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We continue our lecture on Termination. We look at two more aspects of terminations which are 

Unboundedness and Invisibility. We look at unboundedness with an example. 
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We take this example. Maximize 4X1 + 3X2 subject to X1 – 6X2 less than or equal to 5; 3X1 less 

than or equal to 11; X1, X2 greater than are equal to 0. As usual we add the two slack variables   

+ X3 = 5; + X4 = 11; X3, X4 greater than are equal to 0 and we create the simplex table.  
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With X3 and X4  as starting basic variables, X1, X2, X3 and X4  right hand side. Start with X3 and 

X4; 4X1 + 3X2 0 0 these values are 0 and 0. 1 – 6 1 0 5 3 0 0 1 11 Cj – Zj.  These two are 0 also 

X3 and X4 are basic so they will have Cj – Zj or 0. 

So 0 into 1 + (0 into 3) is = 0 and we get 4 and 3 respectively. This will become 0. Now variable 

X1 with the largest value of Cj – Zj enters. X1 enters. To find out the leaving variable we compute 
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theta. 5 divided by 1 is = 5 and 11 divided by 3 is 11/3. Now 11/3 is smaller than 5 so variable 

X4 leaves the basis, X1 enters and this is the pivot element. So now we have X3 and X1 replacing 

X4. Now divide by the pivot element to get (1 0 0 1/3 11/3). This (Refer Slide Time: 4:11) is 4 

and this is 0. We need a 0 here so this minus this would give 0 so 1 – 1 = 0; – 6 – 0 is = – 6; 1 – 0 

is = 1; 0 – 1/3 is = – 1/3; 5 – 11/3 is = 4/3.  

Cj – Zj, X1 and X3 are basic variable so we get 0. 0 into (– 6 + 4) into 0 = 0; 3 – 0 is = 3;                    

0 into (– 1/3 + 4) into 1/3 is = 4/3 you get a – 4/3.  0 into 4/3 + (4 into 11/3) is = 44/3.  

 

Now variable X2 with a positive value of Cj – Zj enters. You have to find out a leaving variable. 

We try and compute theta. You realize that this is negative. Therefore you cannot compute this 

theta. This is 0, you cannot compute this theta. There is no theta. So the algorithm will terminate 

because the algorithm is unable to find a leaving variable. It is able to find an entering variable 

but it is not able to find a leaving variable. So the algorithm will also terminate. This 

phenomenon where the algorithm terminates when it is unable to find the leaving variable is 

called unboundedness. What exactly is this unboundedness? We will see by drawing the graph 

corresponding to this problem. 
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This is (5, 0) one of the points. We need to draw X1 – 6X2 = 5. So if we put X2 = – 1 here then 

X1 will also be – 1 so this will be the point. So we have another point. One point is (5, 0) the 

other point would be for example, if X2 is 1/2 then X1 will be 8. (6 7 8 and1/2) so the line is 

somewhat like this. This is the line X1 – 6X2 = 5. This divides it into two regions. So (0, 0) is less 

than this.  This is the feasible region corresponding to this constraint. Now 3X1 less than or equal 

to 11 would give us a point X1 = 11/3 so, (1 2 3 4), roughly, this is 11/3 so this is, 1 less than or 

equal to 11/3 is all this Refer Slide Time: 7:27). So the region that satisfies all the constraints is 

actually this region which goes right up to infinity and we have this. Therefore the first important 

thing is that this region is not bounded. So this set of constraints represents an unbounded region 

in the first place and then an unbounded solution.  
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Now what is the difference between the unbounded region and the unbounded solution? Let us 

also draw the objective function. Suppose we draw 4X1 + 3X2 = 12, we have three points (3, 0) 

(0, 4), this is the Objective function line. As we maximize we realize that the objective function 

is moving in this direction and it will not get the optimum point because the region is unbound. 

Both X1 and X2 can go up to infinity. On the other hand if the problem happened to minimize 

4X1 + 3X2 subject to same constraints, the objective function line is now going to move in this 

direction and then it will terminate by giving the point (0,0) as the optimum point.  

