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Linear stability analysis procedures 

 

Good morning again, towards the end of the last class we had got so far as to derive the 

dispersion relation for the simple case of one fluid flowing over another fluid that may 

also be moving in general. 
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So, let us quickly recap the process of this linear instability analysis right from the 

beginning. The process started with first, write down the governing equation; and then 

we started with a mean flow we also call this in several instances the unperturbed 

condition or more accurately the pre perturbed condition. 

Then we substituted the mean flow field into the governing equations to fully establish 

the pressure field as well as to ensure that, it is a solution to the governing equations. So, 

essentially this is a check where we make sure that, what we had a for our mean flow 

field does indeed satisfy the governing equations. And then, we developed or introduced 



a small perturbation to all the flow variables flow and interface variables will write it in a 

general way, and then we substituted the perturbed flow field into the governing 

equations. 
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The next process is, retain only order epsilon, which is basically linear terms and neglect 

the rest. This gives rise to the linearized governing equations, what at this stage what we 

have is a set of equations that the perturbed quantities obey up to order epsilon. The 

perturbed quantities behave as per those equations because you have the mean quantities 

are already satisfied in the governing equation. So, I will give you an example here say I 

take a function f of x and alpha is a root, if alpha is a root of the function; that means, 

clearly f of alpha equal to 0. If I want to study the behavior of this function near alpha, 

what do I do? 
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I define x to be equal to alpha plus y where y is a small parameter is a small value, now I 

can take f of x which is equal to f of alpha plus y to be equal to f of alpha plus f prime at 

alpha times y plus f double prime at alpha times y squared over 2 factorial etcetera. So, 

since f of alpha is 0 because alpha is a root. So, this is basically where we are saying the 

mean field satisfies the governing equations. So, essentially what we have is f of x can be 

replaced by f prime alpha times y which is a linearized form of y which is a linearized 

which is where the function is been linearized in the neighbourhood of alpha this is 

exactly what we have done. 

Now, the growth or decay of this function or the slope of this function let us say near 

alpha is data is basically a prime alpha we know that from simple mathematics. So, this 

is f prime alpha determining the behaviour near alpha equal to 0 as far as slope is 

concerned whether the slope is positive or negative etcetera. This is for a simple 

mathematical for an algebraic or transcendental function for a differential equation the 

process is exactly similar you have the linearized governing equations that determine the 

growth and what we want to find is the set of eigenvalues of those linearized differential 

equations which is basically what omega is. So, this is step number 6, step number 7 

once we have the linearized equation we go through, we went through as a matter of fact 

with the boundary condition as well. So, what we have now a complete homogeneous. 
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The next process we went through was to make the normal mode assumption, where the 

flow variables are expanded in the form of the appropriate eigen functions. In this case 

there are sines and cosines e power ikx, that was the spatial from of the eigen function 

and then exponential in time. So, the linearized governing equations are still partial 

differential equations, but in the in x y in time by the time you complete step 9 you can 

substitute these into this gives a set of ordinary differential equations in y. So, that gives 

us the behavior of these quantities in y. 

Now, if you take any arbitrary wave that you impose on the surface since we are dealing 

with a linear problem any arbitrary wave can be decomposed into sines and cosines this 

is basic you know fourier series soar to say. And since we are talking about again a 

linearized version of the full problem, the behavior of each sin and cosine can be 

superposed to yield the behavior of any arbitrary wave this is simple. So, if I have a 

linear governing equation for any problem and I know the behavior due to let us say one 

forcing function I have the, I know the behavior due to a second force in function the 

behaviour due to both the forcing functions acting together is simply the summation of 

the solution; due to each of the two forcing function acting individually without the other 

this is. So, essentially what we are saying is if I have some arbitrary wave on the free 

surface I can treat that as being a super position of several sinusoidal components, and if 



through this process I study how each individuals sinusoidal components is going to 

grow, I can then end up predicting what the complete what the arbitrary wave that I have 

started is going to look like in some period of time. 

Let us complete this. If I say I have a set of ordinary differential equations in y. So, I 

know the complete solution. So, substitute the solutions for the flow variables into the 

boundary conditions and what that does is at yields a dispersion relation omega equal to 

some function of k. 
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Again as an example what we had was some C 1 of k omega square actually we did not 

have C 1 of k, we had omega squared plus C 1 of which is a function of k times omega 

plus some C 2 of k equal to 0 this is the kind of function that we got which says that 

omega equal to. In fact, as it turns out for our specific case. 

This was of this form 2i times C 1 of k that I just want to use that because what that does, 

is this minus 2 i C 1 plus or minus under the radical minus 4C 1 squared minus 4C 2 

divided by 2. So, this gives me minus i C 1 plus or minus C 1 squared minus C 2. So, 

first of all remember this C 1 and C 2 are functions of k and this omega has two parts the 

imaginary and real part; for the real part to be non-zero, what is under the radical should 



be positive. So, this real the real part is non-zero only when minus C 1 squared minus C 

2 is a positive number. 

In fact, let us not be confuse here I think now this was minus there was a negative sign 

there and there rest of it was a positive functions. So, really speaking you could write it 

this way just to see a case where it could be positive were used to sort of dealing with 

positive number so, will leave it like this. 
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So, omega r is square root of C 2 minus C 1 squared and omega r is greater than 0, only 

when C 2 is greater than C 1 squared we know what those functions are from earlier. So, 

essentially we have a dispersion relation from the dispersion relation we can identify two 

things; one is the range of k values that have omega r greater than 0. So, all the k values 

in this case for example, all the k values that have C 2 greater than C 1 squared C 2 of k 

being greater than C 1 squared C 1 of k the squared will have will be part of this range of 

this values this is called as the Neutral Stability Bound. So, you are establishing the 

bounds of k values where the growth rate is exactly 0 or you are establishing the range of 

k values that could that have positive omega r, second thing you could do is find the 

value of k, I will call this k star where omega is a maximum. 



