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In the last lecture we saw termination conditions for linear programming problems and we ended 

the lecture by considering the problem that had unrestricted variable.  
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In the example that we chose, X1 as the unrestricted variable and X1 was written as X3 – X4 and 

we solve the problem optimally. The simplex table is shown below.  
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In our discussion we said at the end, that the optimal solution is X3 = 4; X6 = 6 with Z = 16 but 

we also observe that X4 which is a non basic variable has a 0(Cj – Zj) at the optimal.  X4 in turn 

tries to enter the basis but when X4 enters the basis we realize that we do not have a living 

variable. We get a feeling that we see unboundedness in this example. We may also feel that 

because the non basic variable has Cj – Zj = 0 at the optimum it could indicate alternates 

optimum. What is happening is it is indicating neither. The reason being, then we had substituted 

X1 = X3 – X4 and in this example X3 = 4.  
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This will be taken back to the original problem with variable X1 taking a value 4 and Z = 16. The 

original problem has the solution X1 = 4 and Z = 16 but that is reflected as X3 = 4; X4 which is 

non basic is = 0 From X1 it has to take a value 4 in the optimum solution, then one way of getting 

this 4 is (4, 0). For example we could have a solution X3 = 5; X4 = 1 and X1 could still be 4. So 

that is being reflected by the presence of this 0 under X4 where X4 is trying to enter the basis.  
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It is suggesting that we could have alternate combinations of X3 and X4 but effective value for X1 

will remain at 4.  
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Also because there are infinite ways of getting this 4, it could be for example (4 0) or (5, 1) or (6, 

2) or anything. One gets a feeling that X4 can actually take any positive value and X3 can be 

correspondingly adjusted. Therefore we get a feeling that, that we are going have unbounded 

solution.  
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So this phenomenon will occur when ever we are working with the problem that has unrestricted 

variable. If that variable has to be in the solution, then the variable is being represented as a 

difference of two variables. 
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One of them will be in the solution. In this case, this unrestricted variable takes a positive value. 

So this component will be in the solution with 4. 
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The other one will be non-basic at 0 but will try to enter the basis by having a 0 value for Cj – Zj 

and will indicate something very similar to unboundedness. This is something which we will 

have to have to understand whenever we are solving the linear programming problem where the 

original problem has unrestricted variables. Once again in the last lecture we looked at the 

various termination conditions and let us have a quick recap of these before we move to the next 

topic.  
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The various termination conditions for unique optimum, alternate optimum, unboundedness and 

infeasibility, were dealt with in the last lecture. Now the alternative optimum is always 

represented by non-basic variable having a Cj – Zj = 0 at the optimum and trying to enter. 

Unboundedness will be indicated by having an entering variable but unable to get the 

corresponding living variable. Infeasibility is indicated by the optimality condition being 

satisfied but an artificial variable will be in the basis with a strictly positive value. They also said 

if the artificial variable is in the basis with value 0 then it indicates that we try to solve the 

linearly dependent system of the equations. From all these termination conditions we generalize 

and we state what is called the Fundamental theorem of a linear programming. The fundamental 

theorem of linear programming is as follows. 
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Every linear programming problem is either feasible or unbounded or infeasible. If it has a 

feasible solution then it has a basic feasible solution. If it has an optimal solution then it is basic 

feasible. Now this theorem is important for many reasons. All the termination conditions get 

reflected in the first sentence. So every linear programming problem has to satisfy one of these 

three. It will have an optimum which could be a unique optimum or an alternative optimum. It 

could be unbounded or it could be infeasible. So these are exactly the things that we looked at in 

the termination conditions. If it has a feasible solution then it has a basic feasible solution it 

means that there is at least one corner point solution for this.  

 

This comes from the fact that the feasible region in every linear programming problem is a 

convex region. So if the problem is not infeasible then it is feasible. It means there is at least one 

corner point solution and if it has an optimum solution then the optimum solution has to be a 

corner point solution and it has to be a basic feasible solution. So this theorem is important. We 

will come back to the theorem. Refer to this theorem a little later when we look at some aspects 

of duality. In summary of the linear programming problem, we have so far we looked at solving 

linear programming problems for maximization objective and minimization objective. We have 

looked at different types of constraints. We introduced variables, negative slack or artificial 

variables. We also understood the artificial variables are needed to get a starting basic feasible 

solution.  

