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In the last lecture we were looking at this example of dynamic programming. 
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This example is as follows. A person has 100 sheeps with him and considers a 3 year period 

to sell them for profit. The cost of maintaining the sheep in year n is 100n. If the person can 

sell X sheep at the end of year n, the value or the profit is n into X square. If X sheep/s are 

maintained, they multiply and become 1.6 times X at the end of the year. Solve by dynamic 

programming the amount of sheep to be sold at the end of each year. We assume that 

decisions are made at the end of each year in this example.  
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If we start a particular year with X sheep that is after the sale has been made we will have 1.6 

X sheep at the end of the year but the cost of maintaining them is only for X sheep. In this 

problem each year is a stage because we make decisions at the end of each year. State is the 

number of sheeps available at the beginning of the year. Decision variable is the number of 

sheeps sold at the end of year j X1 to X3 for end of year S1 to 3. The criterion of effectiveness 

is to maximize the profit which is the difference between the money value obtained by the 

sale and the cost of maintaining the sheeps.  
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Now n = 1; 1 more year to go. f1 of S1 equals 3X3 square – 300S1 and the S1 is the state 

variable which indicates the amount of sheep available at the beginning of the third year and 

X3 is the decision variable which indicates the amount of sheep to be sold at the end of the 

third year and f1 star of S1 is to maximize 3X3 square – 300S1. 3X3 square comes by selling 

X3 square. We get 3 square rupees. The 300S1 comes in to maintain S1 sheep in year 3, we 



 
 

3 

 

incur 300S1, subject to the condition 0 less than or equal to X3 less than or equal to 1.6 times 

S1. 1.6 S1 comes because S1 sheep available at the beginning of year 3 multiplied to 1.6 S1 

and is available for sale at the end of the third year. Differentiating the expression with 

reference to X3 and equating it to 0 we get X3 = 0. 3X3 square – 300 S1, on differentiation 

with respect to X3 would give us 6X3 = 0 from which X3 is 0. Second derivative is positive 

which is 6 indicating a minimum but we are interested in maximizing the net return function.  
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Now due to the quadratic nature of the objective function we evaluate the objective function 

at the extreme points which is 0 and the 1.6 S1 and X3 star is = 1.6 S1. f1 star of S1 is 7.68 S1 

square – 300S1. As X3 star = 0 we would get – 300 S1. So it is optimal that S3 star is = 1.6S1. 

This is an obvious result because at the end of the planning period we would sell off all the 

available sheeps and try to make as much profit as we can.  
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Now n = 2 more years to go or 2 more stages to go. f2 of S2, X2 is equals 2X2 square – 200S2 

+ f1 star of 1.6 S2 – X2. S2 is the state variable which tells us the amount of sheep available at 

the beginning of year 2. X2 is a decision variable which is the amount of sheep sold at the end 

of year 2. 2X2 square is the money realized by the sale of X2 amount of sheep at the end of 

year 2. 200 S2 is the cost of maintaining S2 sheep during the second year. Now these S2 

sheep, on maintaining becomes 1.6 times S2 out of which an X2 is sold and the balance 1.6 S2 

– X2 is carried to the next stage as state variable as S1. Now f2 star of S2 which is the optimum 

value is to maximize 2X2 square – 200S2 + 7.6 8 times 1.6 S2 – X2 the whole square – 300 

times 1.6S2 – X2. The last 2 terms come from the earlier value of f1 star of S1 equal 7.68 S1 

square – 300 S1 subject to the condition 0 less than or equal toX2 less than or equal to 1.6 S2. 

1.6S2 is the maximum amount of sheep that is available that can be sold. Once again 

differentiation would give us a minimum second derivative would be positive since we are 

maximizing we evaluate the function at 2 extreme points X2 = 0 and X2 = 1.6 S2  
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At X2 = 0, f2 star of S2 becomes – 200S2 + 7.68 into 1.6S2 the whole square – 300 into 1.6S2 

which is 19.6608 S2 square – 680S2. At S2 = 1.6S2, f2 star of S2 becomes 5.12 S2 square – 200 

S2. Now we have to find out the value of S2 at which both these become equal. Now that 

happens at S2 equals to 0 and at S2 = 33. In these 2 values of S2 the values of 19.6608 S 

square – 680S2 and the value of 5.12 S2 square – 200S2 are equal. Therefore we say that for S2 

greater than or equal to 33, f2 star of S2 is = 19.6608 S2 square – 680S2 is maximum at X2 star 

is = 0 and for S2 less than 33, f2 star of S2 = 5.12 S2 the square – 200 S2 is maximum at X2 

star = 1.6 S2.  
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When n = 3 and we have 3 more stages to go, f3 of 100, S1 = X1 square – 10,000 + f2 star of 

160– X1. 100 is the amount of sheep available at the beginning of the planning horizon. 