 

So there are two aspects to it. One is that the feasible region can be unbounded so the problem 

has an unbounded region and it can have an unbounded solution if the objective function is 

moving in this certain direction. So this is an example where we have both an unbounded 

feasible solution as well as unbounded region. Depending on the objective function, sometimes a 

region that is unbounded may still have an optimum. In this example we are seeing a situation 

where the feasible region is unbounded as well as the solution is unbounded. So unboundedness 

is indicated by simplex algorithm being able to identify an entering variable and not being able to 

identify a leaving variable. In fact we can do one more thing which is this. If we had looked at 

the very first iteration now, we see both the non basic variables X1 and X2 having positive value. 

So far we have been very consistent in trying to enter that non basic variable with the largest 

positive Cj – Zj. By now we can understand that any variable with a positive Cj – Zj can enter and 

can improve the objective function. So instead of entering this 4 if we had tried to enter the 

variable X2 with 3 in the very first stage we wouldn’t be able to find out the leaving variable and 

therefore we could have indicated unboundedness right here. 

 

What we are actually trying to do is we could have seen the unboundedness right here but then 

from this point we move to another point here and then we realize that we are going to get 

unbounded region. So it is not absolutely necessary that we always need to enter the variable to 

the largest positive Cj – Zj. We could enter any variable with a positive Cj – Zj in which case for 

this example, we could have detected unboundedness earlier than what we arrange. Now let us 

go back to this. So right here end of the first iteration we observed.  
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The variable X2, C2 – Z2 = 3 can enter the basis. But we are unable to fix a leaving variable. 

Algorithm terminates. It is unable to find the leaving variable. Such a thing is called 

unboundedness, indicating that variable X2 can take any value and still none of the present basic 

variable should become infeasible. Now the value of the objective function is infinity in this 

case. Now as I had explained in all simplex iterations it is customary to enter the variable to the 

maximum possible value of Cj – Zj based on which we entered X1 in the first iteration but if we 

had tried to enter this we could have still found the unboundedness at the first iteration. This is 

also interesting that most of times we enter a variable based on the largest coefficient rule which 

is called the largest Cj – Zj rule. There could be other rules which you could use to enter 

variables.  
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There is something called the largest increase rule. For example for every candidate that enters 

you can find out the corresponding theta. We know that the increase in the objective function is 

the product of the Cj – Zj and theta. So for every positive value of Cj – Zj we can go back and 

find out the corresponding theta and multiply the Cj – Zj and theta to find out the increase. We 

could then choose the variable which gives a largest increase in the objective function rather than 

the largest coefficient. So the first rule is called the largest coefficient rule. The Cj – Zj rule. We 

could think of something called the largest increase rule as well. We can think of something like 

the first positive Cj – Zj enters. Now these things become important when we are solving large 

size linear programming problems.  

 

It may not be necessary to evaluate a large number of Cj – Zj’s to find out the maximum hence 

one could just enter the first positive Cj – Zj. One could also think of some kind of a random 

allocation. Pick a non basic variable randomly, compute it Cj – Zj. If it is positive, enter it or keep 

doing this till you get the first randomly picked non basic variable with the positive Cj – Zj. So 

these things are also available. It is also interesting to note that none of these rules consistently 

are able to outperform the others in terms of number of iterations. So far based on many 

experiments and researches that have been conducted, the largest coefficient rule that we 

commonly use seems to work better than the rest of the others.  
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Coming back to unboundedness we observe that their unboundedness is caused when the feasible 

region is not bounded as shown in this example. Sometimes the nature of the objective function 

can be such that even if the feasible region is unbounded the problem may have an optimum 

solution which was explained by a minimization function for the same example. Another aspect 

of termination is there is something called infeasibility which we will again see in another 

example.  
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Now let us consider this example for infeasibility. Maximize 4X1 + 3X2; X1 + 4X2 less than or 

equal to 3; 3X1 + X2 greater than or equal to 12.  X1 X2 greater than or equal to 0. Now we add a 

positive slack variable X3 here to convert this to an equation. This is a greater than or equal to 

type inequality, so we add a negative slack – X4 = 12; X3, X4 greater than or equal to 0 

Now X3 will qualify to be a basic variable and X4 will not. Therefore we need to add an artificial 

variable so we add + a1 = 12. We now try to solve this problem using the big M method.  

