over 4 or if I 

just multiply it by d squared. So, on both sides and it does not really change anything 

that. 
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I am about to do which is look when the viscous stress is on the order of the stress the 

restoratives surface tension stress or no let me be clear if I am comparing this viscous 

stress to the surface tension stress, what I am trying to say is that the surface tension 

stress is essentially destabilizing the drop, because of the oscillations that it is creating 



the viscous stress is trying to damp out the oscillations of the drop. So, this particular 

comparison an if you notice is only intended to show what are the, if I have a surface 

tension pressure that is trying to somehow destabilize the drop. 

Like for example, if I take a really type instability. So, just a cylindrical jet of liquid, 

cylindrical column of liquid infinite column of liquid in air, we saw form linear 

instability calculations that that column of liquid is unstable you could rather breakup 

into drops of a certain size based at a certain distance lambda, that lambda comes from 

the linear is the point of maximum growth rate. So, that is a process where surface 

tension is driving the growth of the instability that is the cause of the instability and that 

surface tension driving force, if that is much greater than the viscous damping force. 

Then you essentially have a breakup process, if we if the viscous damping stresses are 

going to be much greater than the surface tension driving force, then you are going to 

change the rate of the growth and eventually could even stabilize the process we will see 

what happens. 

So, essentially if I write this comparison at this point I want to sort of bring in all the 

different dimensionless arguments that you could make. So, you have this other number 

called the capillary number, which comes from a competition between the viscous 

stresses that araising the fluid during the course of deformation. If I do not have a 

gradient field set up inside the drop the velocity gradient field I do not have any viscous 

stresses. So, if the entire drop is translating I do not have any viscous stresses inside the 

drop, this is only that during this deformation process that I have gradient setup inside 

the drop, and because of the deformation process and on the right hand side here, I am 

looking at the surface tension forces that could be causing that destabilization. 

So, if I say on the other hand the viscous stress is inside remember are proportional to the 

gradients in other words they are absolutely 0 unless there is a gradient field in the 

gradient field is what is actually causing the gradient field in our instance, it is the 

aerodynamic force. 

So, I have this half rho a u squared which is the pressure force. So, if I look at the 

comparison between the viscous stresses and the aerodynamic stresses, what do I have I 

will ignore the factor half, because I am only interested in orders of magnitude know 

kind of the weirdness of the u of the see we are forming dimensionless groups, but you 



never think of rho a U d over mu l until you write this comparison of until you use 

physical arguments. So, the Reynolds number with the mu a in the denominator is not 

really expressing the competition between the viscous stresses inside the drop and the 

aerodynamics stresses that are causing the deformation you would never be able to 

establish the competition between these two physical process. 

Now, so I have this kind of a Reynolds number this capillary number and the Weber 

number that we have found already. 
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So, let just write those down, now as you can tell this is a very weird Reynolds number 

right. So, what people find it instead of dealing with the rho and mu coming from the 

different fluids people find it useful to define another parameter called the ohnesorge 

number, which is basically square root of the Weber number divided by Reynolds 

number, which if I do the calculation rho a square root rho a u square root d divided by 

square root sigma times the Reynolds number is mu a u l rho a U d u cancels out.  

So, what I have is mu l divided by sorry, sorry see the point of some of these like 

derivations of dimensionless groupings without the use of Buckingham pi theorem which 

is what you typically learn in under grad fluid mechanics is very important, you would 

never be able to physically cast these kinds of groups without using physical arguments 

like this. 



So, another fall out would be never say I will divide the numerator and denominator by 

rho a, and replace this with the kinematic viscosity of sorts because they are coming 

from different they are of different fluids. Now, let see this is the role that viscosity 

place. So, I want to look at this dimensionless group to tell me how important is liquid 

viscosity this is very small; that means, the effect of liquid viscosity itself would be is 

negligible, where as for the same Weber number if I have a high ohnesorge number the 

effect of the liquid viscosity is now important. 