X1 is the amount of the sheep that is sold at the end of year 1, so the amount realized would 

be X1 square. 10,000is the cost of maintaining 100 sheep and these 100 sheep at the end of 
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year 1 will become 160. So f3 star of 100 is to maximize X1 square – 10,000 + f2 star of 160 – 

X1 subject to the condition 0 less than or equal toX1 less than or equal to 160. 160 again 

comes because the 100 sheep available at the beginning of the year 1, will multiply and 

become 160 at the end of year 1. Now we already have 2 functions for f2 star of 160 – X1 and 

therefore we represent f3 star of 100 as f3 star of 100 equals maximize X1 square – 10,000 + 

19.6608 into 160 – X1 the whole square – 680 into 160 – X1 for 160 – X1 greater than 33. 

This comes from the earlier slide value 19.6608 S2 the square – 680S2 is minimum at X2 star 

= 0.  So for 160 – X1 greater than 33 we have the first function. This implies X1 less than or 

equal to 127 and f3 star of 100 will be maximize X1 square – 10,000 + 5.12 into 160 – X1 the 

whole square – 320 into 160 – X1 for 160 – X1 less than or equal to 33 or X1 greater than or 

equal to127. Second term again comes from here where we have S2 less than 33 f2 star of S2 

is 5.12S2 the square – 200S2 is maximum at 1.6 S2. Now we have these 2 functions for f3 star 

of 100 and we have to find out the value of X1 which maximizes each of them  
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Now once again the differentiation would give us a minimum the second derivative. We have 

an X1 square term which appears with the positive coefficient in both the expressions. So 

second derivative would give us positive indicating a minimum and since we are maximizing 

this, we evaluate the objective function at the 2 corner points. So in the first case we evaluate 

the objective function at the 2 corners, X1 = 0 and X1 = 127 and in the other case we evaluate 

between 127and 160 so at X1 = 0 we find Z = 384516.5. At X1 = 127 that becomes 514.68 

and at X1 = 160 the objective function takes the value 15,600. Now the maximum among 

them is 384516.5 at X1 star = 0. When X1 star = 0, S1 becomes 160. Now this 160 is carried to 

the second year. We once again realize that X2 star is 0, so 160 becomes 256 at the end of 

second year and at the end of the third year we have 1.6 into 256 which is 409.6 that is sold 

and we get Z = 384516.5. So the optimal decision would be X1 star = 0. X2 star = 0. X3 star = 

409.6. Z = 384516.5. The most important learning from this example is that the type of 

objective function is the quadratic objective function in this case with positive coefficients on 

X square would indicate a minimum while the objective function that we are looking at is 

maximum. In such cases we have to evaluate the objective function at the relevant points and 

then find out the optimum values of the decision variables.  
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Now let us go to another example, the ninth example in our dynamic programming study 

which is called the oil exploration problem. This problem is as follows. Here a company is 

found where the oil is available for the next 3 years in 2 of the sides A and B. Now for every 

rupees 100 invested in site A, the yield of oil is expected to be 1 barrel in site A and rupees 

300 as backup. This is obtained by selling other minerals and materials and other types of oil 

that can come along with the crude oil at the end of the year and every succeeding year. For 

example if rupees 100 is invested in year 1, it would give 1 barrel and 300 at the end of the 

first year, second year as well as the third year. This problem has a 3 year planning period. 

For site B, the figure is 1/2 a barrel of oil and rupees 500 as the backup capital. This 500 

again is similar to 300 which come out by selling other materials which come out along with 

the oil. Now this happens not only for that year but for every succeeding year, for rupees 100 

invested. Now the company has rupees K available at the beginning of the first year. You can 

also assume that K is a multiple of 100. How should the allocation be made so as to 

maximize the oil available at the end of the third year?   
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Now in this problem, stage is each year because we are going to make decisions at the 

beginning of every year as the amount of money that is allocated. Since decisions are made 

year wise, stage is each year. This problem state variable is the money available at the 

beginning of the year. We have already seen that the state variable always corresponds to the 

resource that is available and in this problem the resource available is money that is invested 

in the oil wells. State variable is the money available at the beginning of the year. Decision 

variable is the amount allotted to site A. We would normally have thought that there will be 2 

decision variables. One would be the amount allotted to site A and the other would be the 

amount allotted to site B. Now this problem is such that for every 100 invested, you get 300 

at the end of that year and every year. For every 100 invested you get 500 at the end of that 

year or every year. So in this situation we will not keep any money idle. So the only decision 

is the money is allotted to site A automatically.  

