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Force Measurement 
 
So this will be lecture 46 in our ongoing set of lectures on Mechanical 
Measurements. Towards the end of the last lecture, we were actually looking 
at the measurement of force and we will resume from there. In fact we were 
discussing different ways of measuring force and one of the ways of 
measuring is to use a spring element. 
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We discussed a few difficult cases, where this force is estimated by looking 
at a displacement in a spring element. We will also look at force balancing 
or using balance of forces to measure the force. So these are the two things 
we are going to look at in this lecture. And then, we will look at the very 
important application of force measurement to the study of vibration and 
measurement acceleration. So we will try to set forth the principles of 
operation of vibration and acceleration measurement devices and then, we 
will discuss a few methods which can be used for that. However, to start 



with let us look at force measurement. It simply says that one of the simplest 
methods is to use a transducer that transforms force into displacement. 
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So, displacement is a measured quantity, and the force is the inferred 
quantity or the estimated quantity. A spring element may actually be a spring 
like in the spring balance, or it could be an elastic member which undergoes 
a strain under the action of the force, and the strain is measured using for 
example, a strain gage. We talked about this when we discussed pressure 
measurement. Let us look at an example. So I take the case of a cantilever 
beam which was actually given as an example, in the last lecture. It is made 
of spring steel whose Young’s modulus is 200 GigaPascals. GPa stands for 
Gigapascals. 
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That is, 200 into 10 to the power 9 Pascals. It is 25 mm long and the width 
of 2 mm. It is in the form of beam and thickness of 0.8 mm. So we want to 
determine the spring constant for this particular case and the second part of 
the question says that if all the lengths are subjected to measurement 
uncertainties of 0.5%, we want to determine the percentage uncertainty in 
the estimated spring constant.  
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Thirdly, if the displacement which is measured under a force acting at the tip 
of the cantilever beam is 3 mm, what is the force corresponding to that 
displacement? We would also like to know, because all the measurements 
are susceptible to error. What is the uncertainty in the estimated force if the 
deflection itself is measured with an uncertainty of 0.5%? 
 
So let us look at the following sketch which shows the type of thing which is 
happening. You have a beam in the form of a small strip, or spring steel, this 
end is fixed, and we are applying the load at the other extreme, and the 
consequence of that is that, this end is going to deflect a certain amount in 
the downward direction so that displacement is actually measured. In fact, in 
this case we can even use a simple Vernier scale, and measure the deflection 
easily. 
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So the breadth of the beam is b is equal to 2 mm, the length is 25 mm and 
the height h of the beam which is the same as this, is 0.8 mm. So what I have 
shown here is the shape of the beam before loading, that is the straight thing 
here, and the shape of the beam after deformation, it has been bent like this. 
So essentially the element is a beam element, and the beam undergoes 
bending, and therefore this displacement of the free end is actually given by, 
a well known formula from Strength of Materials. 
 