We also looked at the various aspects of the simplex algorithm in terms of initialization, 

interaction and termination and then we defined the fundamental theorem of linear program.  
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Then we move to a very important aspect of linear programming called duality. 
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Now let us explain the duality by taking the same example that we looked at the beginning of 

this course.  
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The problem is to maximize.  
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The problem is to maximize 6X1 + 5X2 
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X1 + X2 less than or equal to 5; 3X1 + 2X2 less than or equal to 12; X1, X2 greater than or equal 

to 0. Now without solving this problem, let us try to get some estimates of the objective function. 

For example if we did not have either of these constraints or if the problem did not have any 

constrain at all, then an obvious answer would be X1 = infinity; X2 = infinity; Z will be infinity.  
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And since we have these constraints, the Z value is at the optimum.  
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It will have to be less than that of infinity.  
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Putting it differently, this infinity is very easy, simple, upper bound to the value of the optimal 

solution. Now let us look at other ways of getting better and better upper bounds.  
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For example if we can look at this problem, we confidently say that the Z value at the optimum 

cannot be more than 1000, then 1000 becomes an upper bound to the objective function at the 

optimum. Now one of the simplest things to do is to multiply the second constraint by 3. If you 

multiply the second constraint by 3 we get 9X1 + 6X2 is less than or equal to 36. We know that 

the optimum solution has to be feasible therefore X1 and X2 are greater than or equal to 0. The 

optimum solution has satisfied all the constraints. The optimum solution has to satisfy this 

constraint 9X1 + 6X2 is less than or equal to 36. 9X1 + 6X2 is less than or equal to 36; for X1 X2 

greater than or equal to 0; 9X1 + 6X2 is greater than 6X1 + 5X2. Therefore 6X1 + 5X2 should be 

less than or equal to 36. Therefore the optimum solution should have an objective function value 

less than 36. 36 is upper bound to the objective function value at the optimum.  
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So we can get Z = 36; Let us do another thing.  
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Let us multiply the first constraint by 6. We get 6X1 + 6X2 less than or equal to 30 

By the same logic X1 and X2 are greater than or equal to 0; 6X1 + 6X2 is less than or equal to 30 

6X1 + 5X2 is less than 6X1 + 6X2 which in turn is less than 30. Therefore 30 is upper bound to 

the value of the objective function at the optimum.  

We can go back and say this problem cannot have an objective function of more than 30 at the 

optimum. 
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We now look at 30. Now let us look at the third now. We realize this (Refer Slide Time: 12:17) 

30 adds more value to us than this 36 because we are now zeroing on and we now realize that 

this problem cannot have an optimum objective function value of more than 30.  It can be 30 or 

less. Let us look at the third thing. 
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Let us multiply this by 2 and add this. So this will become 3 into 2 = 6 + 1 = 7X1; 2 into 2 = 4 + 

1 = 5X2 less than or equal to 29. 12 into 2 = 24 + 5 = 29 
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Once again by the same logic 7X1 + 5X2 should be less than or equal to 29; 6X1 + 5X2 is less 

than 7X1 + 5X2; X1, X2 greater than or equal to 0. 6X1 + 5X2 is less than or equal to 7X1 + 5X2 

which in turn in less than or equal to 29.  
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So 29 is another value of the upper bound. We are doing this in such a way we are progressively 

reducing this upper bound value. Now what do we understand out of this?  
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We understand that if I multiply the first inequality say by a1 and I multiply the second one by an 

a2, such that a1, a2 is greater than or equal to 0. Otherwise the sign of the inequality will change 
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and so on. We maintain that a1, a2 greater than or equal to 0 and if we multiply this by an a1 and 

this by an a2 such that a1 a2 greater than or equal to 0. In the resultant, process we get a1 into a1 or 

in the process whatever we get, we simply multiply. We get 1a1 + 3a2 is greater than 6. For 

example I multiply this by a1 to get a1X1 + a2X2 less than or equal to 5a1; 3a2X1 + 2a2X2 less than 

or equal to12a2 and then I add this so I get a 1 + 3a2.  

So if a1 + 3a2 is greater than or equal to 6 and a1 + 2a2  is greater than or equal to 5 then 5a1 + 12 

a2 will be an upper bound to the objective function value at the optimum. What really have we 

understood from this? 
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Here we multiplied this by 2 and this by 1. In that example a1 was 1 and a2 was 2.  
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You multiply the first inequality by a1 and second one by a2. a1, a2 greater than or equal to 0 such 

that 1a1 + 3a2 is greater than or equal to 6; 1a1 + 2a2 is greater than or equal to 5.  

