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Let us continue our discussion of Instability Theory, specifically Linear Instability 

Analysis. 
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What we are going to do today, is we are going to go through formally look at the 

stability of stratified fluids. So, I have an interface between a fluid 1 and fluid 2; fluid 1 

moving with a uniform velocity U 1, fluid 2 moving with a uniform velocity U 2. I need 

to introduce a coordinate system to study this problem. So, the velocity vector in 1 and 

call this V upper case is basically U 1 ex. And the velocity vector in 2 is U 2 ex. 

The y component of velocity in both these cases is 0. I am going to assume nu 1 equal to 

nu 2 equal to 0. So, this is saying 0 viscosities. So, let me formally write down the set of 

assumptions. And initially, the interface is flat; this is the unperturbed as we will see in 

just a moment, at the position y equal to 0. So, this is my interface. 

Now in general, each of these fluids 1 and 2 can have a velocity in the x and y direction. 

So, we will just also assume that the flow is two-dimensional. So, there is no flow in and 



out of this plain of the paper neither is there a possibility of any flow. So at the moment 

there is no flow in the y direction, but there is a possibility that things could start to flow 

in the y direction if they choose. But there is no flow in the z direction right now then 

there is no possibility also of the flow to be initiated in the z direction; that is the 

meaning of two-dimensional flow. 

(Refer Slide Time: 04:58) 

 

So, let us write down the governing equations and the boundary conditions for this flow 

problem. If V i is a velocity field and P i is a pressure field then this is the; so i equal to 1 

is the top fluid, i equal to 2 is the bottom fluid. So, this is simply what we very often 

called the Euler’s equations. I am going to write this out in a full Cartesian form. So, the 

x, and of course I did not mention the continuity equation to go with this that says del dot 

V i equal to 0; which means let me go back I have one more assumption that one fluids 

are incompressible. So, rho 1 and rho 2 do not change with x and y or any other 

independent variable. 
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So, if I write these out in Cartesian form the vector V i is composed of components 

capital U i and capital V i. So, V i being the y direction component in general, so this 

plus U i; let me write this clearly. So, this is the equation I call this is 1, this is 2, this is 

3. 

So let us first you know, we have we started with a certain flow configuration that fluid 1 

has a uniform x velocity of U 1, fluid 2 has a uniform x velocity of U 2. Fluid 1 and 2 

both have no y component of velocity, so if I substitute to check if the flow described 

above is a solution, what do we find. If I said V i to 0; now I also know U i is constant in 

time. So, from that if d u i dt is 0 not changing in time, this is 0 because it is not change 

in x, this is 0 because V i is 0. Let me write those down call this is due to 1, 2, 3. 



(Refer Slide Time: 10:57) 

 

Reason 1, is nothing changing in time. Reason 2; we are solving each of these equations, 

for each fluid you have one set of three equations describing the U 1, V 1 for that fluid U 

2, V 2 for the other fluid, so nothing changing with x and y in each fluid. And the third is 

of course saying, V i is 0. Likewise, V i is 0 so I can say this is due to 3; V i is 0 this is 

due to 3. So, this is 0 due to 3. This is 0 due to reason number 2. 

So, what have these simplified to? Say I do not know what P i was supposed to do; all I 

know is a flow field. So, essentially what these now becomes is that dP i dx equal to 0, 

dP i dy equal to 0. So, all that says is P i is a constant. The pressure in each fluid 

everywhere in the domain is a constant, it is not dependent on x and y. That is basically 

what we are learning from saying dP i dx is 0 and dP i dy is also 0. 

Now, I still have not talked of the boundary conditions, let see if what the boundary 

conditions are. I do not want to go into the detailed boundary conditions right now, 

except to say that look I have a flat meniscus; for a flat meniscus to remain flat for all 

times, you can clearly see that the pressure in fluid 1 and the pressure in fluid 2 have to 

be equal. 
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So, the boundary condition at the interface can be written as this. The simplest of 

boundary conditions says that P 1 minus P 2 equal to sigma times kappa. Where, sigma 

is the surface tension or most specifically we will call it interfacial tension and kappa is a 

curvature. Since the unperturbed interface is flat it is easy to see that kappa has to be 0 

everywhere. 
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Therefore P 1 minus P 2 equal to 0. May now know P i is a constant, the governing 

equation said P i in each phase is a constant. The boundary condition says P 1 minus P 2 



has to be 0. What they says is P i everywhere is equal to P 2 is equal to sum P. So, 

physically it is just constant pressure everywhere. So P is just a number, this capital P is 

whatever is the actual magnitude of the pressure and that is the same pressure 

everywhere both in fluid 1 and in fluid 2. 