 

(Refer Slide Time: 15:22) 

 

 
 

 It is a maximization problem. So we have + 0X3 + 0X4 – Ma1. So we get a – M here. We now 

start with X3 and a1. So, a1 has a minus here; X3 has a 0; X1 + 4X2 + X3 + 0X4 3; 
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3X1 + X2; 0; – X4; + a1 = 12; Cj – Zj. 0 into 1 – (M into 3) is = – 3M; 4 – (– 3 M) is = 4 + 3M 

So this is 3M + 4, 0 into 4 – (M into 1) is = – M; 3 – (– M) is = M + 3; 0; 0 into 0, – M into – 1 is 

= + M; So – M and a1 has 0.  

Now between these two 3M + 4 is bigger than M + 3 because M is large and positive so once 

again variable X1 with the larger Cj – Zj will enter. Now we need to find theta.  

 This is a right hand side value. 3 divided by 1 is = 3; 12 divided by 3 is = 4. Being a smaller 

variable, X3 leaves the basis. This is the pivot element so variable X1 would replace X3 in the 

basis. So we have X1 and a1; X1 has 4 and a1 has – M. Now divide by the pivot element to get (1 

4 1 0 0 3). We need a 0 here. So this – 3 times this would give a 0. 3 – (3 times 1) is = 0; 1 – (3 

into 4 = 12) is – 11; 0 – (1 into 3 is) = – 3; – 1 – (3 into 0) is = – 1; 1 – (3 into 0) is = 1; 12 – (3 

into 3 = 9) is = 3 

 

Now Cj – Zj, variables X1 and a1 are now basic so we will get a 0 here 16 + 11M; 3 – 16 – 11M. 

So this is – 11M – 13. This is 4 + 3M. So 0 – 4 – 3M, so – 3 M – 4; 4 into 0 = 0; – M into – 1 is 

= + M; 0 – (+ M) is = – M. 4 into 3 = 12 but we have an artificial variable here and we still do 

not write the value here. Now let us go back and check whether there is an entering variable in 

this case. All the non basic variables X2, X3, and X4 now are clearly negative because M is large 

and positive. They all have negative coefficients forever so the algorithm terminates. Algorithm 

terminates because it is not able to find an entering variable. When the algorithm terminates what 

we have found is that the artificial variable has still not left the basis. It continues to hang on and 

stay in the basis. Now what does it mean? We said when we introduce an artificial variable we 

are introducing it for the purpose of getting a basic feasible solution. We also said that the 

artificial variable should not lie in the solution because if an optimal solution exists, then the 

value of the objective function corresponding to that solution will always be for a maximization 

problem higher than any basic feasible solution that involves an artificial variable.  

 

Now what happens is that, the optimum solution is found but the artificial variable is still 

hanging on. This means that the problem does not have an optimal solution because if the 

problem had an optimal solution without the artificial variable (because the artificial variable is 

not part of the original problem) then obviously that solution will be without the artificial 

variables and that will definitely have a higher than any basic feasible solution which has an 

artificial variable. Since we have the optimal containing the artificial variable, it goes back to 

show that the problem does not have an optimum solution or to put it more in general terms, the 

problem does not have even a single basic feasible solution. If the problem had a single basic 

feasible solution, then that would not have an artificial variable then that would have had an 

objective function value higher than any solution like this which has an artificial variable. 

Therefore this indicates that the problem is infeasible. Problem is not feasible or the problem is 

infeasible. Now let us see how this problem is infeasible by drawing the graph corresponding to 

these constraints.  
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So the graph will be like this.  X1 + 4X2 less than or equal to 3, so 1, 2, 3, 4, and 5 and the two 

constraints are X1 + 4 X2 less than or equal to 3; 3X1 + X2 greater than or equal to 12.  

 So X1 + 4X2 less than or equal to 3 would give (3, 0) and (0, 3/4). This will be the line. 3X1 + X2 

greater than or equal to 12 is (4, 0), here and (0, 12) which is somewhere else. So you will find a 

line coming from somewhere here and this side up.  