Then 5a1 + 12a2 will be an upper bound to the objective function. Why did we do all these?  

 

(Refer Slide Time: 16:26) 

 

 
 

We want to find out what is a smallest value of the upper bound that we can get. In order to do 

that what we need to do is to multiply this by a1 and a2 such that a1 + 3a2 (you find a1 and a2) 

such that a1 + 3a2 greater than or equal to 6; a1 + 2a2 greater than or equal to 5. 5a1 + 12a2 is 

upper bound, a1, a2 greater than or equal to 0.  
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Now if you are able to find out any a1, a2 which satisfies this and this (Refer Slide Time: 16:54) 

and this, then we know that 5a1 + 12a2 is upper bound to the value or the objective function at the 

optimum. Now if we want to find out the minimum value that this upper bound will take then 

obviously we try to find out a1, a2 such that this is minimized.  
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a1, a2 which will satisfy all these conditions and minimize 5a1 + 12a2 will give the minimum 

possible value that this upper bound can take. This is another linear programming problem which 

has come out of the original problem. If we replace a1 by y1 and a2 by y2, we will get minimize 

5y1 + 12y2 such that y1 + 3y2 greater than or equal to 6; y1 + 2y2 greater than or equal to 5; Y1, Y2 

greater than or equal to 0.  
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This problem is called the dual of this problem. So this (Refer Slide Time: 18:08) problem is 

called the primal. The given problem is called the primal.  
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Dual provides the minimum value that this upper bound can take and dual is another linear 

programming problem which is written from the original one. What are some of the 

characteristics of the duality? To begin with, if every primal problem has a dual then by this 

logic we can write a dual for every primary problem. We will take another example to write the 

dual and learn more about how to write the dual. But before that what we need to do is this. This 

is example two variable, two constraint problem. But what happens is the primal is a 
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maximization problem. Then the dual is the minimization problem. The primal has two 

constraints, the dual will have two variables because these Y1 and Y2.  
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Then the dual is the minimization problem. The primal has two constraints, the dual will have 

two variables because these Y1 and Y2 represent the a1 and a2 and by definition, the a1 and a2 

enter because there are two constraints. So the primal has two constraints.  
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The dual has two variables Y1 and Y2.  
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Now these two constraints come from the fact that these two variables are there in the primal.  
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This is because each of these is written for these variables. So the dual will have as many 

constraints as the number of variables the primal will have and it will have as many variables as 

the number of constraints the primal will have.  
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Now the right hand side values of the primal will be the objective function values of the dual 
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Now the right hand side values of the primal will be the objective function values of the dual 
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The dual and the right hand side values of the dual will be the objective function values of the 

primal. For example we may not be able to clearly understand the fact that two variables become 

two constraints. Much later will take a different example to show all these properties. In 

summary the properties are that the primal is a maximization problem. Dual is a minimization 

problem.  
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The dual will have as many constraints as the number of variables in the primal and as many 

variables as a number of constraints in the primal. The co efficient matrix of the primal will 

become a transpose here. It will get transpose and it will appear as it is.  
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The right hand side values become the objective function co-efficient values and the objective 

function co-efficient become the right hand side values.  
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Now we will keep this as the base primal dual relationship. We will assume that the primal is a 

maximization problem and if the primal is a maximization problem with all less than or equal to 

constraints and all variables greater than or equal to 0. We know dual will be a minimization 

problem with all constraints greater than or equal to all variables greater than or equal to and 

having additional properties in terms of number of variables becoming number of constraints and 

number of constraints becoming number of variables, co-efficient matrix becoming the 
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transpose, Objective function becoming the right hand side and right hand becoming the 

objective.  
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Let us go back to this and whatever we had explained, you can see again in this sheet. So these 

are for every Y1 and 3Y2 satisfying this, we get an upper estimate of Z. So lowest value it can 

take is given by another linear programming problem P2 that we have derived here. Minimize 

5Y1 + 5Y2; W = 5Y1.  
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It is customary to write the dual objective function as W instead of Z.  