So let us look at the solution. We are given the material property as E is 
equal to 200 Gigapascal which will be 200 into 10 to the power 9 Pascals. 
Then we have, the width is b is 2 mm. I will convert everything into SI units, 
so this becomes 0.002m and the thickness of the beam h is 0.8 mm, which 
will be 0.0008m. The length of the beam is given as 25 mm which is 
0.025m. So we can calculate the moment of inertia of the section, moment of 
inertia of the cross section is given by (b into h cube) by 12, where b is the 
breadth, h is the thickness and (b into h cube) by 12 is the moment of inertia 
which is given by 0.002 into 0.0008 cube by 12, and this works out to 
8.5333 into 10 to the power minus 14 m4.  
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So we have the moment of inertia, because the spring constant is actually 
given by a simple formula. The spring constant that we are trying to find out 
is given by, let us use the symbol K is nothing but 3EI by L power 3 and this 
will be 3 into E is equal to 200, into 10 to the power 9 into I is this quantity 
8.5333 into (10 to the power minus 14 by 0.025) whole cube and the unit of 
K will be N by m. 
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You can actually verify that EI by L power 3 this is Gigapascals or Pascals, 
this is in m power 4 and the m cube and then you can show that this is equal 
to N by m which is going to be 3277 N by m. So that is the first quantity of 
interest to us. We want to calculate the spring constant for this particular 
application, where the load is applied at the free end of the cantilever beam 
made of spring steel of the given dimensions.  
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Now we have to calculate the error in the value of K as given by this 
formula, because all the lengths measured in the problem are susceptible to 
errors. And because the formulae involve mostly products and products of 
powers we can use the logarithm differentiation which we are familiar with 
and, therefore directly I can work with the percentage error. For example, 
the error in percent of the moment of inertia is given by bd cube by 12 so 
(delta b by b) in percentage whole squared, this is in percentage plus three 
times (delta h by h) both in percentages whole squared because of the reason 
that I is equal to bh cube by 12 is in the product of quantities and raised to 
the power, therefore, I can use logarithmic differentiation, and obtain this 
one. So (delta I by I) % is equal to this, and therefore (delta b by b) is simply 
point 5%.  
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I can directly put this percent here so square root of 0.5 square minus (3 into 
0.5) whole square is equal to 1.58%. So the moment of inertia is in error by 
1.58%. And if you remember, the formula K is equal to 3EI by L power 3, 
then I is now in error of 1.58%, L is also in error by the same percentage, 
therefore now I can use a similar formula, and assume that E itself has no 
error specified on it, therefore we will assume that the error is only due to 
measurement of various length. Therefore now it is delta K by K in 
percentage and this will be simply given by it is 3EI by 3 is simply a 
constant, E is also now assumed to be having no error so this becomes (delta 
I by I%) whole square plus L3, that will give you (3 delta L by L) whole 



square that will give you again square root of 1.58 square plus (3 into 0.5) 
whole square is equal to 2.18%. This is in percentage so this will give you 
2.18%. So the error in the value of the estimated value of the spring constant 
is about 2%.  
 
That is the first answer we require. Therefore we can say, K is equal to 3277 
plus or minus 71.4 N by m which is 2.18% of that value. This is the answer 
to the first part of the problem. Now we know that the deflection under the 
load, if I call it is 3 mm is equal to 0.003 m deflection under the load. 
Therefore the force which gave rise to this particular thing is KY and by 
definition of spring constant that will be 3277 into 0.003 N is equal to 9.83 
N. 
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This is just the nominal value. So that is the force that has been applied and 
that gave rise to a displacement of 3 mm under the load. And again, I can 
use the same K which is susceptible to error, we already know Y is also 
susceptible to error, therefore I can also calculate delta F by F% is equal to 
square root of (delta K by K%) whole square divided by (delta Y by Y%) 
whole square is equal to square root of (2.18)2 plus (0.5)2 is equal to plus or 
minus 2.24%, which is the percentage error in the force measured, and 
where 2.18 is the value of deltaK by K%. So the error in the measured value 
of the force is given by 2.24% ,and therefore I can actually calculate what 
the force is which has been estimated, what is the error in the force and 



therefore, I can also say F is equal to 9.83 that is the value we got plus or 
minus 2.24% of that comes to 0.22 N, this is the answer to the problem. 
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So you see that in this example, the elastic member that undergoes a 
deflection which is in the form of a cantilever beam made of spring steel, 
can measure a force of about 10 N which is 9.83 which is very close to 10 N 
for a deflection of about 3 mm under the load. This is just an example, to 
show what kind of numbers you expect in a problem like this.  
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Now let us look at force measurement by other methods. For example, we 
can measure force, by mechanical balancing using simple elements such as 
the lever. Platform balance is an example, where the force measurement by 
balancing is used for determining the mass of an object. In fact, you can take 
the case of a simple balance. In the simple balance, we have horizontal 
member which is balanced in the center of the member, and on the two sides 
there are two pans and on one pan you put the weight, and on the other pan 
you put the mass the object whose mass you want to measure and then you 
find out when there is balance that means the horizontal arm of the balance 
must be perfectly horizontal and that is usually indicated by a needle 
attached at the center whose verticality you note against a scale. 
 
What we are doing here is, actually the mass is measured by balancing a 
known weight or weight of an object whose weight has to be determined 
with respect to a known weight which is calibrated whose weight is known 
and by balancing you are able to find out what is the mass. Because both the 
pans are subjected to the same gravitational acceleration, same gravity is 
acting on both the sides and therefore it is actually the force balance, it is 
actually the moment balance, the moment of one force on one of the pans is 
the same as the moment, because of the other force in the other pan of the 
balance.  
 



