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Lecture – 27 

Design of pressure swirl atomizer – 2 

 

Welcome back. We will continue our discussion on design of atomizers. We will start by 

looking at simplest of all which is the pressure swirl atomizer and try to understand a 

formal design process that we can used to design a simplex atomizer. Now before we go 

much further it is always a good exercise to first have a schematic of what you want your 

atomizer to look like, and various degrees of freedom that you have available to you at 

your disposal, say you know whether is an orifice size or any other dimensions. There, 

these are all degrees of freedom that you have available at your disposal. 

And you have been given a certain set of constraints that you have to meet. So like for 

example, you may have a certain supply pressure that is available to you and you want 

your atomizer to spray a certain fluid at a certain flow rate these are all design constraints 

that you have to obey at the end of your design process. 
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So, we will start our discussion of design of simplex atomizers. This is going to closely 

follow a paper by Xue et al, I will give you the reference it is AI double A journal 

volume 42 12 from December 2004. In fact, their process also follows the original work 



in this field by these two people, this is a classic paper where the first design process 

where of simplex atomizer where was presented. 
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Now, let us first draw a schematic of this whole of what it is that we are talking about. 

We will start by looking at the schematic itself, the atomizer that in question as two parts 

to it. Usually, there is a fuel distributor. So, this we will call this part distributor and this 

part is often called the orifice plate. So, the simplex atomizer at it is heart as two parts to 

it. Now, the distributor element has a set of tangential slots and in this case, we have 

shown those to be at some angle beta. And, they are bringing in fluid into this passage 

here as we as just I will sketch this just to show you, this is all like the passage that is 

enclose by the distributor and the orifice plate; we want to erase and this wanted to show 

you the basic idea of how those works. 

So, all of there a part that I hatched in yellow could be wetted by the liquid that you are 

trying to spray. So, that is the geometry we are looking at. Now their distributor element 

brings in fluid at some angle beta as well as it having a swirl component. So, if I look at 

the top few of the distributor plate essentially it could be a set of slots. Let us say I am 

showing in this case two slots that are coming in at some of axis location r i, the of axis 

location r i decades the amount swirl. Now I am shown the swirl chamber here to be 

slightly larger than r i itself. So, the distributor slots are not exactly at the very tangential 

edge of the swirl chamber which is sort of more like a practical situation. 



Now, in this case, essentially; what we form because the liquid coming in is at tangential 

has a tangential velocity you create a swirl in this plane and that swirl sets up a free 

vortex inside this region. For a free vortex we saw that, we total angular momentum is 

conserved, because there is no dissipation because the flow is irrotational, for a free 

vortex the angular momentum is conserved which I can write as follows. 
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If I want to know what the swirl velocity is at any r location, and if w i is the swirl 

component of the velocity at the inlet, r i is of course the radius of the slots in the 

distributor. Now like I have shown in this picture two slots but, I could have multiple 

slots, so at any r location I have w i. Now just to clear what w i is; w i would be Q times 

sin beta divided by A p. A p is the total area of all the slots put together.  

For example in this case, if w is the width and d is the depth N time d times w is A p. 

Before we go much further let us write down the list of givens, what are all the degrees 

of freedom that are available to us in the design process and typical constraints. For 

example, the degrees freedom available to me are N, d, w, r i, r s, I will add a few more - 

if this is L s and if this is l o. So, L s is the length of the swirl chamber, l o is the length of 

the exit orifice and of course r o that I have shown here which is radius of the exit 

orifice. 

Now I could also have let us say, this angle here alpha the angle of convergence these are 

all parameters that are important. Typical constraints that we have to meet, are supply 



pressure is usually specified, flow rate that is you want the nozzle to deliver is usually 

also specified, so that is Q we will say that is in meter cube per second. This is in pascals 

or bar typically, let us the more engineering rather than a SI unit will say this is specified 

in bar. This may be specified in liters per hour or liters per second. 

I have a certain cone angle that I require, say for example in this schematic it could be 

that angle there of the liquid sheet exiting the nozzle. And in more resent instances you 

may have some sort of an indication of some sort of a requirement coming from drop 

size. I will use a script d for this although we will very quickly see that it is going to only 

be known after the fact not really controlled during the design process. 