Normally we use the vector X to represent the solution of the primal and Z to represent the 

objective function value of the primal.  
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We use Y to represent the dual variables and W to represent the objective function value of the 

dual.  
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So we have minimized W = 5Y1 + 12Y2 and so on. Now if the primal is maximize Z = CX 

subject to AX less than or equal to b; X greater than or equal to 0, the form that we have looked 

at, in this case C, b, X are vectors A is the matrix. The dual will be minimized W = Yb subject to 

A transpose Y greater than = CY greater than or equal to 0 which are the things that we have 

seen right now.  
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Right now the next thing that we need do is if we are given a primal which satisfies exactly this,  
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If we are given a primal which is a maximization problem with all less than or equal to 

constraints and all greater than or equal to variables, we assume now that we know to write the 

dual.  
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The dual will be minimization problem. 
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We are also aware that linear programming problems can have two types of objective functions 

maximization or minimization. It could have three types of constraints, greater than or equal to, 

less than or equal to and equation it could have three types of variables greater than or equal to 

less than or equal to and unrestricted.  

What will happen to the dual if we have something other than this?  For example if this is a  

minimization, if this is greater than or equal to, this is an equation or this is a less than or equal to 

this is unrestricted. The other things will always be satisfied. What are the other things? The 

number of constraints will be equal to the number of variables, number of variables equal to 

number of constraints, 
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co-efficient matrix becoming transpose, right hand side becoming an objective function and 

objective function becoming right hand side. Those things will be always be there. They will be 

not change. Only these inequalities, the sign of the constraints and the sign of the variables will 

change depending on what we have here.  
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 We take an example and then write the dual for that example and then understand how, for any 

given primal we can write the dual problem with all less than or equal to and all greater than or 

equal to. We learn how to write the dual whatever be the primal in terms of type of constraint 

and type of variable. Let us take another example.  
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 The problem that we take is as follows:  
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Minimize 8X1 + 5X2 + 4X3 subject to 4X1 + 2X2 + 8X3 = 12  

7X1 + 5X2 + 6X3 greater than or equal to 9 

8X1 + 5 X2 + 4X3 less than or equal to 10 

3X1 + 7X2 + 9X3 greater than or equal to7; X1 greater than or equal to 0; X2 unrestricted and X3 

less than or equal to 0 
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Now let us go back to this table. We realize that all possible types of objective functions 

constraints and variables are covered in this example. It has a minimization. We have earlier 

taken a maximization problem. There are four constraints and three variables; therefore we 

would expect the dual to have three constraints and four variables. The constraints are equation, 

greater than or equal to, less than or equal to types. All the three types are covered as well and 

we have a greater than or equal to, unrestricted and less than or equal to.   
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We will take you through the various steps using the power point slides. So we have written the 

same problem here once again. Now the first thing we need to do is we assume that we know to 
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write the dual if the primal is in the standard form that we are aware of. We assume that the 

primal is the maximization problem and has all constraints less than or equal to and all variables 

greater than or equal to. What we do now is we convert this problem into the form that we know, 

which is the maximization problem with all less than or equal to and all greater than or equal to.  
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For example writing their converting objective function is not very difficult. You can multiply 

with the minus one and convert into a maximization problem. This constraint is desirable 

because it has a less than or equal to. We need to do something about this and this. We also know 

for example that if you multiply this with the minus one it will become a less than or equal to 

type. Similarly this is desirable. Thus again we can multiply with minus or redefine the variable 

here. We know how to convert.  
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We make it a difference of two variables so we will do all this and see how this problem 

transforms itself. Now first thing is that we know that variable X2 is unrestricted in sign so we 

replace it. As a difference of two variables X2 = X4 – X5. This is in the correct required form and 

this is not. 
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So this becomes X4 – X5 and X3 is less than or equal to 0 so X3 is replaced by – X6. 
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X6 is greater than or equal to 0 so the first thing we do is we make all these variables into the 

form which we are comfortable with.  
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We then you go back and substitute both in the objective function as well as in the constraints.  
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So when we do that we get this (Refer Slide Time: 28:32). Therefore X6 becomes greater than or 

equal to 0 but if you look at this you have a minus coefficient. You have a – 8X6 here instead of 

the + 8X3.  
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This is because this variable has been replaced by a – X6. So you will see the change in all the 4 

coefficients as well as in the objector function.  
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If we look at the second variable which was unrestricted and which is now replaced by X4 – X5, 
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5X2 becomes 5X4 – 5X5.  
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5X2 becomes 5X4 – 5X5. This 2X2 becomes 2X4 – 2X5 and so on.  
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Now because we have added another variable, we now have four variables original.   
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We have now four variables and we have four constraints which are given from 3.6 to 3.9. So 

this problem is the same as the previous one but with an additional variable.  
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The next thing we do is we convert the objective function into the form that we know.  
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We want to bring it to maximization, so multiply the objective function by –1 to get it into a 

maximization form.  
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Now let us look at these 4. This is desirable. It is already less than or equal to this. The entire 

constraint can be multiplied by the –1 to make it less than or equal to. Here again we can 

multiply this with –1 and make it a less than or equal to.  