Similar thing can be done by using what is called, a platform balance which 
is used usually for measurement of very large masses, or if you want to call 
it as very large weight. Here is a simple schematic through which you can 
learn the principle of such a balance. Let us see what it consists of, this is the 
platform, what you see here is the platform and the weight can be put 
anywhere on the platform, that is the whole point of this platform balance.  
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It can be placed any where on the platform. There are two knife edges which 
rest here and one of the knife edges rest on this beam and the other one rests 
on this beam. There are three beams as you can see; one here, two here and 
the third one here. So this is resting here and here and the force is applied 
here and you can see what is going to happen. This force is distributed here 
and here. These two forces W1 and W2 are due to W, which may be placed 
anywhere on the balance Of course, W1 plus W2 is equal to W. W1 and W2 
itself is determined by the position of W depending on where it is put W1 
and W2 will be in different amounts, that is the whole point here. So this 
rests on a knife edge here, and you can that this beam also rests on the third 
one.  
 
The third member has got W2 coming here at a distance of h, from this knife 
edge, and you can see that this is resting here therefore, there is another 
force coming at a distance, equal to e, and then you see that this is attached 
to a vertical rod, this rod is going to be either pulled down or pushed up 



depending on whether there is enough balance or depending on which way 
the balance is. Hence, there is a certain force in this member, and this is 
applied to a knife edge here, and this is a knife edge, one force is applied 
here, and there is a counter poise and this is the fulcrum and this is another 
lever here. And the weight Ws is going to be put here at a distance equal to a 
from this fulcrum. And the force T which is in the member is acting at a 
distance b from this place. We can analyze this very easily by going through 
part by part. Let us look at what equations we are going to get. It is just 
balance of moment.  
 
(Refer Slide Time: 21:19)  
 

 
 
So you can see here that, if you apply it to this member here, Ws into a is the 
moment acting in the clockwise direction must be equal to T into b which is 
acting in the counter clockwise direction, if there is a balance. Hence it is Ws 
into a is equal to T into b. So, balance is usually indicated by a needle here 
whose position is going to indicate whether it is balanced or not. So T into b 
is equal to Ws into a where Ws is the weight which is going to be the known 
weight we know what this Ws is.  
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The next equation is, if you look at this member, there are several moments 
on that, and you can take moments at this particular point, so the sum of the 
moments must be equal to zero for the balance of that. So T into c where T 
is this force here multiplied by c is the force acting on it, and, W2 is acting 
here at a distance h, W2 into h plus W2 is acting here, and there is another 
lever here therefore there is a factor of (f into e) by d where e is this distance 
this f divided by this f by d comes from this lever. Therefore what we have is 
T into c is equal to W2 into h plus W2 fe by d.  
 
I can rearrange this equation, by writing for T is equal to e by c and I will 
take it outside here so this will be e by c into W2 into h by e plus W2 into f 
by d. suppose we arrange h by e is equal to f by d because this is something 
which we can choose, h by e is equal to f by d, if we choose these two 
factors are the same.  
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So, you see that if I take h by e outside this becomes e by c into h by e into 
W1 plus W2 which is nothing but W. So e will cancel off, h into W by c and 
is equal to T. So I can write here T is equal to Wsa by b is equal to h this 
part. So these two are equal, and therefore I can calculate W.  
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So W is equal to (a by b) into (c by h) into Ws. So, W which is to be 
measured, can be placed anywhere on the platform is equal to the product of 



(a by b) and (c by h) and these are all constants,and this, (a into c) by (b into 
h) is the gage constant. Therefore the value of Ws itself directly gives you W 
by multiplying it by a product which is a gage constant, chosen once we 
have all the lengths a, b, c, h. Once they are known, we can calculate the 
gage constant directly. This is how you get the weight. Weight is obtained 
by in terms of the added weight in the pan.  
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Apart from this, we also have a small weight which can be moved here on 
this arm, this can be called the poised weight. We also have what is called a 
counter poise weight which is on this side. This counter poise is actually 
used to balance the balance when there is no load on it we want to balance it, 
and that can be done by the adjustable counter poise. Now you can see what 
happens, if I put a poise weight here it is like putting a smaller weight here 
because this is Wp the moment arm is only this portion, whereas the moment 
arm for this is much larger. Therefore, it is going to give me a control. For 
example, Ws is 10 kg, and I want an improvement in the measurement, and 
100 g is what I want to measure using this.  
 