If I now go back to my free vortex that I have set up by this tangential slots w times r is 

w i r i which is, coming from angular momentum conservation. Now, mind you the 

moment I say angular momentum conservation I have already made a couple of 

simplifying assumption that we are only dealing with inviscid analysis. Actually, angular 

momentum conservation alone does not require inviscid see it could be true even in a 

viscous flow, but we are only going to look at an inviscid analysis; as we will see a little 

later on. 
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Now, since we have made the simplifying assumption of the flow being inviscid I can 

now use Bernoulli’s equation. At any if delta P is the supply pressure P is the static 

pressure at any point in the chamber, u is the axial velocity, and w is the swirl velocity. 



Now, if I go back to this schematic we talked about this in some detail the one of the 

main advantages of using a pressure swirl atomizer is the fact that it entrance an air core. 

So, your orifice size is no longer the determinant as far as the lengths scale of the liquid 

coming out of the nozzle. The lengths scale associated with the liquid can be much 

smaller than the orifice size itself and that is one of the advantages of having the pressure 

swirl like design. 

So, let us see what that means here, what that means, what I have shown here in blue is 

the air core itself. And I am going to call the air core radius as r o a, will see that it does 

have a significant bearing to the performance of this nozzle. So, if I have r o a as being 

the radius of the of the air core I can apply the Bernoulli’s equation from between the 

two points, if I take a point way upstream here where the pressure is delta P and if I 

apply it to a point on the air core here. So, I am applying Bernoulli’s equation between 

this point way upstream of the atomizer where the fluid kinetic energy is very small and 

all of the and basically u and w are 0 and to a point just on the liquid in the liquid, but on 

the air core periphery. So, if apply Bernoulli’s equation between these two points, what 

do I get I find the delta P is equal to half rho u 0a squared plus half rho w o a squared 

where, u 0a; is the axial velocity at the air core and w 0a, is the swirl velocity at the air 

core. 

I think at this point it is good to take a small detour down the lane of undergraduate fluid 

mechanics again, remember Bernoulli’s equation is only applicable on a streamline now 

if I take a streamline coming to this air core all the way extended into the tank. So, if I 

can draw a streamline going from this point here all the way into that tank which is at 

some high elevated pressure delta P. We are applying this Bernoulli’s equation on that 

streamline. I can also apply it from that same tank to another point let us say, here or here 

does not matter, but if all the streamline are originating from the same tank I can apply 

this Bernoulli’s equation between any point inside the swirl chamber and the tank. 

Which also means, since the tank is at a constant supply pressure delta P it also means I 

can essentially apply Bernoulli’s equation between any two points inside the swirl 

chamber, even if they are not on the same streamline, because I can apply Bernoulli’s 

equation on two with on two points on a given streamline and if all the streamlines are 

originating from the same stagnation pressure delta P, I can essentially apply Bernoulli’s 



equation even across two streamlines at two different points because there all amounting 

to the same stagnation pressure we will take advantage of this later on. 

So, now back to, we have a delta P which is half rho u 0a squared plus half rho w 0a 

squared. Now what is u 0a, that is the axial velocity in this region and w 0a; happens to 

be the swirl velocity. We will write some simplifying expressions for that u 0a, would 

then have to be Q divided by A 0 minus A 0a. 
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A 0a is the area of cross section of the air core A 0 is of course, pi r 0 squared, w 0a, I can 

get from our angular momentum conservation as that Q r i over A p is the linear velocity 

or speed of the liquid coming in, let us make some notes here this velocity vector as a 

magnitude of Q over A p and the component that is, in this plane here is, Q A p sin beta 

and that times r i is the angular momentum essentially times rho. Of course, but we are to 

instead of writing rho v r, but this going to write v r because rho is constant everywhere. 

So, I can now substitute these two equations into the Bernoulli’s equation at the air core 

what do I have delta P would then become half rho now, we define a discharge 

coefficient just like we would define let us say for flow in a pipe or flow faster flow 

through an exit orifice or sorts we were actually introduce to this earlier on, we use the 

terminology flow number and we showed how that flow number is going to be defended 

on some system of units that you have. We are now going to define, if I figure out a way 

by which we can make it relatively unit independent. So, I can now define a discharge 



coefficient as follows, Q by A naught is the, A naught is like the total cross sectional area 

available for the flow, so we are defining this discharge coefficient as though we have no 

swirl it is just flow through an orifice. When I substitute Q from this expression into the 

equation for delta P after some just a couple of simplifying steps we find this I have 

introduced the couple of new terms new symbols here, let me go head define them. 

