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Vibration and Acceleration Measurement 
 
We will move on to lecture 47 on our series of Mechanical Measurements. 
In the last lecture, we were discussing about vibration measurement and we 
were looking at a second order system, which basically represents a 
vibration measuring device and we were trying to understand the basic 
principles. Therefore what we will do in the present lecture is to recapitulate 
what we did in the last lecture and carry on from there.  
 
We will discuss the principles of operation of a vibration measuring system 
then we will subsequently look at the two examples 53 and 54, which will 
deal with the application of these principles, and then I will discuss one kind 
of accelerometer called the piezoelectric accelerometer. It is used very 
commonly in practice. Subsequently, we will look at a laser Doppler 
Accelerometer which is more recent in origin, and we will look at some of 
the principles involved in these. So if we go back to the slide, the equations 
which we have derived in the last lecture were labeled as 1 and 2 here.  
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So, the amplitude response of a second order system which consists of a 
mass has a movement against the spring and there is a damping. The 
damping can be due to viscous effect, and the response is written in terms of 
a response to a sinusoidal input. That means that the vibration which is 
imposed on the system is having a frequency of omega1 and the natural 
frequency of the system is omegan. So what we are talking about is the 
response of the system to the input, input has amplitude x0 and that is given 
by expression 1. So it is given by (omega1 by omegan) whole square by 
square root of 1 minus (omega1 by omegan) whole square plus there is a 2  
into c by Cc, this is the ratio of the viscous damping to that in the case of 
critically damped second order system, multiplied by (omega1 by omegan) 
whole square, and there is also an accompanying phase lag which is given 
by the tan inverse 2 into c by Cc omega1 by omegan by 1 minus (omega1 by 
omegan) whole square. Similarly, we can also look at the acceleration 
response for which we know that the acceleration due to the variation of x1 
in a sinusoidal, or in a periodic fashion is given by this formula, minus x0 
omega1 square (cos omega1t).So equation 1 can be modified to give the 
acceleration response as given by,  
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K is equal to 1 by square root of 1 minus (omega1 by omegan) whole square 
plus 2 into c by Cc (omega1 by omegan) whole square. So these are three 
equations which we have derived and these are the basic things which are 
going to govern the behavior of accelerometer. We will look at some of 



these, by looking at the response plotted in a particular way. First we will 
look at amplitude ratio, which is given by x2 minus x1 by x0 plotted as a 
function of frequency ratio omega by omegan, and what we have done is, we 
have given the response as a function for different values of the damping 
parameter.  
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So, if you do not have any damping at all, at omega1 is equal to omegan that 
is the input frequency equal to the natural frequency of the system in 
principle, the amplitude is going to become infinite. Of course, in practice, 
there is no system with zero damping, and therefore, this is only an 
idealization. In other words, if the damping is very small, the amplitude can 
become very large at the condition omega by omegan is equal to 1 that is 
what it means. As the damping ratio is increased, so I have plotted for 0.2, 
0.4, 0.6, 0.8 and 1 you see that the amplitude becomes more manageable.  
 
For example, if the value of the damping ratio c by Cc is greater than 0.6, the 
response is never greater than 1, it is always below 1. That means that the 
amplitude ratio is reduced to a value less than or equal to 1. You will also 
notice that, the amplitude ratio varies quite significantly, for omega lesser 
than omegan and actually it grows in size, and for large values of omega by 
omegan that is for large values of the input frequency compared to the 
natural frequency of the system, the value more or less tends to 1, at least it 
is close to 1 here. Here, if you take the look at a particular case with c by Cc 



is equal to 0.7, the damping ratio is equal to 0.7, you see that the amplitude 
ratio if the value is more than about 2 if omegan is greater than about 2, you 
see that it is very close to 1.  
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So we say that any value omega by omegan greater than 2 is a useful range 
for measurement of the amplitude of the vibration. So this is for the 
measurement of amplitude of the vibration. The second point, I would like to 
mention here is that, if you remember, in the previous lecture we indicated 
that we can limit the amplitude of the vibrometer or vibration sensing device 
by putting stops. So, if I put a stop such that it is not more than 1.25, then for 
different damping ratios, you see the kind of behavior you are going to get. 
 
