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So this will be lecture number 15 on mechanical measurements. In the 
previous lecture we were looking at the errors in measurement of 
temperature under various circumstances. Now we are going to look at the 
measurement of temperatures which vary with time.  
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So, these are supposed to be so called temperature transients or 
measurements of temperature which varies with respect to time. What we 
will be doing in this lecture is to look at a temperature sensor and describe it 
mathematically in terms of a first order system behavior. And we will also 
draw an analogy with electrical circuit theory and we look at the similarities 
between the source systems. We will look at the governing equation, we will 
derive it and then workout what we call as a general response for any 
variation of the temperature. And after doing that, I am going to take three 
particular cases.  
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The first one will be response of the sensor to a step input or step change in 
temperature. It will become clearer when we look in to the details. Then 
response to a ramp input where the temperature is varying linearly with 
respect to time and response to a periodic input, a pure sinusoidal or pure co 
sinusoidal variation of the temperature with respect to time. And we will see 
what is the reason why we do that as we go along and we will also look at 
few representative cases and consider one example and work it out on the 
board.  
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The basic model which we are going to use for describing a temperature 
sensor is in terms of a lumped thermal system which is schematically shown 
in the slide here. We have an object. Suppose the sensor is to be represented 
by this object which is shown here. Of course the shape and size and other 
things will come later on. 
 
We will assume that at any time as t, the entire sensor which is represented 
by this regular shape body here is at the temperature T which is same 
throughout. It is a homogenous temperature field within the sensor. We will 
also characterize the sensor by a characteristic dimension we call it L 
subscript ch which is the characteristic dimension as far as the geometric 
variables describing the body is concerned. The characteristic dimension is 
what is going to come in the description of the thermal behavior of the 
system. We also visualize a fluid stream which is at a temperature equal to T 
infinity which may, of course be varying with respect to time and it subjects 
the sensor at its surface to a heat transfer coefficient h watts per square meter 
degree Celsius.  
 
There are different ways of looking at it. For example if the temperature is 
the same T infinity is constant, and initially the body is at temperature 
difference from the temperature of the fluid, and let us say we turn on the 
heat transfer coefficient by turning on a fan, for example, or some method by 



which the flow takes place, then immediately the temperature of the system 
starts changing.  
 
Another way of visualizing the problem is suppose the temperature T 
infinity is one value to start with and suddenly there is some mechanism by 
which I change it I want to find out what happens to the temperature 
indicated by sensor. It will be ideal if the sensor exactly follows what is 
happening to the temperature of the surrounding which it is supposed to be 
measuring.  
 
Invariably there will be a difference between the temperature indicated at 
any particular time by the sensor as compared to temperature of the ambient, 
whose temperature I want to measure. Therefore we expect a difference 
between the indicated temperature or the temperature of the body sensor at a 
particular time t, this will be different from this temperature. So the idea is to 
look at what are the differences? How they depend on various parameters 
which govern the problem?  
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And first for doing that I have given  a slightly different schematic here. I 
have a sensor idealized as a spherical object here. It may be visualized as a 
spherical shell and I have introduced a thermometer or a temperature sensor 
somewhere in the shell, and because we are assuming that the shell is 
entirely at a uniform temperature at any given time, there is no variation of 



temperature within the shell. The thermocouple position in the shell is of no 
significance.  
 
We will also assume that the lead wires are very very thin, so that there is no 
heat loss due to the lead wires which are attached to it. Of course, if the lead 
wires are going to conduct significantly, then we will have to take into 
account, that is not very difficult, but it becomes a little more difficult to in 
terms of the description of the problem.  
 
We will assume that the shell which is in a spherical shaped object here is 
characterized  by a mass of m. It has got a surface area which is in contact 
with the ambient fluid which is flowing over the surface of capital S and it 
has got a specific heat capacity of C. The units will be mass is kg S is square 
meters and C will be joules per kilogram Kelvin. And the ambient fluid is 
going to subject the surface to a heat transfer coefficient h watts per square 
meter Kelvin or watts per meter square degree Celsius and the temperature T 
infinity is the ambient fluid temperature which may be either stationary that 
is constant or it may be varying with respect to time in a particular fashion or 
it may be even periodic. So we are interested in three different cases where 
the temperature is in fact constant and the initial temperature of the sensor is 
different, from that temperature it may be either higher or lower.  
 