 

The rest of the money would go to site B. So it is enough to define 1 decision variable from 

which the other decision variable gets defined. Profits are such that the balance gets allotted 

to B so there is effectivelY1 decision variable, 1 independent decision variable in this 

problem at every stage. Criterion of effectiveness is to maximize the oil. Now n = 1; 1 more 

year to go. f1 of S1 X1, S1 rupees is available. Now S1 is assumed to be multiple of 100 or S1 

multiple of 100 is available. X1 is given or X1 multiples of 100 is allotted to site A. For every 

X1 I get 1 barrel. So the amount of oil I get at the end of the year is again at the third year is 

X1 because of the investment in A and S1 – X1 will go to B. 1/2 a barrel, 1/2 into S1 – X1. So 

f1 star of S1 is the best value of X1 that could maximize the total oil which would maximize 

X1 + 1/2 of S1 – X1 subject to the condition that X1 should be less than or equal to S1. The 

amount allocated to A should be less than or equal to the amount that is available for 

allocation. Now in this case the objective is the linear function, so we evaluate the function at 

the end points which is 0 and S1 and we observe that maximum is at X1 star = S1 and f1 star of 

S1 = S1. So here the decision is, whatever is available, give it to A, so that you maximize the 

amount of oil which is = S1. 
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Now N = 2; 2 more stages to go. S2 is available at the beginning of the second year. X2 is 

allotted to A at the beginning of the second year. Again we assume that S2 and X2 are in 

multiples of 100. Now for X2 allotted to A in the beginning of the second year, this would 

give 1 barrel of oil for the second year and 1 barrel of oil for the third year.  
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So this X2 would give 2X2 whereas the problem says that year as well as every succeeding 

year. So this X2 would give us 1 barrel or X2 barrel in the second year and X2 barrel in the 

third year. So we get 2X2 similarly we get 1/2 into 2 S2 – X2. Now with X2 given to site A, S2 

– X2 will go to site B and that will give us 1/2 a barrel, 2 years. So 1/2 into 2 into S2 – X2 is 

the oil that we get. Now what is the amount that we get? Now this X2 would give 3 times S 

X2 because for every 100 we get 300 as a backup capital at the end of the year so we get 3X2. 

Now the S2 – X2 that is allocated to site B would give us 5 times S2 – X2 because it says 

rupees 500 as the backup capital at the end of that year and the every succeeding year. Now 
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plus another S2 comes in. Now let us explain how we get this S2, so let us go back for every 

100 invested in A. We get 1 barrel at the end of that year and also the end of third year 

therefore we have 2X2 and 2 into S2 – X2 respectively which are shown here. 2X2 and 2 into 

S2 – X2. Amount of money generated by the investment is 3X2 + 5 into S2 – X2. This is 

because of the 300 and 500 as back up capital. In addition we would get some money out of 

the investment made in the previous year because investments made in the previous i.e., 

investment made at the beginning of the first year would have given us some money and the 

same money we get at the end of the second year also. Now the amount that was available at 

the beginning of the first year would have been inspected and the return from that is the S2 

that we have with us right now. So similarly the same amount of S2 would be generated as a 

result of the earlier investment at the end of the year 2. Also so the cash on hand at the end of 

year 2 gets another S2 added to it. Returns are such that all the money would have been 

invested and no money would be carried to the next year without investment. 

Investment in the previous year that is in the beginning of the first year has resulted in the S2 

available now because no money was left uninvested. The same S2 will additionally be 

available in the beginning of the next year. Also we have another S2 that comes here. So this 

is an important thing in this problem.  
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Now f2 star of S2 is to maximize 2X2 + 1/2 into 2 into S2 – X2 + f1 star of this quantity. Now 

we have seen f1 star of S1 is = S1. So f1 star of  3X2 + 5 into S2 – X2 + S2 is 3X2 + 5 into S2 – 

X2 + S2 which is here subject to the condition 0 less than or equal toX2 less than or equal to 

S2. Now this on simplification would give us maximize 7S2 – X2 subject to 0 less than or 

equal to X2 less than or equal toS2. Once again the function we have is a linear function. Now 

X2 is the variable with the negative sign. So the function will have a maximum at X2 star = 0 

and f2 star of S2 + 7S2. We have 3 more stages to go, f3 of K, X3. We are at the beginning of 

the first year. We have K available which we have already seen. K is in the multiples of 100. 