For example, if I do the experiment with c by Cc is equal to 0.4, it will go up 
to this and when it hits the stop, it is not going to change. So it is going to 
stay constant, and then it is going to come back like that. So one way of 
preventing the run away of the transducer is to put stops so that the 
amplitude is limited to a certain value, in this case I have taken 1.25 you can 
put even less than 1 or more than 1 as the case may be and that will prevent 
the vibration sensing device from executing too large an amplitude and 
probably wrecking the sensor itself. 
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So the thing we notice is that, for measuring the amplitude of the vibration, 
the useful range of the instrument is such that, you must have the input 
frequency greater than about two times the natural frequency of the system.  
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So you can immediately see that, if we are going to measure the amplitude 
or vibration of a system varying at a fairly low frequency, then omegan must 
be even lower than that. For example, if I have a frequency of 1 Hz, this 



factor 2 here means that, the natural frequency must be even less than that 
half of the impressed frequency, therefore your natural frequency must be 
chosen even smaller than that. The second relation we had was with respect 
to phase relationship, and the phase angle in degrees is plotted here again 
with respect to frequency ratio omega by omegan. 
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And you see here that the phase changes from 0 that means that, when the 
frequency ratio is very small, the movement or the motion of the transducer 
is in phase with the input disturbance. But as you see when the frequency 
becomes almost equal to the natural frequency, actually lag is there of 90 
degrees there is a phase angle of 90 degrees difference between the input and 
output. 
 
And for omega by omegan greater than 1, you see that the phase is actually 
becoming larger phase difference and in the limit as omega by omegan tends 
to infinity, the phase difference goes to 180 degrees. The phase relationship 
is very important. So how does the phase relationship become important? 
We will be actually taking a look at a particular example, which will make it 
clear as to what the simplification of this is. For example, if I look at the 
special case of c by Cc is equal to 0.7, that means that the damping ratio is 
0.7 times the critical damping ratio, then you see that the frequency versus 
phase shows this kind of a change and you see that for a value greater than 
about 4, there is almost a linear phase shift with respect to frequency. 
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So, higher the frequency, higher the phase shift, and the phase shift is 
linearly varying with respect to frequency. This is the second observation we 
are going to make. Let us see how these are going to be useful in practice.  
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The third one is the acceleration response factor K which is expression 3. 
Here I have plotted the acceleration response factor K versus the frequency 
ratio, but I have used a logarithmic scale on the x axis, so that the figure 



looks slightly different from what it was earlier, and you will see the 
important thing here. The acceleration response is almost 100%, or close to 
1, for omega by omegan much less than 1. If the impressed frequency is 
much less than the natural frequency of the system, the acceleration response 
is much better.  
 
If you remember previously what we discussed the amplitude response is 
better, and it is exactly the opposite omega by omegan must be larger than 2 
or so what we saw in that case. Therefore, omega much greater than omegan 
you have a good amplitude response, and if omega is very small, compared 
to omegan you have a better acceleration response. That is, if you are 
interested in measuring the acceleration due to the vibratory motion we 
would have to choose the natural frequency of the transducer to be much 
larger than the actual frequency at which we are going to measure the 
acceleration.  
 
This is the major thing which comes out from this particular theoretical 
analysis. So with this back ground, let us look at two cases. Here are the 
details about the example. Let us workout the solution. What we have here is 
a big seismic instrument. Seismic instrument is used in measuring mostly the 
earthquake forces generated during earthquake.  
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It is constructed with a mass of 100 kg a fairly large mass c by Cc has been 
adjusted to 0.7 by suitable means, and we have a spring of spring constant is 
equal to 5000 N by m which is a fairly strong spring with a large spring 
constant of 5000 N by m. So we want to calculate the linear acceleration that 
would produce a displacement of 5 mm on the instrument, this is part (a). 
And part (b) we want to find out what is the frequency ratio omega by 
omegan such that the displacement ratio is 0.99.  
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And thirdly, we would like to find out the useful frequency of operation of 
this system as an accelerometer. So, three parts of the question are given 
here. What we will do is, we will try to work it out by calculating the various 
things. All it requires is the use of the equations which you already derived. 
Therefore let us just find out how to go about it. 
 