The second case where the temperature T infinity is actually varying with 
respect to time in a linear fashion which is normally what happens if you 
start heating for example, an oven which is in the off position you turn it on, 
initially the heat is input to the system and the temperature is likely to vary 
in a linear fashion.  
Or you may set up an experiment where you want to specifically heat an 
object at a constant rate of temperature increase with respect to time. (Slide 
time 8:11). So then I would like to follow the temperature as it changes for 
that particular experimental purpose.  
 
The third case is where the temperature is actually varying periodically with 
respect to time, cyclically in terms of a sinusoidal variation. And then I 
would like to find out how the system is going to respond to the changes or 
the variation in T infinity. Here, the system is actually the thermometer. 
 
We will see in a moment, I will work it out on the board. The thermal 
capacity of the system is the product of mass and the specific heat which is 
important. The mass time which is specific heat that is M in to C. So C is 



joules per kilogram Kelvin and M is kilogram. Therefore it becomes joules 
per Kelvin, that is the unit of thermal capacity. And then you have the 
thermal resistance which is nothing but 1 over the heat transfer coefficient 
surface area product. And again you will notice that 1 over hS is units of 
resistance, this will be in Kelvin per watt which will be unit of that. So the 
first order system which I have not yet defined in terms of an equation which 
I will do in a little while from now is defined by the quantities which are 
shown in this figure and the mass specific heat product is going to be one of 
the important parameters,and the second parameter is going to be the 
resistance heat transfer from the surface which is given by 1 over heat 
transfer coefficient area product. So with this background, let me go to the 
board and look at the system from a thermal point of view.  
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So we will consider the thermal model. So I will just indicate the sensor and 
we have already seen that mass and specific heat and the surface area is S 
and the heat transfer coefficient, and T infinity are given. To be more 
specific I will say that T infinity is possibly a functional temperature. Let us 
assume that initially at T equal to 0, T of the system will be indicated by T 
subscript i. So, let us look at the way the temperature of the sensor is going 
to vary. This is your T subscript C at T throughout. I am assuming that it is 
uniformly the same temperature throughout that object. Let us look at the 
rate of change of the temperature of the system. Suppose, if we say that T at 
any instant T is not equal to T infinity, at that particular instant of time there 



will be heat transfer in this direction. Of course depending on which 
temperature is higher, the heat transfer will depend on the direction of 
decreasing temperature.  
 
So let us look at the way if we are going to model this. So the change in the 
internal energy of the sensor, if it is going to lose heat that means if the 
temperature at any instant of the sensor is greater than the temperature of the 
ambient when it loses heat the temperature will reduce. So the rate at which 
the internal energy is changing or decreasing is given by mass into specific 
heat. I am assuming that all these are constants and are not varying with 
respect to temperature. dT by dt, is the rate at which the internal energy of 
the system is changing. And the heat loss or heat loss from sensor to ambient 
whose temperature is what I am trying to follow is given by h into S (Slide 
time 13:13) into T minus T infinity. Both are of course functions of time. 
 
I am not showing specifically here, and it is understood that both 
temperatures T and T infinity are essentially functions of time. So, if the heat 
loss is from the sensor that is heat is going in this direction, the temperature 
of the sensor is going to reduce, therefore dT by dt is negative. dT by dt is 
negative, therefore if I take negative of this MC dT by dt that will be equal 
to heat loss and that is how you write the equation.  
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So what conservation of energy requires is that, the change in internal 
energy which is minus MC dT by dt must be equal to hS into T minus T 
infinity. This equation is valid whether T is greater than T infinity or T 
infinity is greater than T because automatically the sign of dT by dt will 
change to accommodate these changes. Therefore when I derive the 
equation, I assume that the temperature of the sensor is greater than the 
temperature the ambient. So that I derive the equation with that assumption 
but in a case where the temperature of the sensor is actually smaller or lower 
than the temperature of the ambient, both the left hand side and the right 
hand side will change their sign and therefore there is no change in the 
equation. So this equation can be rewritten in the following form.  
 
So what I will do is, I will remove this MC from here, I will take it to the 
denominator. And look at this MC by hS ,is the mass specific heat product. 
Let us look at the unit of this quantity, this will be kilogram, this will be 
joules per kilogram Kelvin divided by h is watts per square meter Kelvin. So 
watts is nothing but joules per second into 1 over meter square Kelvin and 
this is meter square. So you see that this meter square will cancel off with 
this, Kelvin will cancel off with this, kg will cancel off with this kg and 
joules will be canceled. So this becomes unit is second. This MC by hS has 
the units of second, usually it is return as tau and we call this the time 
constant of the first order system. 
 