So, if I go back to the same equation, actually where omega r is a maximum again for the 

example if omega r is square root of C 2 minus C 1 squared. 
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If I take d omega r dk that is 1 over twice square roots C 2 minus C 1 squared times dC 2 

dk minus 2C 1 dC 1 d k this is equal to 0 at the maximum point. So, this implies dC 2 dk 

minus 2C 1, dC 1 dk equal to 0. The k root of this equation is k star. So, remember 

essentially this is the derivative of whatever is under the radical with respect to k and if 

you set that equal to 0 that gives you a particular value of k for which the growth rate 

would be a maximum when the derivative vanishes is when the growth rate has reached 

up a maximum value in the k space. 
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So, let us go back to this earlier form just to see what it looks like, it is now a two-fluid 

interface is the building block of all atomization system. So, all shear induce atomizers 

rely on high speed air for example, interfacing with a generally low speed liquid stream 

causing atomization. So, the interface between two-fluids understanding the physics 

associated with the corrugation of the interface between two-fluids is essential to 

studying atomization. So, that is the purpose of what we have been doing we went 

through the whole linear instability analysis calculation over the past couple of lectures 

and we now arrived at dispersion relation which in this particular instance is can be 

written out explicitly as shown here. 

So, omega is minus ik times rho1 U 1 plus rho 2 U 2 divided by rho 1 plus rho 2 plus or 

minus a term under radical. Now we went through and discussed the issue associated 

with k cut off, that is the value for a wave number above which all omega is both the 

omegas have real parts that are negative. That is what we signal with this k cut off. Now 

if we plot the maximum real omega and will call that our omega, so maximum real part 

of both omega 1 and omega 2; if we plot omega verses k this plot is often called the 

Dispersion Diagram. What we already seen is that for, k greater than the k cut off omega 

will all only be negative. 



So, this part of a curve has already been seen and as you see from the close form of the 

dispersion relation when k equal to 0, omega takes on only one value 0. So, it has to 

naturally pass through there and we will find that the actual shape of the curve is 

something like that. So, there is a whole range of k values where the maximum part of 

real omega 1 comma omega 2 is greater than 0 which means all this waves, all the wave 

associated with this wave numbers, if introduced to the interface would grow 

exponentially remember all our growth is of the form e power omega t. So, if all of the 

waves would grow exponentially in time some waves have higher growth rate than 

others as was as one can see from this dispersion diagram it is natural to expect that the 

wave associated with this particular wave number would grow faster than any other 

wave. 

Primarily because it is we are looking at exponential growth of these waves in time, this 

is like an nice simple physical wave of understanding; why one choose the wave number 

with the maximum growth rate to determine the actual source of instability. Another way 

which is associated with croup velocity is as follows; that we let us come to that in a 

moment. 
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So, essentially what we have found now is that the value of k, the reason is the wave 

disturbance associated with the wave number k star outruns all other disturbances 

because we have looking at exponential growth rate. So, if I take if we take the 

dispersion relation that we have given here and differentiated with respect to k. So, again 

it is always useful to substitute some simple numbers will go back to the same numbers 

that we had before rho 1 is 1, rho 2 is a 1000. 

From here we find k star is approximately 9.25 minus 0.16 i. So, what this tells us is that 

the wave associated with this particular wave number has the maximum growth rate and 

if we simply convert just quickly convert this lambda star and I am only going to take 

real part. 
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So, it is roughly about 2.3, two third of a meter. This particular wave length is what is 

expected to have the maximum growth rate of all the wave lengths that are even 

unstable, which means that if I were to do an experiment the and imagine the experiment 

had access to all wave lengths of instability the all wave numbers of instability and all of 

them grow with their respective omega as was shown in the dispersion diagram here. 



What this means, is that the wave number with the maximum growth rate is likely to 

show up in the experiment even in a very short period of time, because all other waves 

would not grow as fast as the, growth as fast as the wave associated with the maximum 

growth rate and this is interesting information that again I keep insisting on this repeating 

this point that or remember all of this purely analytical treatment of the problem. So, 

from starting with the governing equations and boundary conditions we are able to 

estimate a wave length that is likely to show up in a experiment where you have a given 

rho 1, rho 2, U 1, U 2 and sigma. You are able to predict wave length that is likely to 

manifest from a linear instability analysis. 

And this is the power of this analysis technique and I want to I cannot emphasize this 

enough that one gets to realistic values, and these have been validated in experiments in 

many different kinds of experiments is a matter of fact that the predictions obtained from 

linear instability theory matches well with experiments. Now that agreement with 

experiment must be taken with the small pinch of salt primarily because the non-linearity 

associated with the growth process has been ignored, we are dealing with a linear 

instability calculation the real experimental observations agreeing with these theoretical 

predictions may be somewhat fortuitous. 

But it cannot be discarded as purely being for fortuitous because this agreement has been 

shown in many different instances not restricted to atomization alone. So, the kind of a 

power that this technique brings to any kind of a studying the instability, studying pattern 

formation in many different physical systems is quite remarkable as a matter of factor. 

So, the objective of linear instability analysis is to get this dispersion relation and then 

use it to find k star and k n as functions of the flow quantity. So, this is essentially the 

utility of linear instability analysis and I also know the range of the one wave length that 

will dominate the process. So, given this is like a characterizing the natural response of 

that system. 