In example 53, the displacement, delta x is given 5 mm is equal to 0.005 m, 
and we know that the spring constant of the system k is given as 5000 N by 
m and the mass or the seismic mass, M is 100 kg. So, if the system is 
subjected to a linear acceleration we would like to find out what would be 
the response. So this is the response, due to acceleration a. It is a very simple 
thing to find out. The acceleration is nothing but, mass times acceleration is 
equal to the force, and force is proportional which is equal to K into  delta x 
therefore, all I have to do is, to obtain the acceleration as a ratio of force to 



the mass, and the force itself is given by k into delta x by M which is very 
straight forward.  
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This will be 5000 into 0.005 by 100 kg and that gives you a value of 0.25 m 
by s square. So a linear acceleration of this mass, by 0.25 m by s square will 
give rise to a displacement of 0.005 or 5 mm, it is a very sluggish system. So 
this is the part (a) of the answer. For part (b),it is as follows: 
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The reason why I am working out this example because it is going to 
actually tell us about the principles involved in acceleration measurement or 
in vibration measurement. What we want to do is to find out the value of 
omega by omegan such that the amplitude response is 0.99, it is 99%. Of 
course, acceleration is linear, that means it is a constant value as in this case. 
Linear acceleration means the accelerometer is simply accelerated in a 
particular direction with a constant acceleration. That means there is no 
periodicity it is a constant value. So when you have a constant value for the 
acceleration it gives you a constant amplitude output, and it is same as the 
actual amplitude. Now, once we start varying it sinusoidally, you see that the 
response becomes less than 1. It will not be equal to 1, but it will be less than 
1, and we want to find out when it becomes 0.99 assuming that up to about 
0.99, we can use the instrument treating it as a useful range.  
 
Therefore, all I have to do is, to use expression 1 which we had earlier. So I 
will say amplitude ratio is equal to 0.99, I will consider omega by omegan, I 
will write it as y, so that it is easier to write down the expression. So, that 
becomes, y power 2 by square root of (1 minus y square) whole square plus 
2 c by Cc and c by Cc is equal to 0.7. So we are going to assume c by Cc is 
equal to 0.7 so that becomes (1.4 y) whole square. Therefore, this is the 
equation: y power 2 by square root of (1 minus y square) whole square plus 
(1.4 y) whole square actually we have to solve for y.  
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We can square both the sides and then simplify it. So, if I do that put y 
square is equal to z, then the above expression will become like this. You 
can work out and get this result. The above expression simplifies to the 
following quadratic equation. 
 
The quadratic equation will be in z. 0.0203 z square plus 0.04 z minus 1 is 
equal to 0, that is the equation I am going to get. So this has got two roots, 
one root will not make sense, one root will probably make sense, so the root 
which makes sense is, z is equal to 6.1022, but z itself is equal to y square so 
we can immediately say that y is equal to square root of z is equal to square 
root of 6.1022 and that will give you 2.47. By looking at the graph, above a 
value of omega by omegan is equal to 2 is as good as a sensor of amplitude 
but here we see that, 2.47 is the proper value taken. So if you have a omega 
by omegan greater than 2.47 the amplitude will be faithfully recorded. What 
does it mean? So omegan is equal to if you calculate for this system we can 
do that it is simply given by 2pi square root of K by M, is equal to square 
root of 5000 by 100 kg this is your natural frequency it is about is equal to 
7.07 Hz.  
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Therefore, omega should be greater than 2.47 into 7.07 is equal to 17.5 Hz. 
That is the answer to the second part of the question. The third part of the 
question or part c wants to look at the acceleration response. Again I am 



looking at the acceleration response being equal to 0.9 as the limiting value 
for the utility of the sensor. 
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So again I go back to the expression 3, which was given earlier. This is the 
starting point, so again I will put it equal to 0.99. So in this case again, I use 
the same symbol y is equal to omega by omegan this becomes this 
expression (1 minus y square) whole square plus 1.96 y square where 1.96 is 
nothing but that (1.4) whole square. So again I will be able to simplify this 
expression, and we should be able to get the following equation: z square 
minus 0.04z minus 0.0203 is equal to 0, so you see that we have a different 
equation this time.  
 