Why is it first order system?  
It is because the equation has a first order derivative in the equation, that is, 
it is governed by a first order equation. So with this notation MC by hS 
equal to tau, I can rewrite the equation very simply as dT by dt plus T by tau 
equal to T infinity divided by tau. This is the equation governing the 
problem. So the first derivative with temperature of the system or the 
thermometer with respect to time plus T by tau equal to T infinity by tau and 
we will reaffirm that T infinity could be a function of time.  
 
Therefore, if you want to you can indicate here specifically there is a 
function of time. It could be different function. And also we know that the 
temperature of the sensor is initially T(0) is equal to Ti. So we have the 
equation governing the problem which is the first order differential equation, 
ordinary differential equation with the initial temperature given as T at t 
equal to 0 equal to Ti. Hence, the solution of this is essentially what we are 
going to look for. So before we proceed with the solution, let us look at 



some other details. And the details I am looking at essentially is the quantity 
tau which we have just now seen that is nothing but that MC divided by hS.  
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If I look at the electrical analogy or analog MC is like the capacitance, and 1 
over hS is like a resistance. And you see that if I show it as capital C and that 
as R, the time constant for a electrical system is R times C. And exactly that 
is what we have here. If you want you can show it as 1 over h is the thermal 
resistance. So I can say it is R thermal and C, MC is actually the C thermal. 
tau is equal to RC. This is the analogy between the two system that is 
number one.  
 
Number two, the time constant is dependent directly on the mass specific 
heat product. So the larger the mass, or larger the specific heat, the time 
constant is larger. And the larger the resistance that means that hS product 
the smaller the value of heat transfer coefficient surface area product the 
larger the time constant. And in fact I can rewrite the MC by hS slightly in a 
different fashion. M is also equal to rho times the volume of the sensor. So 
rho is the density and V is the volume. So if I do that, then I can write tau as 
M is rho into V. I will write rho C multiplied by V divided by h into divided 
by S. So I am dividing it into two groups, this first group is thermal in origin 
and this is geometrical which has to do something with the size and the 
shape of the sensor. So it is actually the volume to surface area ratio.  
 



Now you can see that, if I make the volume to surface area ratio as small as 
possible or I reduce it, I will be able to get a smaller time constant. And we 
will see in few minutes from now, that a smaller time constant is better if 
you want to follow the changes as accurately as possible and as closely as 
possible. Therefore, the control I have over how a temperature sensor is 
going to respond, there are two factors which I can vary or I can choose or I 
can manipulate. The geometrical one is very easy to manipulate because all I 
have to do is to see that V by S is as small as possible. The following 
example I can take. Suppose I take a sensor in the form of a spherical shell. 
So that is let us say R and the thickness is delta. This is a spherical shell.  
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Therefore, we can see that volume is equal to 4 pi R squared delta. And this 
surface area is 4 pi R squared. So the volume to surface ratio, area ratio is 
nothing but equal to delta. In fact we will be referring to this as the 
characteristic length. So, if I have the sensor attached to a small spherical 
shell, what is the advantage I am going to have? I am going to have a very 
small characteristic length. And this characteristic length being small, it 
means that it is going to reduce the time constant of the system. Therefore, 
instead of taking a spherical solid object, if I take the object in the form of a 
spherical shell, I will be able to reduce the time constant because the 
characteristic length is going to reduce.  
 



However, if you look at the heat transfer point of view, I can choose a very 
large value of R, so that it is a large enough object, so that the heat transfer 
can be improved by having a good heat transfer coefficient in this particular 
case. You can see that there are several things which are manipulated at the 
same time by this technique of taking a spherical shell object. In fact I can 
also take the object in the form of a thin film of very small thickness like 
this. It has got two surfaces; one on this side and one on the right side. That 
is, the total area is the two surface areas and the volume is this, surface area 
multiplied by the small thickness.  
 
So, again the thickness, if it is delta, the characteristic dimension becomes 
exactly  equal to delta by 2. So I will say Lch equal to, because there are two 
surface areas and the volume is proportional to surface area multiplied by 
thickness, therefore I get a delta here. That means, time constant can be 
manipulated by simple geometric arrangement, where I am going to take the 
sensor in the form of a thin shell or in the form of a thin film and this thin 
film can be very thin. It could be a few micro meters in the thickness and it 
could be very large surface area may be a few millimeters in width and a few 
millimeters in height. So this is one part of the description of the system. I 
have not solved any  problem, I have not solved any equation. But by just 
looking at the equation I am able to get some insight into the thermal 
behavior of the system.  
 