X is A 0a divided by A 0 which is like the fraction of the cross sectional area, that is 

occupied by the air core. X is physically the fraction of the cross sectional area that is 

occupied by the air core, K 1 is this dimensionless group A p over pi r 0 r s you can 

clearly see K 1 is dimensionless, so is x. So, I now have I have an equation relating C d 2 

X and I also have K 1. Now K 1 is what I am after K 1 is something I need to get a value 

for before I can design C d is something that I may actually know apart from A 0. So, if I 

assume an A 0 if you look at this expression here one more time, if I know A 0 I know C 

d because Q and delta P are given to me and the form of constraints have a supply 

pressure and I have a flow rate I need to deliver. 

So, for a given A 0 I can find the C d, if I have a C d I still have only one expression 

down here coming from a Bernoulli’s equation, which relates K 1 and X X is still 

something we have know, handle over that is determined by the fluid mechanics inside 

the atomizer. Apart of course, r i over r s and sin beta these are all also design variables. 

Design variables degrees of freedoms that are avail degrees of freedom that are available 

to us and we have only one expression. So, here in comes a simple principle that is often 

in worked to fix the value of X. 
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This is called the principle of maximum flow which says that X X will adjust to give the 

maximum flow for a given supply pressure. What does this actually, what how does this 

work physically just to sort of force some arguments if I have an orifice and let us say, X 

is the cross sectional area that is obscured by the air core. If X where large then you can 

sort of imagine that the back pressure behind inside the swirl chamber would be larger. 

Essentially, that force would cause more liquid to flow causing the air core to shrink if 

the air core was too small then, the pressure there would be low that the pressure outside 

the ambient pressure would push their core out to a larger diameter. So, these two forces 

would balance themselves where the air core as such a diameter that the flow through is 

at a maximum this is not really something that can be proved other than through like 

posing simple arguments, but it is often invoked in fluid mechanic systems to give as one 

more equation. 

Let us see what that does. We have an expression here relating 1 over C d squared 2 X 

and one way of employing this is to set d dX of 1 over C d squared equal to 0. So, 

essentially d C d dX is equal to 0 is the same as writing this expression and when I do 

that what do I have I will find K 1 squared. So, I have a value for K 1, K 1 related to X, 

now this is coming from this principle of maximum flow if I substitute this back into my 

expression for C d we end up getting this equation C d. So, if I give you a C d here is a 

nice expression that gives you the value of X value of the air core diameter. Essentially, 



if I know C d I can solve this into a cubic equation, cubic polynomial equation for X that 

usually has two complex roots and only one real root. So, you do you are guarantee to 

get a value for X that is real and usually between 0 and 1 that is what you want. 
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And now, if I from this definition of X I can define a non-dimensional film thickness if I 

define a t star to be r 0 minus r 0a divided by r 0 you can quickly see how that definition 

is the same as 1 minus square root of X. X is a 0a divided by a 0, square root of X is the 

same as r 0a divided by r 0. So, what have we done here essentially, if you tell me that is 

go back to the list of constraints that we have these are what we want to meet. So, if you 

give me a delta P and Q I am going to assume an r 0, I am only going to assume an exit 

orifice is diameter and for that exit orifice diameter Q and delta P I can find C d from this 

expression that is the basic definition of what a discharge coefficient is once I know a 

value for C d I can come back here and get a value for X. 

Once I know a value of X, I know the non-dimensional film thickness coming out of the 

nozzle now why is the non-dimensional film thickness important because that as a 

bearing on the drop size. If I know delta P Q and A 0 I have a way of estimating what the 

drop size would be. So, if I know t star and if I know the fluid mechanic properties of the 

film coming out let us say the swirl velocity the axial velocity the air density I can use 

linear instability calculations to find the maximum the most unstable wave length on that 

film and from the most unstable wave length I can estimate a drop size that gives me an 



estimate for what the mean drop size would be coming out of the nozzle. There is also 

another side to this which is coming back from the cone angle a simple trigonometric 

calculation would tell us that, the cone angle is that. So, where w 0 bar is the mean swirl 

velocity at the exit and u 0 bar is the mean axial velocity at the exit we can also rewrite 

this where u is the speed at exit given by root of w 0 bar squared plus u 0 bar squared. 