I can use a weight here at a smaller distance, so that it gives you a smaller 
least count of the instrument goes up, or this can be moved on a scale and 
therefore I can find out the scale reading here will correspond to a smaller 
weight and that is the way it works. So, the platform balance is simply an 
instrument where force is measured, the force in this case, happens to be the 



weight of the material which I am going to put here is measured in terms of 
balancing of the various moments acting on members, and what we have 
seen is that the position of W on this platform is immaterial. Wherever you 
place it on the platform it is going to read the same value. This is an 
example, which is indicative of another way of measuring the force. 
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Now, we are interested in measuring acceleration. And an accelerometer or a 
meter measuring the acceleration of a member or a mass is called the 
accelerometer. The acceleration may be due to vibration of a machine for 
example, and we would like to measure the acceleration because of the 
vibration. Or, if you have an instrument you would like to find out how 
much vibration it can withstand, and I would like to find out what is the 
acceleration it is subjected to during these vibrations.  
 
The measurement of acceleration is one measurement which we do to study 
the vibrational response of a system. We may also be interested in measuring 
the force which the member experiences, because of vibration. We may be 
also interested in the displacement, because of the vibration. There are many 
aspects which need to be measured. If I have mass and acceleration is 
imposed on it, then it means there is force which it gives rise to. So the force 
is nothing but mass into acceleration and acceleration imposed on a mass 
gives rise to a force. 
 



And in fact, this force may be measured to estimate the acceleration. 
Because acceleration is not directly measured the force can be measured by 
using any of the methods available. For example, a spring can deflect and 
the force can be measured with the spring and from that I can find out what 
the corresponding acceleration is if I know the mass which is undergoing the 
acceleration and that is how you work it out. For example, a seismic 
acceleration measurement or seismic accelerometer is based on this 
principle.  
 
(Refer Slide Time: 28:48)  
 

 
 
Secondly, as I talked about vibration measurement it involves measurement 
of amplitude of the waveform and the input waveform may be any 
waveform it need not be sinusoidal it could be non sinusoidal. That is one 
complexity that is going to come when you want to measure the vibration 
amplitude. For this purpose also I can use a spring mass system or in fact 
you can use a non intrusive measurement using laser Doppler vibrometer. 
This laser Doppler vibrometer is just like the laser Doppler velocity meter 
which was used in the measurement of velocity of a fluid. So similar 
principles are going to be involved but we can use a laser Doppler 
vibrometer to measure vibration. Let us look at some of the basic principles 
involved especially in the case of the spring mass system.  
 
A typical spring mass system is shown here. This is the mass and there is a 
spring attached to the mass, and there is a base plate which is in the form of 



a bent plate like this and the spring is attached between this and this [30:09]. 
And what I am going to do is, I am going to subject this base here to the 
acceleration. 
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If you want you can say that this is the table and the table is the one which is 
going to be accelerated. This is like a table on which I have got a mass and 
for the moment we will assume that there is no friction between the M, and 
this, and the spring is having a spring constant of k. Undeflected spring 
means, there is no force, there is no acceleration so this will be undeflected 
so M is sitting with stress there. Therefore the length of the spring will be 
the undeflected length of the spring. If the table accelerates to the right with 
an acceleration given by a, and because the mass has inertia, the mass will 
almost stay where it was, and with respect to the mass or with respect to the 
table, the mass looks like it has gone back.  
 
That means because of the extension of the spring the force is now felt by 
the mass, or because the mass is staying where it is and the ideal case is that 
the mass should not move but only the table should move in which case the 
total force will be simply given by the extension of the spring multiplied by 
the spring constant which will directly give the mass times acceleration. 
Therefore acceleration is obtained by simply taking the spring deflection 
multiplied by k and divided by the mass.  
 



So the displacement of the spring is a measure of the acceleration as you can 
see. Now I call it no damping case because I do not have any damping in 
this. Here we have a spring mass system and if you have a spring mass 
system without damping, it is having a natural frequency, and suppose I 
oscillate or vibrate this table at a frequency equal to the natural frequency, 
the displacement of the mass will be enormous.  
 