With this background let us look at the governing equation which was 
derived on the board and I have written it in this slide just to recapitulate. 
What I have is the change in temperature with respect to time dT by dt is the 
rate at which it is changing is given by a difference between temperature of 
the ambient which may be varying with respect to time minus the 
temperature T which is the temperature of the sensor divided by the tau 
which is the time constant.  
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So dT by dt equal to T infinity minus T divided by tau. This is the 
temperature difference or it is like the voltage potential difference and 
divided by time constant. Time constant is something like a characteristic 
time for the particular problem which is given by MC by hS. And in the next 
slide I am showing the electrical analog of the same situation.  
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The time constant system is RC where R is the resistance and C is the 
capacitance and suppose I connect the resistance and capacitance like this, I 
input a voltage Vin. This is like the T infinity and the output voltage Vout is 
the response of the system. So RC is in series like this, and I am putting the 
input as I have shown here. This input may be either constant, or varying 
with respect to time, and then the output is going to appear across the across 
the object which is the system heat capacity.  
 
Actually you can see that, the resistance which is in series with the 
capacitance is something which connects the output which is what we want 
from this system, the temperature of the object to the temperature variation 
on the outside. This is something like an interaction. The resistance allows 
an interaction between the ambient and the system. And the system itself is 
characterized by the capacitance C of the system. So the relationship 
between Vout and Vin is what we are going to study and let us look at the 
way we are going to do that by again going back to the board. And let me 
just try to work out the so called general solution to the problem which is 
very simple.  
 
(Refer Slide Time 29:33)  
 

 
 
So, general solution to the first order equation, we know that it is dT by dt 
plus T by tau is equal to T infinity which is a function of time divided by 
tau. Suppose I multiply throughout by e to the power of T by tau which is an 
integrating factor. So if I multiply these two, the left hand side becomes e to 



the power of t by tau dT by dt plus e to the power of t by tau multiplied by T 
by tau is nothing but d by dt of e to the power of t by tau multiplied by T. 
You can verify that. So the right hand side is equal to, then T infinity by tau 
multiplied by e to the power of t by tau and all I have is to do is integrate it 
once. If I integrate, I will get e to the power of t by tau multiplied by T is 
equal to some constant of integration A, I will say , plus 1 over tau,because 
tau is a constant I will just take it outside, integral 0 to t, T infinity which is a 
given function of time, e to the power of t by tau  dt. And in fact you can see 
that the integral shown here for t equal to 0, the upper limit and the lower 
limit will be the same, and this will become 1, e to the power of 0 by tau 
becomes 1. Therefore A is nothing but Ti, and therefore I can write the 
solution as T which is a function of t.  
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I will multiply throughout by e to the power of minus t by tau, so that it 
becomes Ti e to the power of minus t by tau plus e to the power of minus t 
by tau divided by tau integral 0 to t, T infinity dt. This is the general 
solution. And in fact, I can use this as the starting point to write down the 
solutions for all the three different cases we are going to consider. The three 
different cases, if you recall one will be a step input. I will explain this using 
the electrical analogy. You have resistance and then you have the 
capacitance and you are going to connect it and you are going to measure the 
output here. 
 