So you realize that there is no feasibility. Reason one being, constraint is moving in this direction 

the other constraint is moving in the other so there is no feasible region at all and that is reflected 

by this. Now this is the situation were the simplex is able to show that the linear programming 

problem may not have an optimal solution at all. If the problem does not have a feasible region 

then obviously it cannot have an optimal solution. So simplex is able to detect if a given linear 

programming problem does not have a feasible region. That is done by the artificial variable 

continuing to remain in the basis even after the optimality is met. Simplex also does something 

interesting. It not only says that this is infeasible but indirectly it also tries to give something like 

an extent of infeasibility of this problem. Now what does this a1 = to 3 indicate?  

 

Now let us go back to this constraint. This is a constraint which had a1. So if for example this 

constraint had been 3X1 + X2 greater than or equal to 9 instead of 12 then what would have 

happened is the second constraint would have moved a little bit here and would have exactly 

touched this point. So as the bare minimum, you need to move one of the constraints so that you 

get at least one feasible point which is indicated by the value that the artificial variable takes at 

the optimum. It also tells you how much these right hand side has to be adjusted so that you get 

at least one feasible point which would have become optimum. So simplex is not only capable of 

detecting infeasibility it also gives a clue as to what should be done to make it feasible. When we 

apply this to practical situations, if a practical problem formulated as a linear programming 

problem indicates infeasibility, the first thing we need to do is to check whether the right hand 

side values are entered properly or estimated properly. So this is going to give us a clue that 

something may have been wrong in the estimation of this 12, as a result of which it would have 

become infeasible. Simplex normally does not look at this, it only gives a feel about the artificial 
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value for all that may be possible. If this constraint had been for example, 6 or 7 or some large 

number then we may still have got a feasible solution. Simplex does not look at that part, it will 

look only at the artificial variable part and gives part wise answers to the fact that this system is 

infeasible. So these are the basic four aspects of termination which we have seen. The four 

aspects that we have seen are Alternative optimum, Unboundedness, Infeasibility and then one 

more which is cycling that we need to see.  

 

(Refer Slide Time: 25:52) 

 

 
 

 Let us go back to this. Simplex not only is capable of detecting infeasibility but also shows the 

extent of infeasibility. This a1 = 3 forces us to make this 12 as 9 so that we could get a solution.    
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Now what are the termination conditions? Basically for maximization problems there are these 

termination conditions. All non basic variables have negative value, Cj – Zj. That is the ideal 

situation that represents a unique optimum and simplex will terminate giving a unique optimum 

and in this case, this is the termination condition with which we started. The basic variables are 

either decision variables or slack variables. Algorithm terminates indicating a unique optimum 

solution. Second condition is basic variables are either decision variables or slack variables. All 

non/slack variables Cj – Zj less than or equal to 0 but at least one non basic variable as Cj – Zj = 0 

indicates alternate optimum.  

 

We need to proceed to find the other corner point which simplex is able to detect and terminate 

and then understand that simplex, being capable of looking only at corner points has given us 

only two alternate optima but there exists many numbers of alternate optima. Any line any point 

in joining these two would indicate optimum for a 2/2 problem. This is alternate optimum. Then 

what is unboundedness? Once again algorithm identifies an entering variable but it is unable to 

identify a leaving variable because all values in the entering column are less than or equal to 0. 

This indicates unboundedness and the algorithm terminates. The last one would be all non basic 

variables have Cj – Zj less than or equal to 0. Artificial variables still existing in the basis 

indicates infeasibility and the algorithm terminates. So these are the four termination condition 

that we have for linear programming problems.  
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The last aspect is if the algorithm still does not terminate then something can happen and that is 

called cycling. If a simplex algorithm fails to terminate based on the above conditions then it will 

cycle. We are not going to explain cycling through an example here. But I will tell you what 

cycling is all about. In all the simplex iterations that we have seen till now, we have seen that 

every iteration is characterized by a set of basic variables and more importantly a unique set of 

basic variables. So far in no simplex iteration did we go back to the same set of basic variables. 

The only time we came very close to doing it was when we had an alternate optimum and then 

we said we move to the other solution and if we had iterated we could have come back to one 

more solution. Now is what is called cycling.  

 

Cycling is a phenomenon in which you are in the middle of simplex iteration with certain set of 

basic variables. You go through some 3 or 4 or certain number of iterations and you have 

realized that you have come back to the same set that was there earlier and you are not satisfying 

any of the termination conditions. Such a thing is called cycling. Cycling is a very rare 

phenomenon. We do not have too many reported instances or problems that cycle. In fact so far 

there has been no report of a practical problem or a linear programming problem formulated out 

of a practical situation which cycles. There have been reports where people have said that they 

have encountered problems that cycle but we still do not have an example taken from a practical 

situation which cycles.  