In principle, it will go into resonance and the displacement will be too large, 
and we do not want that to happen. So sometimes what we do is we provide 
two stops. If you have a vibrating table you place the vibration measurement 
device on top of that.  
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So what I will do is that I will put two stops here so that the spring is not 
allowed to extend beyond some value, it will be stopped here, or it will be 
stopped here on the compression side. This is called the seismic mass, so the 
motion of the seismic mass is a mass which is more or less isolated from this 
vibration source so it more or less stays in the same position. It is best if it 
can stay in the same position. 
 
Then you have the k the motion is stopped by the stops which I have kept 
here, so that you are preventing the damage to the instrument when the 
natural frequency of this spring mass system coincides with this impressed 
vibration frequency. If the same frequency is there, then it will go into 



resonance. We have an accelerometer which has a seismic mass of mass 
equal to 0.02 kg or 20 gm and a spring of spring constant equal to 2000 N by 
m, and it is a very hard spring. 
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The maximum mass displacement is plus or minus 1 cm that means I have 
provided the stops so that it will not go beyond that. So what is the 
maximum acceleration that may be measured? What is the natural frequency 
of the accelerometer?  
If I have a stop here, it means that the mass is more or less going to be on the 
same place, the mass is not going to move, but it is only the spring which is 
going to extended, and if it extends this mass will appear to reach this point. 
Actually the mass is there the spring extends such that this will come and hit 
it, and similarly the other side, this is ideal.  
 
Here is a simple problem. This should be example, 52. The problem is very 
simple,because the maximum amplitude or maximum moment is given 
because of the stop. That is given by delta xmaximum is equal to 1 cm. Actually 
you can put it as plus or minus 1cm, because it may be either compression or 
in other words the acceleration will be either to the right, or left, as the case 
may be, this will be plus or minus 0.01 m. Simple amaximum is given by (k by 
M) into delta x. (k into delta x) is the force, force divided by mass is the 
acceleration, it is a very simple formula. So k is equal to 2000 and delta x is 



equal to plus or minus (2000 by 0.02) into 0.01 m by s square so that works 
out to plus or minus 1000 m by s square. 
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You can notice the magnitude here it is a very large acceleration. I actually 
divided it by the acceleration due to gravity, so (1000 by 9.8) into g, as 1g is 
equal to 9.8 we can see that this comes out to plus or minus 102g. So, if you 
allow the mass to move about or the spring to compress or expand by about 
1 cm then we are talking about 100g appearing as the acceleration impressed 
which is a very large acceleration. 
 
So natural frequency can be also be obtained. We know this from our study 
of mechanics. The natural frequency I will call it as fn which is nothing but 1 
by 2pi square root of k by m 2pi into fn is called the circular frequency 
omegan. We are just using that formula. So this will be 1 by 2pi square root 
of 2000 by 0.02, this will be in so many hertz and it works out to about 
50.33 Hz. So the natural frequency of the system is about 50 Hz. 
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The natural frequency plays a very important role as we will see. Hence, let 
us look at a more tangible case, where you also have some damping, because 
it is very difficult to have the system without damping, and it is just not 
possible. So, if you have damping the nature of the response of the spring 
mass damped in the system is totally different from what we are talking 
about.  
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The slide here shows the schematic of a vibration or acceleration measuring 
system. For both cases we are going to use similar instrument the vibrometer 
or the accelerometer are one and the same but the various quantities, M, k, c, 
etc., that are shown are going to be different. Essentially it consists of a 
housing the accelerometer or vibrometer is the housing this housing has to 
be attached to the vibrating table or the source whose vibration we want to 
study.  
 
It should be intimately connected with that,and it should not have any 
relative motion with respect to the vibrating table. So it is necessary to screw 
it down, or attach it in some way so that it is a part of the vibrating table. So 
what I am talking about is only the housing. Inside the housing I have a 
seismic mass M just like what we had in earlier case, I have a spring just as 
in the other case but I also have an additional thing shown here.  
 