So in this case, initially I do not have any input. I just give a voltage at the 
input by turning on a switch and let us say, you have a battery and then you 
connect it. So what initially will happen is, from the battery the current will 
flow through this circuit and this current flow will be taking place till the 
capacitance gets charged. Once it gets charged completely the current will 
stop. That is the transient. The transient is when the capacitance is getting 
charged. So what is the equivalent in terms of thermal system? In the 
thermal system, initially the temperature of the system is different from the 
temperature of the ambient and once we communicate the two at T equal to 
0 the temperature of the system of the thermometer will start going towards 
the temperature of the ambient which is a constant value and therefore the 
temperature will approach it as T tends to infinity as time becomes large 
compared to the natural time much larger than time constant system. The 
two temperatures are going to be the same. So we can say that we have 
equilibration of the temperatures, equilibration of the system and the 
surroundings. So let us look at the way we are going to get the solution to 
the problem. All I am going to do is to use the general solution here.  
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I am going to put T infinity equal to constant. So this will be replaced by 
constant value T infinity and all I have to do is to obtain this integral and 
then I will be able to get the solution to the problem. Let us look at that one.  
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So the thing I require is 0 to t integral, e to the power of t by tau multiplied 
by T infinity dt.Because ,T infinity is now constant, I can take it outside and 
write it as 0 to t e to the power of t by tau dt. This is a very simple integral. 
So this becomes T infinity tau e to the power of t by tau. It is because I 
integrate it I get this one, if you differentiate this you will get this one. And 
therefore the temperature T as a function of time is given by, of course you 
have to take it with respect to only between 0 and t. So let us just complete 
that. This will become Tinfinity multiplied by tau, e to the power of t by tau is 
e to the power of t by tau minus 1. So if I put it back into the general 
solution of the problem, T as a function of time, I have Ti e to the power of 
minus t by tau plus e to the power of minus t by tau divided by tau 
multiplied by that integral. That integral is now Tinfinity tau into e to the 
power of t by tau minus 1. This tau will cancel off with this tau and therefore 
this e to the power of minus t by tau multiplied by e to the power of t by tau 
is going to give 1. So it is plus T infinity here. Therefore I will see that T of t 
minus Tinfinity. This term will go to the left hand side. This T infinity is 
multiplied by this T infinity will go to the left hand side is equal to Ti  minus 
1 into T infinity is minus T infinity e to the power of minus t by tau or T 
minus T infinity divided by Ti minus Tinfinity. 
 
I will call it as ratio of two temperature differences equal to phi which is a 
non dimensional temperature ratio which of course is a function of time. 
This is equal to e to the power of minus T by tau is again a non-dimensional 



ratio of time in T seconds or T in whatever units to the time constant is the 
same unit. So you see that this equation represents the solution to the 
problem. There is an exponential response. The advantage of writing in this 
particular form is that I have only one universal curve which is going to give 
the response of the first order system to a step input. So let us look at the 
step input in the presentation. I have made a plot of whatever I showed in the 
solution there. 
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The ratio of the temperatures T minus Tinfinity divided by T0 minus Tinfinity at 
Ti minus Tinfinity, I have taken Ti there. It does not matter, T0 here represents 
the initial temperature. Tinfinity is the temperature of the ambient which is 
what we want to measure and initially the temperature of the sensor is 
different from the ambient temperature. So it will vary according to this 
exponential and you see that the characteristic of the exponential variation is 
that, at the end of one time constant t by tau equal to 1 it is about .367 of the 
value here, and if I go to another time constant it will be point 367 of this 
value. And every time constant reduces by a factor of 1 over e. That point 
367 is nothing but 1 over e. So you see that, in principle of course it takes 
infinite amount of time to approach the ambient temperature. But as you can 
see from this graph, around 5 time constants, the response is almost like it 
has come to equilibration. So let us look at the equation again.  
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And what I am going to do is, I am going to look at a slightly different 
change of temperature of the ambient. So if I have a ramp input, a ramp 
input is very common. For example, when you turn on a heater or control it 
to vary with respect to time in a linear fashion, used in thermal analysis of 
materials. Instruments which study the thermal behavior of material usually 
use a programmed heating mode in which the linear or ramp input is a 
common feature. So, increase the temperature with respect to time in a linear 
fashion.  
 
Suppose I take the temperature T infinity to vary, initially it is some T0 plus 
R times t where R is the ramp rate. So if  I were  to plot this temperature, this 
is T0 and it will go like this and the slope of this line is R linearly it is 
increasing with time. And now the temperature of the sensor may be either 
higher or lower than the T0 to start with and we would like to know what is 
going to happen. So all I have to do is to go to this general solution which 
we worked out previously.  
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And all I need is an integral of this form 0 to t. Instead of T infinity I have 
T0 plus Rt into e to the power of t by tau dt. This can be written as two 
integrals plus R times integral 0 to t, t e to the power of t by tau dt. This 
integral is similar to what we did in the case of a step input. Here we have an 
integral which involves the product of t and e to the power of t by tau, this 
can be done by integration by parts. And in fact I am going to leave it as an 
exercise for the student to work out and I will give only the final answer to 
the problem. So what I am going to do is, I am going to give the final 
answers to this. Step input case has already been done. Instead of T0 we had 
T infinity there, this integral 0 to t, t e to the power of t by tau dt can be 
integrated by parts and it can be shown.  
 