 

There are a few examples that are available in the books which show the cycling phenomenon. 

But cycling is not a very common phenomenon. There are also some interesting results like for 

the problem to cycle it should have at least three constraints, six variables and so on but we will 

not go deeper into cycling in this part of the operation research course. So we would enter 

discussion on linear programming with the termination conditions for linear programming, with 

these four conditions, plus cycling and say that if the linear programming problem does not 

terminate then it should cycled. We have seen all the three aspects of the simplex algorithms, 

Initialization, Iteration and Termination. We will now look at a couple of more examples to see 
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some other things that simplex can do other then solving a linear programming problem. We will 

take some examples to do each one of them. Now the first one is that this simplex can be used to 

solve simultaneous equations or linear equations.  

 

(Refer Slide Time: 30:48) 

 

 
 

So we take an example to explain that we are into solving linear equations. We just take a simple 

example to solve linear equations. So without an objective function we just take 4X1 + 3X2 = 25; 

2X1 + X2 = 11. Remember we do not have an objective function in this case whereas every linear 

programming problem is characterized by an objective function. We right now are going to 

assume that the solution to this has X1, X2 greater than or equal to 0 or if X1, X2 is greater than or 

equal to 0 then simplex will detect it. So we first convert this to a case by adding artificial 

variables. So we have + a1 = 25; + a2 = 11. Now if the original problem, 4X1 + 3X2 = 25; 2X1 + 

X2 = 11 has a solution then that should not have this a1 and a2. So what we do now is we create 

an artificial objective function. We now take this problem. We create an objective function; 

minimize a1 + a2 subject to the conditions X1, X2, a1, a2 greater than or equal to 0. So if this 

problem has an optimal solution then a1 and a2 will not be there. If this problem has an optimal 

solution or a single. Let us assume, it has a unique solution then this will be able to detect if a1 

and a2 do not appear in the basis. So we formulate a problem with a1 and a2 as starting artificial 

variables and then we proceed. Now we can see that here. Now we add artificial variables. We 

define an objective function, minimize a1 + a2. If the original equation has a non negative 

solution then we should have a feasible basis with X1 and X2 having Z = 0 for the linear 

programming problem. The simplex iterations are shown in the next table.   
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So we now have the simplex table that is given here with a1 and a2 as the starting basic variables.  

Variable X1 will enter now with a most positive Cj – Zj. Remember it is a minimization function 

minimizing a1 + a2. So a1 and a2 now have a – 1 because in simplex we convert it to a 

maximization problem. We have a – 1 here in the basis. Variable X1 enters with value 6. Find 

theta 25/4, 11/2. 11/2 is smaller than 25/4, so variable a2 leaves the basis. We do the Simplex 

iterations here with a1 and X1. In this table after computing Cj – Zj we realize that variable X2 

now enters the basis and a1 leaves the basis and finally we have a solution with X1 = 4; X2 equal 

to 3 and Z = 0.  
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So now the linear programming solution for this is given by X1 = 4; X2 = 3; Z = 0; a1 and a2 do 

not appear in the solution. Now this is optimal to a given set of equations 4X1 + 3X2 = 25; 2X1 + 

X2 = 11. We can use simplex to solve a set of linear equations 2/2, two variables, two constraints 

or any three variables, any M variable, M constraint problems, provided they are all equations, 

provided they are greater than or equal to 0, by adding artificial variables here, by creating an 

objective function, minimize some of the artificial variables. Finally if there is a solution then all 

those will come into the basis. Every single artificial variable will be eliminated. Finally we will 

get a basic feasible solution with X1 equal to something X2 equal to something. In this example 

X1 = 4; X2 = 3 with Z = 0; the objective function tries to minimize a1 + a2 in this case. So this is 

an additional thing that simplex algorithm can offer.  
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Simplex can also do another interesting thing. Now given a set of equations we know from 

algebra that 3 things are possible.   