We can actually compare this equation with what we had earlier. In the 
earlier equation, 0.0203 was here and 0.04 and 1 and you see that the 
numbers have somewhat interchanged, 0.0203 has gone to this place and the 
coefficient has become 1 for z. This equation has a solution given by 0.1639. 
That means that is small, that is exactly what we mentioned earlier. That for 
small values of omega by omegan, the response to acceleration is better and 
for large values of omega by omegan, the response to amplitude is better. So 
it is corroborated by this particular discussion. So z is equal to 0.1639, and 
this corresponds to y is equal to omega by omegan is equal to square root of 
0.405.  
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And if you multiply by the value of frequency if you remember what we did 
earlier, omegan we have already found out so we can find out the value of 
omega, this comes to about 0.105 Hz, may be, we have made a small 
mistake let me go back and omega will come out to be 0.105 Hz, which is 
the value of the omega below which so omega should be less than 0.105 Hz. 
So very small omegas only it will respond to. So if I look at a typical 
earthquake, the period of the waves is something like tenths of seconds is ten 
seconds to about a few minutes.  
 
The waves generated by the earthquake are periods in this particular range, 
ten seconds to about a few minutes. And if you calculate the corresponding 
frequency, 2 pi by the period so if I take 1 minute it becomes sixty seconds 
so this will be so many radians per second, and that comes to about 0.105 
Hz. The above result is incorrect. This will be 2.86 Hz. And here that if 
you have 1 minute as the period of the earthquake generated wave you get a 
very fairly low input frequency, and the accelerometer will certainly respond 
to this very well.  
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So an accelerometer must have a large mass, and a large spring constant as 
in this case, and it must have a natural frequency which is much larger than 
the frequency which is going to be measured, and that is what we have seen 
in this example. Let us look at another example. 
 
We already discussed about the linearity of the phase difference, the linear 
phase relationship for large omega by omegan. We had something like this, 



this is the phase versus omega by omegan it looked like this, it was almost 
linear here. So what is the consequence of this? 
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Suppose we have the following problem; the vibration measuring instrument 
is being used to measure the vibration of a machine, vibrating according to 
the relationship which is given, x is made up of two components, that means 
that the input vibration is made up of two components, one given by 0.007 
cos (2pi t) where it is all in meters. So 0.007 means 7 mm is the amplitude of 
this particular component and cos (2pi t) is the first wave or the first 
component, any periodic wave can be made up of a set of sinusoidal or co-
sinusoidal by using the Fourier series concept. This particular wave is made 
only of two components with significant energy and others are not 
important. So the second component is 0.0015 is 1.5 mm amplitude but with 
a higher frequency of cos (7pi t) so I have cos (2pi t) so two different 
frequency components are present in the input.  
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The vibration instrument has an undamped natural frequency of 0.4 Hz and a 
damping ratio equal to 0.7, so we would like to find out whether the 
response of the vibration measuring instrument will be faithful to the input. 
That means two things we can say. If it is faithful the amplitude will be more 
or less the same as the amplitudes which are given here, and secondly both 
these waves must be combined without any distortion. So we will look at the 
consequence of this particular wave.  
 