 

 

 



42 

 (Refer Slide Time: 30:19) 

 

 
 

Now what do we do to the equation is, we the write it as two constraints one is 4X1 + 2X2 + 8X3 

greater than or equal to12.  
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4X1 + 2X2 + 8X3 less than or equal to 12 so the equation is written as two constraints 
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One of which is the less than or equal to straight away. The other one which is the greater than or 

equal to is now made a less than or equal to by multiplying with the – 1. 
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Therefore if we do that your four constraints would now become five as you can see here.  
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Now you realize that all the constraints are being converted into the less than or equal to form.  
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The 10 remains as 10, this greater than or equal to 7 has become less than or equal to – 7 
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The greater than equal to 9 has become less than or equal to type.  
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The greater than equal to 9 has become less than or equal to type.  
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The equation has become two constraints one less than or equal to type.  
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The equation has become two constraints, one less than or equal to type  
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The other one greater than or equal to; so the original problem had three variables 
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It had three variables and four constraints. The transformed problem has four variables and five 

constraints. 
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Now we have brought this to the form we are comfortable with. Remember this is still the 

primal. This is not the dual. We have to write the dual for this problem. The only reason we did 

this is because we know to write the dual for this problem so we have brought it in the form we 

are comfortable with and now we are going write the dual for this. So let the dual will now be a 

minimization problem. 
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Dual will take the form, minimize go back to the previous slide  
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It will become minimized. Now we will introduce five variables corresponding to the five 

constraints we will call them Y1, Y2, Y3, Y4 and Y5. Y1, Y2, Y3, Y4 and Y5 corresponding to these 

five constraints and the dual will have four constraints one for each variable. It will be a 

minimization problem because this problem is a maximization problem.  
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We now get the dual which is minimized 12Y1 – 12Y2 – 9Y3 + 10Y4 – 7Y5 subject to these 4 

dual constraints corresponding to the 4 primal variables and all these 5 are greater than or equal 

to 0. Now this is in the form that we know because we have written the dual for what has been 

transformed into a maximization problem with all less than or equal to constraints and all greater 
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than or equal to variables. So it will become a minimization problem containing all greater than 

or equal to constraints, all less than or equal or all greater than or equal to variables. Now this 

dual has four constraints corresponding to the four variables in the transformed problem and five 

variables corresponding to the four constraints in the transformed problem. But the original 

problem have has only three variables so the dual should have only three constraints. The 

original problem has four constraints and the dual should have only four variables. So we will try 

to convert this problem once again such that we are able to get the other properties satisfied.  
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For example the dual to this problem should be of the form some 12Y1 + 9Y2 + 10Y3 + 7Y4 

where Y1, Y2, Y3, Y4 is suitably defined dual variables. The dual to this problem should have 

three constraints with right hand side values 8, 5 and 4 and the sign of the constraint could be 

anything. The dual for this problem should have a coefficient matrix which is a transpose of this 

matrix.  
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So we now bring this problem again into a form where those things are satisfied and how do we 

do that?  
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Now let us go back to the previous one. So this is the dual that we have written. We now need to 

bring this back into this form that we are comfortable with so let us go back to the next one.  
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Now first thing we do is this now, look at all the four constraints. You now realize there is the 

4Y1 – 4Y2, 2Y1 – 2Y2, – 2Y1 + 2Y2, – 8Y1 + 8Y2, – 12Y1 + 12Y2 in the objective function. So we 

can now replace Y2 – Y1 as a new variable Y6. We can do that and we reduce the number of 

variables now. Five variables will become four.  
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Remember again this problem has four constraints. 
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We would want the dual to have four variables so we do that and we get this we get 12Y6 + 9Y3 

– 10Y4 + 7Y5 subject to these and we have Y3, Y4, Y5 greater than equal to 0. Y6 is unrestricted 

in sign because Y6 has been defined as a difference of two variables. So we get one unrestricted 

variable now one more thing that we can observe is there is this Y4 which keeps coming here so,  