We can get a unique solution we could have infinite number of solutions and it may not have a 

solution at all. When a system does not have a solution at all it is infeasible. We have seen how 

simplex can detect infeasibility. When a system of equations has a unique solution we have just 

seen how simplex can identify that unique solution. So the last thing is if the system is linearly 

dependent then it will have a infinite number of solutions. We will see how simplex is used to 

detect a system of linearly dependent equations. So we again take an example with that. The 

example that we can consider is like this.  
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We have a system which is like this 2X1 + 3X2 = 6; 4X1 + 6X2 = 12 is a linearly dependent 

system. Now we want to solve this. We now realize that this matrix is singular and so on but then 

we can still use simplex to solve this. Now we again add two artificial variables here + a1 + a2. 

We now want to introduce an objective function which minimizes a1 + a2. We have X1, X2 a1, a2 

greater than or equal to 0. Now we set the simplex table. Simplex iterations are shown in the next 

table. It is like this. Again it is a minimization problem. We have converted it to maximization by 

multiplying with the – 1. We start with a1 and a2 as the basic variables. So a1 and a2 have a – 1 

here.  
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Now variable X2 with Cj – Zj = 9 enters the basis and replaces variable a1. Now in the next 

iteration we realize that X2 and a2 are in the basis. Now we come to the situation were variable 

X1 with 0(Cj – Zj) tries to enter and more importantly you realize here that the artificial variable 

a2 now takes value 0 here. We perform the next iteration. We realize that X1 and a2 are in the 

basis. Once again Cj – Zj’s are all 0 or negative. The algorithm terminates. The algorithm 

terminates but does not give a give a unique solution. The algorithm terminates with an artificial 

variable lying in the basis but more importantly with value 0, we can see here that the artificial 

variable is in the basis and takes value 0. So when we solve a set of equations and if the artificial 

variable takes 0 at optimum, it is in the basis and takes 0 at the optimum which indicates that we 

are looking at a linearly dependent system of equations.  

 

So simplex is capable of also indicating linear dependency among these equations. In addition to 

solving a linear programming problem, simplex algorithm can do two or three other things. One 

is, it can detect whether a given linear programming problem is feasible or not. It can detect 

infeasibility. It can be use to solve a set of linear equations if it has a unique solution and with all 

greater than or equal to 0. More importantly simplex can be used to detect a linearly dependent 

system and if the artificial variable is in the basis at the optimum and takes value 0 as in this 

example here, it indicates that the system we are trying to solve has a linearly dependent set of 

equations next. 
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We need to look at one more aspect which we had not dealt with so far. What we need to do is 

before we wind up, the basic idea of simplex is to see how the simplex algorithm works if we 

have an unrestricted variable in the problem. We mentioned during our initialization that if we 

have an unrestricted variable then we replace the variable as a difference of two variables.  

So let us take an example here to explain what happens to your simplex algorithm when we are 

trying to solve a problem with unrestricted variables.  
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The problem that we will consider is this. Maximize 4X1 + 5X2 less than or equal to 8; X1 + 4X2 

less than or equal to 10; X1 unrestricted, X2 greater than or equal to 0. We now we replace this 

unrestricted variable as a difference of two variables and we write X1 as X3 – X4 to get, 
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maximize 4X3 – 4X4  + 5X2 subject to  2X3 – 2X4  + 3X2 less than or equal to 8  

 X3 – X4 + 4X2 less than or equal to 10; X3, X4 and X2 greater than or equal to 0  

Now we convert these inequalities to equations by adding a + X5 = 8 and + X6 = 10 and say X5, 

X6 are also greater than or equal to 0.    
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Now we set up the simplex table X2, X3, X4, X5 and X6. We start with X5 and X6 here. We have 

4X3 – 4X4, 5X2, 0, and 0.  So I have 3X2, 2X3, – 2X4, 1X5, 0X6 = 8; 4X2 + X3 – X4, 0, 1 = 10.  

Cj – Zj, these are all 0s so I have (5 4 – 4 0 0).  