So this becomes, I will call it as I show that which is equal to, I will just give 
the final expression, t multiplied by tau, e to the power of t by tau minus tau 
squared into e to the power of t by tau minus 1, by integration of parts, 
which is very simple and straight forward. Hence, what I am going to do is 
to substitute it into the general solution and simplify and write it in this 
particular form. So the solution turns out to be, T of t is equal to Ti minus T0 
plus R into tau e to the power of minus t by tau is the first part and plus T0 
plus Rt minus Rtau is the second part. 
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So if you look at the first term, there is an exponential term and as T 
becomes larger and larger this is going to become smaller and smaller, so we 
will call this as the transient part which tends to 0, as t tends to infinity 
which we will interpret as t greater than tau. t varies largely when compared 
to the time constant system. And this we will call as the steady state 
response wherein if you look at this you will see that when the transient part 
has already become 0, the surviving part, the part which remains is called the 
steady state response. It is nothing but this is T0 plus Rt which is nothing but 
the input. That is the rate at which the ambient temperature is changing. 
Therefore there is a small or a lag with respect to the input which that means 
that the two are going to vary alike with a lag, the response of the sensor will 
lag behind the response of the input. The input is changing with respect to 
time according to a ramp input. This will be slightly lagging behind that. 
Therefore it will always be behind that. Actually we will see that if we were 
to look at the solution by plotting it as I am showing here.  
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So I am going to plot it again t by tau on the time axis and then I am going to 
plot T here on the y axis. So this is your input, this value is T0 and the slope 
of this line is R. Suppose the initial temperature of the sensor is here, it will 
first try to catch up with this. So it will vary like this, and go and become 
parallel to this. This will be equal to R into tau. If it is staring with a value 
higher, it will first decrease and will go below this and then go here. Either 
way, let us say case one, case two Ti is here. Initially what happens is that 
the sensor cools as it is at a higher temperature because the ramp is starting 
with a lower temperature. So it will cool and it has to cool below the 
temperature of the ambient and it will cross over and then it will start 
increasing again. And then ultimately, in this case also it will lag behind by a 
factor equal to R into tau. This is the general behavior we are going to see 
and I have made a plot for a particular case in this slide.  
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I have taken T infinity which is in degree Celsius. It is given by 35 plus 
point 15t, where t is in seconds. I have taken the time constant of the sensor 
as equal to 10 seconds, and I have shown the plot when the temperature of 
the sensor was 20 degree to start with. So, initially you see that the 
temperature is increasing and it is trying to catch up with the temperature of 
the ambient which itself is again increasing and therefore it will never catch 
up completely.  
 
So if you remember the time constant is 10 seconds, after about 50 seconds 
if you look at here that is 5 time constant, the difference between these two 
graphs, these two are going to become parallel, they both are going to be 
linear but with a small difference R into tau. In this case R is equal to point 
15 and tau is equal to 10. Therefore R into tau is equal to 10 multiplied by 
point 15. So 1 point 5 degree difference is there. So the difference is 1 point 
5 degree between the temperature of the ambient which is changing 
according to a linear relationship and the temperature indicated by the 
sensor. So this is what is going to happen in the case of a first order system 
whose response we have plotted for a ramp input.  
 
When the temperature of the ambient is changing linearly with respect to 
time there is always a lag whether it starts with a lower temperature as in this 
case or a higher temperature. If it were to start with a higher temperature to 
somewhere it will cross over. So what is this cross over? Because initially 



the temperature of the sensor is lower than the ambient temperature there 
will be heating problem. The temperature of the sensor will start increasing 
from t equal to 0. 
 
However, if the temperature of the sensor is more than the temperature of 
the ambient to start with, it will have to first cool. The temperature has to 
cool down and it will actually cool down to a temperature lower than the 
temperature of the ambient in some time and then it will start heating again. 
That is what I indicated on the board. So let us look at the last case I am 
going to consider. That is the case of sinusoidal input or we will call it as a 
periodic input problem or periodic variation in temperature.  
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There are many instances where periodic changes in temperatures are to be 
measured. Example, you have an electrical machine or variation in daily 
temperature. For example, temperature inside an engine, inside an IC engine, 
inside the cylinder there is a gas and the temperature or the wall of the IC 
engine will also have a periodic temperature variation. This period of the 
periodicity of the wave will be determined by the speed of the engine. The 
temperature inside the engine varies with the speed. So in the case of the 
electric machine if it is 50 cycles we expect the temperature to vary 
somewhere in that vicinity of 50 cycles. In the case of an IC engine 
depending on the speed, the temperature will vary with respect to time.  
 