– 10Y4 in the objective function.  
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We want the final objective function to be of the form 12 into Y = 12Y1 + 9Y2+ 10Y3 + 7Y4 

where Y1, Y2, Y3, and Y4 are suitably defined variables.  
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This 10Y4 alone has a minus sign so we replace Y4 with a –Y7 and write Y7 less than or equal to 

0. So this will become + 10Y7 in the objective function and the coefficients there will change.  
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Now you realize that we have made the objective function in tune with what we want.  
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We have got this (12 9 10 and 7) here 
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We have made those changes also in the Y4 now all these have been converted to Y7. Now we 

have taken care of the variables. Now we realize that the five variables that we had, has now 

become 4. One of them has become unrestricted, other has become less than or equal to type. 

Two of them remain as greater than or equal to type.  Now we go back and try to adjust the 

constraints. The original problem has three variables. Dual should have three constraints. 

Multiplying constraints 3.14 and 3.15 by – 1 and writing the modified constraint 3.15 and 3.16 if 

we look at it very carefully. If we multiply 3.15 with the – 1, we would get 2Y6 + 5Y3 + 5Y7 + 
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7Y5 less than or equal to 5, the third constraint is 2Y6 + 5Y3 + 5Y7 + 7Y5 greater than equal to 5. 

Together they will become an equation so we will reduce one constraint by 1.  
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Then you go back to the other one to the previous slide. 
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Look at the first constraint. The first constraint has all the coefficients negative including for 

right hand side so we can multiply the first constraint with a – one convert the inequality to a less 

than or equal to type and make the right hand side + 8  
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If we do that we get this we get now 12Y6 + 9Y3 + 10Y7 + 7Y5 subject to these and we can since 

Y6, Y3, Y7, Y5 are very generic variable names you can rewrite them as Y1, Y2, Y3, and Y4 and 

replace this. Now if we keep this and compare with this problem let us just write only the dual 

here.   
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Maximize  12Y6 in fact let me use the term Y1, Y2, Y3, and Y4 now  which means variable Y6 has 

become variable Y1 here + 9Y2 + 10Y3 + 7 Y4 subject to 4Y1 + 7Y2 + 8Y3 + 3Y4 less than or 

equal to 8;  2Y1 + 5Y2+ 5Y3 + 7Y4 = 5; 8Y1 + 6Y2 + 4Y3 + 9Y4  greater than or equal to 4; 

Y1unrestricted.  
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The Third variable so Y3 less than or equal to 0Y2; Y4 greater than or equal to 0 the third variable 

was Y7 which is less than equal to 0.  
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Third variable is Y3 which is less than or equal to 0; so now this is the dual corresponding to this 

primal.  
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We know to write the dual to any given primal. We can convert any given primal into a standard 

form. The standard form that we know is the maximization problem with all less than or equal to 

constraints and all greater than or equal to variables. Now for that problem, we can write the dual 

which will be a minimization problem with all greater than or equal to constraints with all greater 

than or equal to variables number of constraints equal to the number of variables, number of 

variables in the dual equal is to number of constraints in the primal, coefficient matrix becomes 

transpose and so on and then we adjust the written dual in such a way that we bring it back 

having all the properties where the number of constraints is equal to the number of variables, 

number of variables is equal to the number of constraints, objective function becomes right hand 
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side, right hand side becomes objective function, transpose and so on. We will then realize that 

depending only on the places we are not sure that what happens. This is an equation. 
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How will this equation get reflected in the dual? How are these four types equation greater than 

or equal to or less than equal to get reflected in the dual? Similarly how are these things getting 

reflected in the dual? We know the rest of the things. We know because we know all these three 

numbers are going to come here.  
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So one is to go back converted into form that we know write the dual and convert the dual back 

into the form where these properties are satisfied, the other is also to try understanding what 

exactly happened here. Let us look at this. The first constraint is an equation. 
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The first variable is an unrestricted variable. The second variable is an unrestricted variable 
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The second constraint is an equation.  
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So there is a relationship between the unrestricted variable and the equation and that happens 

because the unrestricted variable in the original case now gets split into two variables. These two 

variables become two constraints which later get converted into an equation. So there is a 

relation between the unrestricted variable and the equation.  
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So if a primal constraint is an equation, then the dual variable will be unrestricted in sign that is 

an easier thing to do. The rest of the things are not so easy to understand here. 