So variable X2 with the largest Cj – Zj 5 enters the basis and we will replace X6 so we have X5 

and X2 in the basis here. This is the pivot element, so dividing by the pivot we would get            

1, 1/4, – 1/4 = 0, 1/4, 10/4 or 5/2. There is a 0 here and there is a 5 here. Now we need to get a 0 

here so 3 – (3 times 1) is = 0; 2 – 3/4 is = 5/4; – 2 + 3/4 is = – 5/4; 1, – 3/4, 8 – (3 times 5/2) 8 – 

15/2 is 1/2.  

Now Cj – Zj will be 0 for X2 and X5 and this would be 4 – 5/4 is = 11/4; (– 4 + 5/4) =  – 11/4, 5/4 

so I have – 5/4 and Z will be = 25/2. So now variable X3 with the largest Cj – Zj will enter.  

To find out the corresponding theta 1/2 divided by 5/4 is 1/2 into 4/5 which is 4/10 or 2/5.Now 

this is 5/2 into 4 is = 10.Variable X5 leaves. This is the pivot element. Now variable X3 replaces 

X5 so I have X3 and X5; X3 has 4; X2 has 5 and I perform row operations.  

Once again divide this by the pivot element to get this row and this row would look like under X2 

I multiply by (4/5 to get 0 1 – 1 4/5) – 3/4 into 4/5 is = – 3/5 and this is 2/5. We need a 0 here so 

this – 1/4 times this. 1 – 1/4 into 0 is 1. We get a 0. This will also become a 0. 0 – (1/4 into 4/5) 

is = 1/5. So I get a – 1/5. This – 1/4 times this so 1/4; (– 1/4 into – 3/5) so 1/4 + 3/20 which is 

2/5. This – 1/4 into this we get 5/2 – (1/4 into 2/5) = 5/2 – 2/20 which will give us 5/2 – (– 2/5 

into 1/4) 5/2 – 2/20 = 48/20 which is = 12/5.  
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(Refer Slide Time: 47:12) 

 

 
 

Cj – Zj values for X3 and X2 will be 0. This would also be 0. This 16/5 – 5/5 is = 11/5, – 11/5 – 

12/5 + 10/5 is = – 2/5. I now get + 2/5; 8/5 + 60 will give us 68/5 so variable X6 with the positive 

value of Cj – Zj enters. There is only 1 theta which is 12/5 divided by 2/5 = 6; so this is the pivot 

element. Now we have variable X6 replacing X2. X3 remains as it is. X3 remains at 4 and X6 is at 

0. Divide again by pivot element 2/5 so you get (5/2 0 0 – 1/2 1 and 6) now I need a 0 here. This 

+ 3/5 times this would give a 0 so 0 + 5/2 into 3/5 = 5/2 into 3/5 is = 3/2. I get a 3/2 here, 1 here, 

– 1 here, so this + 3/5 times this. 4/5 – 3/10 which is = 5/10 which is 1/2. This                           

(Refer Slide Time: 48:02) will be 0. 2/5 + (3/5 into 6) is = 20/5 gives us 4. So Cj – Zj would be, 

this is 6, so 5 – 6 is = – 1. This is 0 and this would also be 0. 4 into 1/2 is = 2. 0 – 2 is – 2; 4 into 

0 + (0 into 1) is = 0; we get 0 here and the value is 16. Now what we observe here is we have 

reached the optimum but there is a non basic variable X4 which has a 0 value of Cj – Zj which 

can technically enter and if we try to enter this we observe that there is no leaving variable.  

 

So the question is that does it indicate an optimum? Does it indicate unboundedness because I 

am unable to find a leaving variable. Does it indicate an alternate optimum because I have a 0 

which enters after the termination condition is met? 

Now this is something that will happen to all problems that involves unrestricted variable. 

This is because one of the variables X3 which we defined here as part of X1, (X1 is now X3 – X4) 

X3 takes value 4 here in the basis therefore the other variable X4 will now try to enter. Now this 

is something which we have to recognize in almost every problem when we use this. This 

actually terminates. This indicates neither unboundedness nor alternate optimum but this is a 

termination condition when we are solving problem with unrestricted variable.The other variable 

will always try to enter the basis and we should be aware of this. Now with this we end our 

discussion on the simplex algorithm, the initialization, iteration and termination conditions. We 

have also seen an example of how simplex behaves when we are solving unrestricted variables.  

In the next lecture we will continue our treatment on simplex algorithm using or learning 

principles of duality and sensitivity analysis.  