Now X3 is given to site A. X3 is also in multiples of 100. So f3 of KX3 will be 3X3 because 

every X3 would give X3 barrels at the end of the first year, X3 at the end of the second year 

and also at the end of the third year, 3X3. Now S3 – X3 or K – X3 is what is given to site B. So 

we get 1/2 a barrel. 1/2 barrel into 3 into S3 – X3 or K – X3, this is the oil that is obtained 

because of the investment. Now the money that would come in, available at the end of the 
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first year or at the beginning of the second year is 3 times X3 because, 300 we get as backup 

capital and 5 times K – X3 because of the 500 backup capitals. So f3 star of K is the best value 

of X3 that maximizes 3X3 + 1/2 of 3 into S3 – X3 + f2.  f2 star of  3X3 + 5 into K – X3  

We know that f2 star of S2 is 7S2. So f2 star of 3X3 + 5 into K – X3 is 7 time S3 X3 + 5 – K into 

X3. This when simplified would give us 73/2 K – 19/2 X3. Once again we are maximizing. X3 

has a negative term. So the best value will be X3 star is = 0 and Z = 73/2 K. In this problem 

the decision is allot 0 X3 star, allot 0 to A and allot everything to B in the first stage. Similarly 

allot 0 to A and allot everything to B in the second stage and in the third stage in the last year 

allot everything to A. So the decision would be all the K that goes to side B gets X, 

multiplied. Once again in the second year all the K that goes to side B gets multiplied. And in 

the third year whatever money that is available is entirely into A. This again is an expected 

result because the amount of money that you get in B being higher. First 2 years we invest 

everything in B. We multiply the money, get maximum money and in the third year invest 

everything in A so that you get more oil. So this is how we solve this problem. What is new 

and special that we have learnt from this example? The first thing is that this is a new linear 

function. Therefore we do not differentiate. We simply evaluate the function at the range at 

the end points and then optimize which is a change from the previous example. Secondly the 

problem is such that the returns not only come that year but come at the end of the every 

succeeding year, so that has to be modeled carefully and has resulted in this + S2 coming in. 

As part of the state variable when we have N = 2, 2 more stages to go.   

 

Now dynamic programming also shows us a way to model situations such as this where the 

return is not only for the end of that planning period but also for succeeding planning period. 

We have seen in this example that it is also possible to model things like this where the return 

is not only for the end of that year but also at the end of every succeeding year. We go on to 

explain another example using dynamic programming.  
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We take an integer programming problem or a Knapsack problem and try to solve. The 

Knapsack problem that we consider is maximize 7Y1 + 8Y2 + 4Y3 + 9Y4 subject to 3Y1 + 

2Y2 + Y3 + 2Y4 less than or equal to 15. Now YJ is greater than or equal to 0 and integer. The 

integer is the key thing. So far in the last 4 examples we have seen problems that involve 
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continuous variables. Now we go back to the integer and we describe examples. You 

remember that in the first 3 examples that we saw, all had discrete variables. Now we look at 

an integer programming problem. Single objective functional maximization is subject to a 

single constraint and an integer restriction on the variables. Now the problem is called as a 

Knapsack problem because the problem is about filling things in a knapsack. We are looking 

at 4 different types of items that are there and for example we want to pack or fill as much as 

we can into a sack. The weight that the sack can take is 15 and the weight of the individual 

item could be 3, 2, 1 and 2 respectively and if we decide to put YJ and integer value for 

example if we put 2 of the first item and then loose up 6 kgs of weight and so on. So we now 

want to find out how many quantity of each item we can put into the sack so that the weight 

restriction is not violated. Each item has a certain utility. So we assume that if Y1 quantity of 

item 1 goes into the sack 7Y1 will be the total utility which we would like to maximize. 

Constraints can also be taken as a volume on restrictions instead of a weight restriction. 

Usually in all these problems, the objective function is like maximizing the utility and the 

constraint would represent either a weight restriction or a volume restriction. Now let us 

solve this problem. While solving these problems we have to modify the problem in such a 

way that there is at least 1 variable which is coefficient of + 1 in the constraint. Now this 

example has that variable Y3 has a constraint coefficient of + 1. Now this would help us to 

solve the problem better, so we now bring this one as the last variable.  