(Refer Slide Time: 39:05) 

 

Now, if I used simple Buckingham and pi theorem arguments, I will show you what is 

might happen. Where do we do in Buckingham pi theorem we essentially start out by 

making the list of all the parameters that are relevant, I do not think I am list out 

anything. So, if I have 1, 2, 3, 4, 5, 6, 7, parameters I can form n minus 3 which is 7 

minus three or four dimensionless groups, have return three of them here 1, 2, 3 

ohnesorge number is not the fourth dimensionless group, because it was formed out of 

Weber number and this definitional granules number. 

So, I am looking for the forth group which in this case turns out to be the density ratio 

rho a over rho l. So, in other words I cannot form a rho a over rho l by any combination 

of these three groups primarily because rho l does not even occur anywhere any here. So, 

what does this tell us? So, we have now identified the four dimensionless groups that are 

important, now I could have gone through a similar physical process to identify this kind 



of a group the way to do that is, what is the role of the liquid inertia in relation to the air 

inertia? 

So, if I say the liquid is some density royal it is mass is d cubed proportional to d cubed 

and it is velocity is u. So, rho u rho l u rho l times the mass is like a times the let say 

essentially is the measure of the liquid phase inertia, we want to look at this is essentially 

going to tell us we want to look at the competition between liquid phase inertia and gas 

phase inertia and this dimensionless group is one way to find that, now nothing in our 

arguments was restricted to drops in air if know this rho a I could be looking at the 

breakup of bubbles in an infinite medium of liquid for all this argument is concerned. 

So, it really does not matter. So, I another way to think of this is I can take a combination 

of the ohnesorge number that I have defined here this definition and this definition of rho 

bar. 
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And through some appropriate pairings of o h and rho bar define another o h bar which 

would be mu l divided by square root rho l d sigma, which if you simply, I would just be 

o h times square root of rho bar. So, once have four dimensionless groups I can find 

many, many more from just multiplicative and divide divisive combinations of all of 

these of the basic four. 



But which once do I pay attention to physically you cannot get to that using Buckingham 

pi theorem you will need the physical arguments that we use before. So, if we go back 

we used forces to draw our analogies another way to do the same thing is using times. 

So, I could use what is called a times scale analysis to see what is it that the if the time 

what are the different orders of magnitudes of the different time scales and from there 

draw comparisons to which ones would be comparable which one should be relevant. So, 

we would not do that today, I just want to I will probably come back to that later on 

when we do need to talk of a secondary breakup. 
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But for now I have identified these groups. So, what can we learn from that, the start of 

any understanding these experiments for the most part right? So, let see what 

experiments have showed in this particular instance what you have here on this access if 

it is not clear is the ohnesorge number when this is the Weber number that we define, 

this is the some very detailed data from all this different sources that professor g m faeth 

and his co workers put together in to this regime diagram. 

What is a regime diagram, if I have Weber number and ohnesorge number and if I 

identify a certain range of ohnesorge numbers and Weber numbers? What do you expect 

would happen in that range? So, in different parts of this graph as you can see there is 

different physics happening we will see individually what each of those are. So, if I have 



very low Weber number and very high ohnesorge number we will take the easier once to 

understand then we will come back to the rest. 

So, I will draw schematic of a drop being hit with air at some velocity u this is some 

diameter little d liquid viscosity mu l sigma etcetera, we have define the ohnesorge 

number, if I have a very high ohnesorge number on this order of magnitude and very low 

Weber number it means that there is the liquid viscosity is. So, high that it is practically 

preventing any deformation of the drop as you can see we say that it will move, but this 

is hardly any this break hardly any breakup expected and even hardly any deformation 

expected less than 5 percent. 

We will go to the other extreme up here, very low ohnesorge number and very high 

Weber numbers this is all most like our like a blob of gas that is going to be impacted 

that surface tension and viscosity play hardly any role. So, that is where you get this 

thing called the shear breakup where I have a drop and I have tiny fragments being shed 

form the sides of the drop. 

So, it is almost like I have flop around a spherical surface and that flow is just pinching 

of tiny drop. This is like our diesel spray as you can tell in this kind of a mode, of this 

kind of breakup the range of the drop sizes expected form the breakup process are going 

to be much smaller than the parent drop itself. And in the rest of the regime you have 

other physics happening that. 

We will come back and discuss in the next class. 