So, without loss of generality you will see this a lot, so where I know that particular 

number has no significance I can give it any convenient value; in this case I will assign P 

equal to 0. So, if capital P equal to 0 everywhere and V 1 equal to U 1 ex, and V 2 the 

vector V 1 equal to U 1 ex and V 2 equal to U 2 ex and P equal to 0. So, V 1 equals U 1 

ex V 2 equals U 2 ex and P 1 equal to P 2 equal to 0 is a solution to the governing 

equations. That is just like saying that it is a system where forces are balanced in, the ball 

in a trope example that we saw in the last class. So, this particular flow configuration is 

an equilibrium solution. Is it a stable equilibrium or an unstable equilibrium? That is the 

question that we now have to answer. How do we go about that? 

Now this interface is infinite in the x direction. Essentially, imagine an interface of two 

superposed fluids that has no start and the end that is the kind of interface that we are 

looking at. So, if I now take this kind of an interface and superpose a perturbation, so I 

have these two fluids that are co-flowing, so these two fluids are co-flowing and I want 

to understand if I perturb this interface slightly will the under the action of these co-

flowing fluids top fluid moving at U 1 bottom fluid moving at U 2 and mind we did not 

make any assumptions on whether U 1 is greater than U 2 or the other way round it does 

not matter in fact. 

So, under the action of this co-flowing fluids does this meniscus amplitude decay or 

grow that is the only question that we are interested in asking. So, if I keep everything 

else the same, but perturb this interface slightly; what that does is it introduces a 

perturbation velocity field. If I now perturb the interface; as soon as I perturb the 

interface I have introduced a perturbation velocity field to two both the fluids. 
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So now if I look at V i, this is still U i plus a little U i; I will call this U i prime for 

perturbation times comma V i prime. So, this is a vector I am denoting using order pair 

notation. U i plus U i prime is the new velocity in the perturbed interface configuration, 

so I have introduce a small additional x component of velocity. Now mind you both the 

prime quantities U i prime and V i prime both for i equal to 1 and i equal to 2 are both 

what are called field variables. So, these are velocity fields, they are functions of x and y 

and time. 

So, U i prime and V i prime are both velocity fields which were not there until I perturb 

the interface, now because I have perturb the interface I want to see what this velocity 

field would look like. Now, whatever be U i prime and V i prime and let us even say the 

pressure P i is P plus sum P i prime then P itself is 0, we know that. So, the pressure in 

each fluid i equal to 1 is the top, fluid i equal to 2 is the bottom fluid. The pressure in 

each fluid is now given by some small quantity P i prime. 

The key point to note here is that U i prime, V i prime and P i prime, the magnitudes are 

much less than the mean flow quantities. So, they are infinitesimally small. This is our 

new velocity field, and this is our new pressure field. These new velocity and pressure 

fields also have to be solutions to our unsteady Euler’s equations. Previous we showed 

that this is an equilibrium solution U 1 and U 2 being constant everywhere and P being 0 



everywhere is an equilibrium solution because nothing is changing with time; that is the 

idea of equilibrium, it is steady in time. 

So, if I now come to the perturbed case, U i prime and V i prime could be functions of 

time. All I want to know is does U i prime and V i prime, do U i prime and V i prime 

decrease with time or do they increase with time; that is what I am interested to find out. 

If the primed quantities increase with time from some small initial starting value that is 

not good for the stability of the interface. 