 
We will look at the consequence in terms of the linear phase relationship for 
large omega by omegan. What we can do is we can treat the input as two 
separate components, and find out what is the response of the instrument to 
these two components and then we will add the two responses that should be 
the response of the instrument. So the vibration of the instrument is given 
by, omegan is equal to 2pi (0.4 Hz) the frequency. This will be in so many 
radians per second or it is equal to 0.8pi. Therefore the first part of the input 
is given by 0.005 cos (2pi t) so omega1 is equal to 2pi and this is omegan. So 
all I have to do is, substitute these values into the expression or amplitude 
ratio which we also had in the previous example.  
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So amplitude ratio for this part of input all I have to do is to substitute 
omega by omegan into that formula so it will be y1 square by square root of 
(1 minus y1 square) whole square plus 1.4 y1 square. So y1 is nothing but 
omega1 by omegan is equal to 2pi by .08pi that ratio is 2.5. So I have to put 
y1 is equal to 2.5 here and work out the value of this and it comes to 0.9905 
so it is better than 99%.I can easily calculate the amplitude which is 0.9905 
into 0.005 so this is the amplitude response. Let us also look at the phase 
response.  
 
Phase is given by phi1 is equal to tan-1[ (2 into 0.7 into 2.5) by (square root 
of 1 minus 2.52], is equal to 146.31 degree or in terms of radians, it gives 
you 2.554 radians. We have worked out for the first part of the input. The 
second part of the input, has a higher frequency, and we know omega2 is 
equal to 7pi and therefore if you take omega2 by omegan we call it y2 which 
is 7pi by 0.8pi is equal to 8.75. So, for this value of y2, I can again work out 
and we will see that, the amplitude response is almost unity. 
 
So, amplitude ratio for this component is equal to 1 with up to four decimal 
places, and we will also find out what is the phase for this case phi2 is again 
the same formula, but using the 2 into 0.7 into 8.75 by …….. and in fact, I 
should have put a negative value here, but because of the phase lag, I am just 
showing the magnitude otherwise it is somewhat confusing if we put that 



value also. So the value is 2 into 0.7 into 8.75 by 1 minus 8.75 square is 
equal to 2.981 radians the value of phi which you get. 
 
(Refer Slide Time: 37:45) 
 

 
 
(Refer Slide Time: 39:16) 
 

 
 
So we have the amplitude ratio for the first case which is 0.9905, for the 
second wave is 1, therefore, there is a very small amount of distortion, 
because the first part is going to be one percent less than the input amplitude. 
To that extent there is a small impact on the value. So amplitude wise 



amplitude response is more or less faithful. That means very small change in 
the first component the second component is more or less preserved. 
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However, if I look at the phase relationship, the output phase of the first 
component is different from the output phase of the second component. 
Now, we can write the output in the following form; it will be 0.9905 into 
0.005 cosine (2pi into t) this is the input wave, there is a phase lag of 2.554 
of the first component plus 1 into 0.0015 into cosine [7(pi t) minus 2.981]. If 
the phase response should be preserved, if the shape of the output must 
follow the shape of the input wave the following should hold. Suppose, I 
have the input a1 cos (omega t) plus a2 cos (2omega t) etc.  
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Suppose the response is the following this becomes a1

1cos(omega t minus 
phi), suppose it becomes a2

1cos(2 omega t minus 2 phi) that means this is 
phi and this is 2phi so the phase lag for the first component the phase lag for 
the second component is just twice that value. This means it is linearly 
increasing. Then if I put (omega t minus phi) is equal to (omega t1) this 
becomes, (2 omega t1) and therefore this becomes, [(a1

1 cos(omega t1) plus 
a2

1 cos(2 omega t1)] so the shape is preserved because the two are the same. 
 
If you look at these two the only difference is there is a small change in the 
amplitude. Of course, if I choose the omega by omegan large enough then 
this a1

1 will be very close to a1, a2
1 will be very close to a2, and you will also 

see that the phase is changing by exactly the same ratio, as the frequency of 
these two components. So omega t and omega t will become 2 omega t will 
become minus 2 phi so this is an ideal case, there is no shape change and no 
distortion.  
 