This is a damping arrangement which has got a damping coefficient or 
damping constant of c. So the difference between the case we considered 
earlier, and the case we are having now is that there is an additional item 
coming here. Suppose the table is vibrating up and down, if it is vibrating 
sideways, then nothing is going to happen, because the spring is able to go 
up and down, and not sideways so this will measure the vibration only in 
this up and down direction.  
 
So accelerometer has directional response, it responds only in this direction. 
Let us assume that x1 is the displacement of the table up and down, and here 
I have shown up and down arrow because it is vibrating. Sometimes it is up 
and sometimes it is down, sometimes it goes to one end goes to the other end 
and so on. As the vibration goes on, this x1 will go through variations from 0 
to a maximum then again to 0 back to minimum and so on.  
 
So it will go up and down like that here this table movement is the same as 
the movement of the housing. The accelerometer housing undergoes the 
same moment in step with this x1, and in principle M can go up and down by 
x2. This is the motion of the seismic mass. It may be ideal to have the mass 
x2 to 0 that means it is standing still. If it is standing still you can see what is 
going to happen, the compression of the spring is simply due to the up and 
down motion of the vibration, and therefore directly, you can find out the 
acceleration or the force, because the spring deflection is what is measured.  
 



The mass is undergoing a vibration motion x2 as shown by x2, and let us see 
what is going to happen schematically. Because of x1, if this moves by x2, 
the spring and the dash part or the spring and the damper are going to 
undergo a change x2 minus x1, x2 minus x1 is the displacement of the spring 
as well as this element here. So we have to see the force on the mass. Mass 
is of course moving up and above up and down by x2. Therefore M into the 
acceleration of the mass which is given by d square x by dt square, which is 
the force experienced by the mass this must be equal to, the sum of the 
forces due to these two elements, because that is what is going to come on 
that. So if you recognize that you will be immediately able to write the 
appropriate equation. We can show that the spring mass system with 
damping is governed by a second order differential equation, because 
acceleration of the mass is going to give rise to a force, and this force is now 
shared between the spring and the damper.  
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Now we are going to look at a second order system. In fact we have already 
come across such a system while discussing the transient behavior of a U-
tube manometer when we were talking about pressure measurement. 
Therefore we are going back to that equation but we are going to interpret 
the solution in a slightly different way. Here is the sketch. This is the 
housing that is the seismic mass M, there is a spring, and there is a dashed 
pot here, and this is x1, this is moving up and down x2.  
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So, I want to find out what is the equation governing the change of x2. For 
that we can immediately see that, force on the mass because of the 
acceleration is M d square x2 by dt square. That is the force experienced 
because of the movement of the mass. The mass is going to have a force M d 
square x2 by dt square. 
 
The spring force is given by k into (x1 minus x2), because the difference 
between the two is the displacement of the spring, and similarly for the 
damper we assume that the damping force is proportional to the velocity. In 
fact we have done that earlier also (dx1 by dt minus dx2 by dt), so this equal 
to this plus this and that is what the problem is about. M into d square x2 by 
dt square is equal to k into (x1 minus x2) plus C into (dx1 by dt minus dx2 by 
dt) and we can rearrange it in the form of a second order equation (M into d 
square x2 by dt square) plus (C into dx2 by dt) plus k into x2 is equal to (C 
dx1 by dt) plus k into x1.  
 