And in fact what I will do is I will just take a simple case where I will 
assume, it could be a pure sinusoidal or pure periodic wave given by one 
single frequency or it could have a shape which is not necessarily sinusoidal. 
So if it is a pure wave, pure sinusoidal, it is characterized by a single 
frequency. If it is a more complex wave which has the shape it will have 
multiple frequencies. So there may be a frequency which we call as the 
fundamental, which is given by the periodicity of that wave and there will be 
harmonics which are at higher frequencies. So if you look at the solution to 
the problem, what I have to do is to obtain that integral which is given by 
integral 0 to t, T infinity as a function of time, e to the power of t by tau dt. 
This is what I have to obtain.  
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And if I assume that T infinity t is a pure sinusoidal wave or pure periodic 
wave with one frequency, I can take for example, amplitude Ta cos omega t. 
I can either take cos omega t or sin omega t it does not matter. I am just 
taking Ta cos omega t. And Ta is a constant, this is called the amplitude and 
this is the angular frequency, actually in radians per second. If the frequency 
is f, then omega will be nothing but 2 pi times f omega ,equal to 2 pi f. So let 
me just indicate how we are going to solve this problem and I will actually 
leave the details to the student to workout.  
 
What I want is the integral given by cos omega t multiplied by e to the 
power of t by tau dt. Again I will integrate it by parts, so in the first 



integration what will happen? I will be integrating e to the power of t by tau 
keeping this as such and then I will have to differentiate this when we do the 
integration of parts. And the differentiation will give you a sinusoidal 
because cos becomes sine. Suppose I repeat again, afterwards I will get an 
integral which involves sine and then second time I integrate I will get back 
the cos omega t. That means if I integrate once by parts the integral will 
change over to from cosine to sine and then when I integrate the second time 
this sine will again become cosine and therefore the integral will repeat 
itself. And to conserve time I will not indicate the steps involved, I will just 
give the final answer to the problem. Those who are interested can work it 
out on  their own. 
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So the integral repeats after two integrations. This is the observation we are 
making. So mathematically we can look at it but we are not inclined to do 
that. So the solution can be written as,Ti minus Ta divided by 1 plus omega 
square tau square whole multiplied by e to the power of minus t by tau. We 
will call this as a transient part just like what we had in the case of a ramp 
input. The solution is made up of two parts; the transient part plus again we 
have what is called a steady state response part which is given by Ta 
multiplied by cosine omega T minus delta which is called the phase angle 
divided by square root of 1 plus omega square tau square. This solution can 
be worked out by the method I have suggested. So again the transient part 



tends to 0 as t tends to infinity which means t is something greater than 
above 5 tau let us say. 
 
So what will happen is, as the time becomes larger and larger the response is 
given by the second part, this is called the steady state response. And what 
we notice from the steady state response is that it is also co- sinusoidal but it 
is omega t minus delta that means there is going to be a lag with respect to 
the input and in fact delta is given by tan inverse of omega tau. And the 
coefficient is Ta divided by square root of 1 plus omega square tau square 
and omega tau 1 plus omega. This is smaller than Ta by a factor greater than 
1 therefore the amplitude is reduced.  
 
Therefore we say that there is an amplitude reduction. So Ta divided by 
square root of 1 plus omega square tau square and delta is equal to tan 
inverse omega tau. And in fact I have worked out a simple example to show 
what is going to happen in the case of a response to a cosine input as we 
said. So I have taken a specific case Ta by T0 equal to .25, omega equal to 1 
radian per second, and tau equal to 1 second and you see that the 
temperature where it starts, this is the input which varies like this and the 
response of the system is following the other curve and you see that initially 
there is a transient and it dies down and then both of them become periodic 
and there is a time lag as shown here,and the amplitude is smaller than the 
other amplitude by a certain factor.  
 
So what I will do is in the next lecture I will briefly touch upon this case 
again and indicate what happens when you have a general periodic input 
which may not be a pure sinusoidal and we will look at that case. And then 
what I am going to do is to look at other methods of measurement of 
temperature using different types of sensors. Thank you.   
 
       
  