And I can write a simple expression as u times A 0 this is the basic definition of any 

discharge coefficient u times A 0 is the theoretical flow rate Q the actual flow rate 

divided by u times A 0 the theoretical flow rate is the discharge coefficient. Now I need 

an estimate for w 0 bar before I can tell you what the sub what sin theta is going to be, so 

for that we are going to use the idea that we have a free vortex inside the swirl chamber. 

So, free vortex as a 1 over r dependence of their, of the swirl velocity with the radial 

coordinate. So, we will take advantage of that. 
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And once I do that, the total angular momentum at the exit is given by integral going 

from r 0a to r 0 of 2 pi r this is actually better stated as angular momentum flux at the 

exit. It is like how much angular momentum is exiting the swirl chamber at this point. 

So, the exit is essentially the mass flow rate times the angular velocity associated with 

the mass flow rate. So, I have 2 pi r rho u 0 bar d r u 0 bar is the mean axial velocity that 

axial velocity is actually, what is carrying the mass out of the nozzle the swirl velocity is 



not carrying mass out of the nozzle because b dot d a which we are use to in control 

volume analysis for the swirl would be 0. 

So, the mass is being brought out of the nozzle by the axial velocity and this rho u 0 bar 

is the mass flow rate is rho u 0 bar times 2 pi r p r is like a differential cross sectional 

area at a radius r this is the actual differential mass flow rate coming out of thin slice d r 

width at some radial location r this times q r i divided by a p r sin beta. So, q r i sin beta 

divided by a p is the swirl velocity at the inlet is the angular momentum at the inlet, that 

divided by r remember our very first expression said at any point I have this w at any 

point inside the flow inside the swirl chamber times the radial location of that point is 

equal to w i r i and w i is given by q sin beta divided by A p, A p is the total area of all 

the slots as a reminder. So, this if I do the integration I can cancel out r here and 

essentially, what do I have this gives me is essentially have a constant the only and 

integral d r going r 0a to r 0 gives me just the difference between the (Refer Time: 42:17) 

the total mass flow rate exiting the nozzle is rho u 0 bar times A 0 minus A 0a. This is 

just a cross sectional area available to the fluid flow A 0 minus A 0a times u 0 it is like 

an, it is like the basic definition of mean axial velocity. 

Therefore, if this is the total angular momentum that is being carried out by this mass 

flow rate the angular momentum divided by the mass flow rate is like the mean swirl 

velocity the angular momentum flux see the word I am not being very carefully here flux 

is actually, a word use to indicate per unit area. So, this is actually the total angular 

momentum flow it is actually total angular momentum rate and, if I take the mass flow 

rate in the denominator and take the angular momentum rate exiting the nozzle and take 

the mass flow rate exiting the nozzle these ratio is essentially what the average swirl 

velocity would be. So, if I do that what do I have this is a simple division of these two 

quantities we identified, w 0 would then become 2 pi q r i r 0 minus r 0a. 
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So, if I invoke the definition of sin theta that we put up there will find that is equal to pi 

over 2 C d sin beta times r i over r s in here I have added another K here which is 

essentially A p divided by d s d 0 it is simply pi over 4 times the K 1 that we had defined 

earlier we are defined a K 1 as A p divided by pi r s r 0 k is just pi over A K 1. Let us 

quickly recap and write down the design procedure. So, first calculate C d, the first step 

starts by assuming r 0 and then you calculate C d. 
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And from the calculated C d you get calculate X and then from there you can calculate K 

and K 1 K is a dimensionless group that involves some of your design some of your 

degrees of freedom areas of the pods these d s d 0 etcetera. So, I now have a way of 

going from a flow rate two by assuming r 0 which is one of my degrees of freedom, I can 

get some constraints on the other degrees of freedom. Design is always an open ended 

problem that there are multiple solutions to a given set of constraints if you go back to 

the list we clearly had more in our degrees of freedom list then, we had in our constraints 

and that is always going to be the case irrespective of where you go that is the way good 

design process always works. 

So, we are still left with some degrees of freedom that we have to use to our advantage to 

achieve other constraints that earned explicitly laid out in quantitative terms like for 

example, you may have constraints coming from uniformity of this spray you could 

quantify it, you could have constraints coming from manufacturability tolerancing you 

could have constraints come from other performance issues such as drop size we have 

not talked about that.  

So, there we look at a couple of examples in the next class where we will attempt to 

apply this design procedure and reach the set of values for our design for our degrees of 

freedom. 