So first of all substituting, I will call this equation 4; I will call this 4a and b. What do we 

find? The first is the x momentum equation, second is a y momentum, and the third is the 

continuity equation; we quite familiar with that. 
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So, this is U i plus U i prime plus U i plus U i prime times d dx of U i plus U i prime plus 

V i prime d dy of U i plus U i prime equals minus 1 over rho i dP i prime dx. This is the 

equivalent of equation 1. 
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The y momentum equation becomes, the last one is this. Now this capital U i is basically 

U 1 and U 2, those are not changing with x y or time. The prime quantities are allowed to 

change with x y and time in fact. So, we can simplify 5, 6 and 7. Using that what we find 

is first one; I took this term here capital U i plus U i prime times d dx of U i plus U i 

prime. U i itself is not varying with x, so d dx of capital U i is 0. But, d dx of U i prime is 

not 0. So, that is left in the calculation still, but I have that term being multiplied by U i 

plus U i prime. 

I just want to write it out as two separate terms. So, I have U i times du i prime dx plus U 

i prime du i prime dx plus I also have the additional term V i prime du i prime dy equals 

minus 1 over rho 1 rho i. So what do I find here? I can write the other one as well; dv i 

prime plus U i dv i prime dx plus U i prime dv i prime dx plus V i prime dv i prime dy 

equals minus 1 over rho i dP i prime dy. The last term is simply du i prime dx plus dv i 

prime dy equal to 0. 

Now remember U i prime is a small number in comparison with capital U i. So, I want 

some way to compare the magnitudes of these four terms on the right hand side of the 

top equation, on the left hand side of the top equation. If there are four terms on the left 

hand side of the top equation, if capital U i is order 1, so it is like 1 meter per second let 

us just say. Then du i dt is order U i prime, so that is order epsilon it is like an small 

number in comparison to 1. T his the first term is order epsilon, the second term is order 



epsilon because it is capital U i is order 1, U i prime is order epsilon. So, the second term 

as a whole is order epsilon. The third and fourth terms are order epsilon squared. 

So, if U i; if these quantities are all order epsilon, epsilon is some small number then 

what it automatically means is that these two terms have a two prime quantities 

multiplying each other; which means that the magnitudes of these two terms that I have 

scratched out in this particular equation are very very small in comparison to the terms 

that I have left. So, the error that I will end up making by completely scratching them out 

of my equation is very small and that smallness becomes smaller and smaller as epsilon 

goes further and further towards 0. 

This is the idea of an infinitesimal perturbation. It is so small that you can ignore epsilon 

squared in favor of order epsilon, and it is as small a number as possible essentially. Now 

if I give that much of a perturbation is that perturbation further going to grow or decay, 

that is all I am interested in. I just want to know a direction to the growth that is all. So, I 

can ignore these two terms which are now order epsilon squared in favor of the other 

three terms that I have remaining. I can do the same thing with this. The third equation 

both the terms in there are order epsilon so I really cannot through away anything. 
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So what I can now do? I can rewrite the equations without the terms that I scratched out. 

So, completely throwing away the terms I scratched out in that fashion. I can number 

these equations. Now 8, 9, 10 have are important. Now how do I know that they are 



linearized versions of the governing equation; I want to make sure that you completely 

understand this idea of linearized version. 

If you look at these equations, there are three equations. The three unknowns are; U i 

prime, V i prime, and P i prime. I have one set of three equations for the fluid 1, one set 

of three equations for fluid 2. There are no terms in these equations that are like U i’s 

prime squared or V i prime squared. Even though our original Euler’s equations have 

terms like ud udx, what we have done is we have linearized the complete Euler’s 

equation about a state that I have already know is a solution to the Euler’s equation. 

Capital U i being constant both in x y and time. E is a solution to the Euler’s equation, 

we have found that. And we have written a linearized version of the Euler’s equation 

around that ground state fuel of U i being some number like U 1 is a number U 2 is a 

number, so the capital U i in the equations 8 and 9 is just a number that you already 

know. The only unknowns are the prime quantities U i prime V i prime and P i prime, 

and these are field variables they are functions of x y and time. Therefore, these 

equations since they do not involve any terms that are non-linear in the prime quantities 

this set of governing equations are linear. So, I have a system of linear partial differential 

equations describing the prime quantities. 

So now, how do I go forward from here? We started to say that we are going to introduce 

a perturbation to the interface. And the simplest form of perturbation is a sinusoidal 

perturbation. We will see may be later on why a sinusoidal perturbation is introduced, 

but essentially what we want is a set of harmonic functions; a set of orthonormal basis 

functions of the linearized version of the governing equations that I can use to take any 

arbitrary interface shape and express as a series of those orthonormal basis functions. 