So the left hand side, I have got all the x2 terms and in the right hand I have 
all the x1 terms. And if you notice, x1 is actually known to us or it is given 
as the input. So we can take x1 for example, I can treat it as some x0 cos 
omega1t. This is assumed to be the input from the vibrating table. And for 
the moment, I am assuming a single component which is sinusoidal and has 
got a single frequency. Of course, we can generalize it to any type of input 
which may not be sinusoidal.  
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Now I am going to impress only one particular frequency if it is shaking 
with a single input frequency. Now I can obtain this dx1 by dt from this, and 
that will be nothing but, minus x0 omega1 sine omega1t. Therefore the right 
hand side can be written in terms of a given function of t and x0 will be your 
amplitude of vibration. In a vibration measurement what I would like to 
measure is that x0.  
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So I can write the equation now, I can also divide by M, so I will have d 
square x2 by dt square plus (C by M) into dx2 by dt plus kx2 by M is equal to 
I am going to divide throughout by M; x0 I will take out as a common factor 
(K by M) into cos omega1t minus (C by M) into omega1 into sine omega1t. 
This is the equation whose solution is required, if you want to find out what 
is the response of the system. In fact the response, consists of two parts. As 
you already know any second order or any differential equation has got a 
complementary function and a particular integral. And the complementary 
function in this case, will give rise to a damped oscillation which is transient. 
The transient will go off after sometime, and only the steady state part of the 
solution is important to us, because we want to look at the steady state 
response of the system. Here are some of the quantities which will be useful.  
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So the natural frequency omegan we already know is square root of (K by 
M) and we will also introduce what is called the critical damping coefficient 
or damping constant. The critical damping constant, Cc is 2 into square root 
of (K into M).  So with these quantities, we can solve the equation very 
easily and the general solution I can give for x2 minus x1 the solution can be 
shown by e power minus (c by 2m) into t into (A cos omega t plus B sine 
omega t) and you notice that the e power minus c by 2m into t, this is the  
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damping part and it is going to reduce with respect to time, and as t increases 
this is going to become smaller and smaller and this is actually the transient 
part, which will go to 0 for long time. Here this part is a more important one. 
This is given by M omega1 square x0 cos omega1 t minus phi, where phi is 
the phase angle by square root of (k minus M omega1) square plus (C square 
omega1 square), so this we call as the steady state response, and that is what 
of interest to us. In fact, what we can do is, in this equation which we have 
written down, the steady state response I can divide x2 minus x1 by x0, x0 is 
the amplitude of the input thing and I can remove cos omega t minus phi, 
this is just a time factor. So what is important is x2 minus x1 by x0 equal to 
this factor which is nothing but the response of the system.  
 
So the response of the system in terms of the amplitude x2 minus x1, x2 
minus x1 is equal to x0 we have solved the problem. So we will say that 
amplitude response is simply given by x2 minus x1 by x0 this is the 
maximum value of x2 minus x1 with respect to x0. I will also introduce the 
omegan square that was the natural frequency, and then we also had the 
critical value, Cc which was introduced earlier using that and then re 
arranging the equation we can show that this is equal to square root of 
(omega1 by omegan) whole square by 1 minus (omega1 by omegan) whole 
square plus 2 into C by Cc into (omega1 by omegan) whole square, that is 
your response function we will call that as equation 1, this is very important 
so let us use this as equation 1. That gives you the amplitude response of the 



system, and the amplitude response you can see is dependent on the omega it 
depends on the ratio of C and Cc and also it depends on the natural 
frequency. 
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So, for a given system, that means that the c is known, k is known and M is 
known for such a system, I know all these quantities omegan is known, C by 
Cc is known, and with different values of omega1, I would like to find out 
what is the amplitude response. If you look at the phase information, we can 
similarly show that, I can write phi in the same fashion as we did here, it will 
tan inverse of the following quantity: 2 into C by Cc into omega1 by omegan 
by 1 minus (omega1 by omegan) whole square. 
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This we can call as 2. And in fact I am going to write another equation, 
which is also useful. And if you go back, and see the acceleration due to x1 
is nothing but d square x1 by dt square that is the acceleration of the table at 
any given instant of time, because of the vibratory motion of that. So this 
can be written as d square by dt square of x0 cosine omega1t and this will be 
nothing but minus x0 omega1 square cos omegat. That means the 
acceleration, because of the vibratory motion is proportional to the 
amplitude of the motion multiplied by the square of the frequency of the 
change, omega1

2 is the frequency change.  
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So I can interpret equation 1, in terms of acceleration response. Let us look 
at the equation and see how this interpretation is done.  
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There is already omega1 square here, so all I have to do is, take this omega1 
square out, because that is proportional so x2 minus x1 by x0 if I take out this 
omega1 square, because that is the acceleration you can see that 1 by omegan 
square multiplied by this whole thing is going to be response due to 
acceleration. Therefore equation 3, I can write down and because omegan is 
constant for any particular system, I can say that the acceleration response is 
given by the factor, where I use symbol K, for that factor I am removing that 
omegan square from that expression and I am going to say that, this is equal 
to [1 by square root of 1 minus (omega by 1 omegan) whole square] to the 
whole square plus 2 C by Cc (omega by 1 omegan) whole square under the 
square root so we will call this as expression 3. Thank you. 
 
 