Now for example is a minimization problem. This constraint is a greater than or equal to 

constraint. The second constraint is a greater than or equal to constraint. There are many ways of 

understanding this relationship and let me propose one way which I often use to do that. In all 

linear programming problems, if the problem has some maximization objective then it is 

desirable to have a constraint of the less than or equal to type. 
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If the problem has the minimization objective it is always desirable to have a greater than or 

equal to type constraint. In all linear programming problems a greater than or equal to type 

variable is always desirable, less than or equal to type variable is undesirable.  
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If we follow this guideline and go back and understand, it is a minimization problem.  
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So this is a desirable kind of a constraint so the corresponding variable will be a desirable kind of 

a variable greater than or equal to.  
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For a minimization problem this is an undesirable kind of a constraint. This is not the constraint 

you would like to see in a minimization problem normally. I would call it an undesirable 

constraint so the third constraint deserves the undesirable type.  
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The third variable Y3 will be an undesirable variable which is a less than or equal type. There is 

more than one way to understand this relationship but over a period of time I have found it 

convenient to interpret it this way.  
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This is a desirable kind of a constraint. The 4th variable Y4 is a desirable kind of a variable.  
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Let us go back to the variables. This is a desirable kind of a variable.  
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So the first variable is a desirable kind of variable. Now go back to the first constraint.  
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For a maximization problem you will get a less than or equal to which is a desirable type. This is 

an undesirable kind of a variable so for a maximization problem the third constraint will be the 

undesirable type.  
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So over a period of time you can use this.  
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Or you can remember it in a different way. If a minimization problem has a greater than or equal 

to, then corresponding maximization problem will have a greater than or equal to and so on. 

There are different ways of remembering this. To write the dual, one could convert, can take all 

the labor and time to convert this into the standard form that we know and then write the dual to 

the standard problem and then convert back into the form that we are comfortable with or we 

could go back and then remember these things as we write. We create a table which would help 

us understand the primal dual relationships and the table is like this  
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So we now call the primal as a maximization problem and the dual as minimization problem.   

Number of constraints is equal to number of variables, number of variables become number of 

constraints. Right hand side becomes objective function; Objective function becomes right hand 

side. Coefficient matrix A becomes a transpose. Now the next easier things are that equation 

becomes unrestricted variable. The unrestricted variable becomes an equation and then enters the 

maximization problem. The desired type of constraint is less than or equal to constraint. It will 

become a greater than or equal to variable because greater than or equal to is always a desired 

variable no matter what the objective function is.  

 

Maximization problem greater than or equal to constraint is not the desirable one so this will 

convert itself into a less than or equal to variable. Greater than or equal to variable is always the 

desirable one so for a minimization problem, this will become greater than or equal to constraint 

and 11 less than or equal to variable will become less than or equal to constraint. One can 

remember this table also. One can do another thing. Suppose this was the primal, we had called 

this as 12X1 + 9X2 + 10X3 + 7X4 and so on.  

If this were the primal then what will be the dual? This will automatically become the dual.  
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In fact whatever is applicable from this to this, is also applicable from this to this. Now anything 

can be the primal. The other will be the dual. For example, this is the primal.  
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Primal maximization and dual minimization 
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First constraint is less than or equal to maximization.  
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First constraint less than or equal to, first variable of the dual will be greater than or equal to, if it 

is greater than or equal to here, so like this you can interpret keeping this as the primal and this 

as the dual.  
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We can go back and shift the same thing. If this is the primal the only thing we need to the now 

is primal becomes minimization problem. This is primal.  
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 This is dual and now you can go back.  
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If this is the primal minimization, second constraint is greater than or equal to, so second 

constraint is the correct type of constraint the dual is maximization 
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So for a minimization problem a greater than or equal to constraint will give greater than or 

equal to variable. The second constraint is this type. The second variable is this type.  
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So one need not always restrict oneself to saying this will be the primal in that it will be the dual 

and so on. Any one of the problem can be the primal the other problem will automatically 

become the dual. So this table would help us write the dual for any given primal. So in summary 

what we have seen in this lecture is we have introduced the problem of the dual and we have also 

tried to explain that the dual is inherent. It comes out to primal naturally and it is inherent or 
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hidden in the primal. We have also learnt how to write the dual for any given primal linear 

programming problem. In the next lecture we will see more of the primal dual relationships.  