That means we can say that the response is faithful. Now what I would like 
to do is, to find out whether what we have got here for these two 
components is either in agreement with this or not. Let us look at (2pi t) 
minus 2.554, this is 7(pi t) minus 2.981. So what is the ratio of the 
frequencies, between these two this is 2.775 it is a factor of 3.5. 
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So, if this 2.554 changes by a factor of the same factor then we would have 
no change of shape. Of course 2.554 and this is 2.981, I can always add a 
certain number of pi to that. That means suppose I take 3.5 theta, where theta 
is equal to omega t minus 5 that means (2pi t) minus 2.554. If I take as 
omega as theta like t prime instead of that omega t is equal to 3.5 theta is 
what I am writing because this will become three times this portion.  
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So omega t1 will be here this will become 3.5(omega t1). So 3.5 theta will be 
nothing but (7pi t) because that will give you (7pi t) for the next component 
minus 3.5 into 2.554 is the value, this will be (7pi t) minus 8.939, so I can 
write it as (7pi t) minus 2.981 minus 2pi plus 0.3252. So I am rewriting in 
this particular form. So, if certain multiples of pi are added here it is not 
going to change the value because every time it comes back to the same 
value. Therefore essentially what is happening is there is a net phase change 
of 0.3252 radians between the two components. Therefore we can conclude 
in this example that this is not faithful to the input. Now I will go back to the 
response curve, and immediately you will see that it is in agreement with 
what we have already seen.  
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So, if I look at the response curve there is a factor of 3.5 and omega by 
omegan is equal to 2.5 which is somewhere here. And the second one is 
somewhere here, therefore you see that now it is quite departing from that, 
this is the difference we are talking about. If I had a case, where it was 4 and 
let us have 3.5 into 4 is equal to 13.5 you will see that it would have 
followed faithfully because it is in the linear part of the curve.  
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So in this case, because the first point is actually in the non linear part of the 
curve here there is a net phase difference, this is the phase difference we are 
talking about that will correspond to 0.3252 radians, it will be a plus 0.3252 
radians in the present case. So you see that the two things which we should 
do for vibration response that is amplitude response is to have omega by 
omegan large enough so that the amplitude is more or less equal to 1.  
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Secondly, we should choose that part of the curve, where the phase 
difference between the input and output is proportional to the frequency. 
That means, I must be on the linear part of the curve to get a faithful 
response for the vibration measurement system. For the acceleration 
measurement system it should be in this part of the curve so that you have a 
good faithful response with respect to the acceleration response. Let us look 
at one more vibration transducer which is very popular, it is called the 
piezoelectric accelerometer and the principles are exactly the same as we 
discussed. It consists of a seismic mass or a mass which is attached to the 
piezoceramic material usually quartz, and this is a thin layer of quartz 
material. And if the quartz material is subjected to acceleration it develops a 
charge across that.  
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So there is a charge developed across the terminals. The terminal is at the 
top another terminal at the bottom and you subject this piezoceramic 
material to a compression, or stress due to acceleration a, then it will 
immediately give you a charge and this charge will be appearing as a 
voltage. Actually you can look at the following way. This piezoceramic is 
like a capacitance, the positive charge or negative charge will appear on one 
electrode and on the other electrode there will be a net charge of the 
capacitor and therefore this deltaV is proportional to the charge which is 
generated, and this charge is proportional to the acceleration. Therefore you 
can see that, we are going to have a nice piezoelectric accelerometer having 
a good acceleration response. 
 
Again the same principles which we have just now enunciated are going to 
hold for this case also, omega by omegan large values is going to give you a 
good amplitude response and small values are going to give good 
acceleration response and so on. And a typical shape of this transducer is 
shown here in the inset which is roughly 16 mm diameter, this is the model 
made by ENDEVCO and the model reference number is given here. 
 
The ENDEVCO Corporation makes these transducers, and you can see what 
happens, here you take the electrical output out, inside this you have the 
seismic mass as well as the piezoelectric ceramic, and this is attached to the 
body whose vibration we want to study by using a suitable arrangement.  
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Principle of this sensor: We know that the capacitance is the equal to a 
constant K into (A by delta), where, A is the cross section of the area and 
delta is the thickness of the piezoelectric, because it is just a dielectric 
constant, piezoelectric constant. So q is equal to d into F, where F is the 
force and d is the dielectric constant for that particular material.  
 