This is simply going back to solutions of linear od’s in fact not even liner pd’s. 

So, our idea of coming up with a basis function for this particular geometry that gives me 

set of orthonormal basis functions, that gives me a set of basic functions in which I can 

expand any arbitrary interface shape. For this particular case it happens to be sinusoidal 

function. So, I will express this as a functional form y equal to eta 0 times e power 

omega t plus ikx. So, here I will write this out little later on. 
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Now where did I get this functional form, I want to make sure we understand that. If I 

expand this out I have eta 0 e power omega t times e power ikx, which I can write as cos 

kx plus I sin kx. If y is a real number then essentially the real part of this is nothing but e 

power eta 0 e power omega t cos kx. 

So, I have allowed k; k is like is a wave number. We will see in just a moment what that 

is if I take, essentially if lambda is the wavelength then this can be written as eta 0 e 

power omega t cosine of 2 pi x over lambda. So, when x equal to lambda the phase angle 

of this wave is equal to 2 pi and x equal to 0 the phase angle is 0, the phase angle goes 

smoothly as a linear function of that distance from this point here. And if I define k to be 

equal to 2 pi by lambda, k is a wave number and has units of per meter. 

So, we will work in this wave number space, it is easier to work in the wave number 

space then it is to work in the wavelength space. So, we will define this wave number k 

equal to 2 pi by lambda and 2 pi by lambda times x in the cosine is the way to describe 

sinusoidal or a co-sinusoidal in interface. Sin and cosine are only off by a phase angle of 

pi by 2. And on infinitely long sheet in the x direction it does not matter at the end of the 

day. So, here is a description of this interface now what is eta 0? Eta 0 is that amplitude. 

Now, like I said the only feature I am interested in is if I impose a disturbance of 

wavelength lambda or now wave number k is that, disturbance go in to grow in time or 

decay in time that is the only part that I am interested in. And we use this function to 



capture that behavior. If omega, let us just say omega is a real positive number. If omega 

is real and positive then e power omega t is a number that grows as t increases. If omega 

is a real negative number then e power omega t is a number that decreases as t increases. 

So, for in the short period of time around t equal to 0 or I want to know is if I give a 

certain lambda does the omega for the system come out to be a positive real number or a 

negative real number. In fact, I will go back to now; so this is the physics of what we are 

going to look for. So, rather the mathematics of what we are going look for, but I find it 

easy instead of sins and cosines to work in this exponential notation, with imaginary 

complex numbers. So, we know that i is this number square root of minus 1, and e power 

ikx is simply cos kx plus I sin kx. 

So, we are not going to really make the distinction between real and imaginary numbers, 

we will just say that omega is a complex number; omega could be a complex number, 

but all I care is whether the real part of omega is positive or negative. So, let us take this 

if omega is a complex number like that e power omega t is e power omega r t times 

cosine of omega it plus i sin omega i t. So, really speaking I can let omega be any kind of 

can be a full complex number, the real part of omega is going to basically determine if 

the disturbance is going to grow in time or decay in time. The imaginary part of that 

omega is only going to cause a sort of a ripple effect; omega i is like imaginary part it is 

going to cause a wave to be transported in time, but the amplitude of the wave is not 

affected by that, amplitude is only affected by this e power omega r t. 

So think of it this way, k is a real number I am going to force k to be a real number 

which means I am giving a real perturbation to the interface. I perturb this interface with 

some waves of total wavelength lambda or wave number k and I let go of this template 

that I use to create this wavy interface. As soon as I have let go of this interface is the 

interface amplitude this eta 0 going to decay or grow further, that is the only part that I 

care about. And that is mathematically conveyed to me by whether omega r is greater 

than 0 or less than 0. 
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Essentially, this idea of imposing spatial waves and watching; called a temporal linear 

instability analysis. 

So, just you quickly recap we started with a full Euler’s equations; showed that the mean 

state is a solution. Then we perturbed the interface using the prime quantities and wrote a 

set of linearized governing equations in the prime quantity; which are these equations 8, 

9 and 10. And then we said that in order for me to solve them I am going to make this 

assumption. This specific interface shape assumption and from there we are going to 

look for solutions of whether the real part of omega is positive or negative. 

We will continue this in the next class. 