Therefore you can see that, deltaV is equal to q by C, the charge divided by 
C, q is equal to d into F and F is equal to M into a, so I have taken F outside 
d into M into a is equal to d F that kappa A by delta has come here and you 
can see that deltaV is proportional to acceleration and (d delta M) by kappa 
A is the sensitivity of the instrument. So it is given by the seismic mass, the 
piezoelectric constant, and the thickness and the area of the material, and the 
dielectric constant of this thing. So the potential difference is proportional to 
the acceleration.  
 
So the charge sensitivity is q by a, where q is the charge divided by the 
acceleration and typical value is about 50 into 10 to the power minus 12 by g 
where g is the acceleration due to gravity the standard value, and voltage 
sensitivity is defined as deltaV by a, and that is given by delta by kappa A 
M. These are the two things which we usually talk about.  
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For example, if I take a typical sensor made by Brüel & Kjær 8200 this is the 
name of the product, it is useful for measuring forces between minus 1000 
that it is compressive to tensile 5000 N, charge sensitivity is 4 into 10 power 
minus 12 coulomb by N, capacitance is about 25 into 10 power minus 12 F 
and stiffness is 5 into 10 to the power 8 N by m so the material itself has got 
a stiffness which is the spring built into the system. 
 
Resonance frequency with 5g load mounted on top is 35 kHz so see the 
advantage of this particular instrument, the frequency is very high, and 
therefore it is very useful for measuring even high frequency accelerations in 
this particular case. Effective seismic mass above the piezoelectric element 
up to 3 g and below 18 g and material of the piezoelectric material is quartz, 
transducer is housed in a SS 316 stainless steel diameter which is about 18 
mm. 
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The transducer mounting is done by threaded spigot and tapped hole in the 
body. So the use is made of a charge amplifier. Useful frequency range is up 
to 10 kHz so this is a very small instrument, capable of being used for very 
high frequencies. Now we are going to do is, look at some of the recent 
developments in this particular field. If you remember when we were talking 
about measurement of velocity of gases and so on we were talking about 
new non invasive method of measurement, we also talked about ultrasonic 



and then the laser Doppler instruments. So the same principles are also used 
in the measurement of velocity, measurement of acceleration, measurement 
of displacement in a vibration system. 
 
(Refer Slide Time: 54:12)  
 

 
 
So the laser Doppler vibrometer is used in the measurement of either 
velocity or acceleration as the case may be in the case of vibrating system. 
So we will look at the principle of operation of such. This has been taken 
from a recent paper S Rothberg and it is from Optics and Lasers in 
Engineering, it talks about the development of a Doppler accelerometer, and 
of course it compares with laser Doppler velocimetry. So we have a laser 
source then we have a beam splitter, part of the beam is sacrificed it goes 
away from the system, and part of it goes and hits the target. The target is 
one which is going to be vibrating.  
 
So we want to measure the vibration, or either the amplitude or the velocity, 
or the acceleration of the target, and this beam is going to hit the target and it 
is reflected back retro reflected and then the beam splitter will sent part of it 
at 90 degree to that, and it will be incident on a second beam splitter, and it 
will be reflected and it will go and fall on a mirror, and we have deliberately 
a long path which we call as path imbalance deltal.  
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So the reflected light from here, and the light which goes through comes 
back here and these two are going to combine together and are going to be 
falling on the photo detector. So we have a reference beam, and in fact there 
are two beams now. Both the beams have undergone some change because 
of the target. The target is moving and these two are combined at the photo 
detector and the information we get at the photo detector will have some 
information about the acceleration of the target. We will look at the principle 
of operation by actually looking at how these two are going to combine here 
and what is that information which we are going to get which is going to be 
proportional to the acceleration of the target. Thank you.  
 