 

The Y3 will now become the last variable. So the problem is rewritten as 7X1 + 8X2 + 9X3 + 

4X4. This Y4 becomes X3 and Y3 becomes X4. The variables have been changed, subject to 

3X1 + 2X2 + 2X3 + X4, the Y3 becomes X4. 2Y4 becomes 2X3 less than or equal to 15.  XJ 

greater than or equal to 0 and integer. So we will now solve this problem because this 

problem is rewritten in such a way that the variable which has a + 1 coefficient in the 

constraint now appears as the last variable or the first variable that we will be solving. Now 

the stage is each variable because we solve 1 variable at a time. State is the amount of 

resource available. We already know that.  
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We do not know what exactly this would represent. This could represent a weight. This 

represents a volume. So we just say it is a resource and we say amount of resource available 
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is the state variable. Decision variables are the actual values of X1 to X4 and the criterion of 

effectiveness is the objective function which maximizes Z. Z is 7X1 + 8X2 + 9X3 + 9X4. Now 

n = 1; 1 more stage to go which means we are trying to solve this problem. Maximize 4X4 

subject to X4 less than or equal to S1. X4 greater than or equal to 0 and the integers. So f1 or S1 

X4, I have S1 resources available. I want to give X4 to it. So X4. Now f1 star of X1 is the best 

value of X4 that maximizes 4X4 subject to X4 less than or equal to S1 and X4 is an integer. 

Assuming that S1 is the non negative integer which is a fair assumption, the right hand side 

value is non negative. All the coefficients are positive or non negative and these X1, X2, X3, 

and X4 are also non negative integers. All the state variables will also be non negative 

integers. So assuming that S1 is non negative integer, the best value X4 star is = S1 and f1 star 

of S1 is 4 times S1. This is a very clear result. All the resource that is available goes to 

variable X4. Now N = 2; 2 more stages to go, f2 of S2 X3. Now if we go back to the problem, 

we are trying to solve 9X3 + 4X4 subject to 2X3 + X4 less than or equal to S2. X3, X4 greater 

than or equal to 0 and integer.  

 

So 9X3 + f1 star of X1. 9X3 comes from here; 9X3 + f1 star of S1, S1 is the resource that is 

available after something is allocated to X3. So f1 star of S2 – 2X3, now S2 – 2X3 comes as 

follows. We are looking at 2X3 + X4 less than or equal to S2. So if X3 quantity goes to 

variable X3 then 2X3 of the resource is consumed. S2 is assumed to be available so S2 – 2X3 is 

the amount of resource available for the next item. So you get S2 – 2X3 which is here S2 – 

2X3 subject to 2X3 less than or equal toX2. In this case we need this. 2X3 should be less than 

or equal to S2 which is shown here and X3 is an integer. So f2 star of S2 is to maximize 9X3 + 

4 times S2 – 2X3. Now this comes because f1 star of S1 is 4S1 so f1 stars of S2 – 2X3 is 4 into 

S2 –2X3. So we end up maximizing 4S2 + X3. Now once again assuming S2 is a non negative 

integer, X3 star will take S2/2 lower integer value of S2/2. For example if S2 is 3 units then X3 

star can be only be 1 unit. It cannot be 1.5 because X3 is an integer. So we would get a lower 

integer value of S2/2 and f2 star of S2 will be 4S2 + lower integer value of S2/2. 4S2 + X3 give 

4S2 pus lower integer value of S2/2.   
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Now when we have 3 more stages to go, f3 of S3 X2 = 8X2 + f2 star of S2. Now this comes 

because we are looking at this variable X2. So we get 8X2, 2X2 + 2X3 + X4 less than or equal 
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to S3. So we have S3 resource available. X2 is given to variable X2. So 2S2 is resource 

consumption so S3 – 2X2 is what is available as S2. So we have 3 more stages to go. We have 

8X2 + f2 star of X2. Now this S2 that is available at the beginning of the next stage is resource 

S3 available – resource consumed which is 2X2. So we have f3 star of X3 is the best value of 

X2 that maximizes 8X2 + f2 star of S3 – 2X2 subject to the condition 2X2 less than or equal to 

S3 and X2 is an integer. Now this comes because we have this 2X2. We have S3 available. So 

2X2 should be less than or equal to the resource available. X3 and X2 should be an integer 

because all XJ’s are integers. Now we already know that f2 star of S2 is 4S2 + lower integer 

value of S2/2, so f2 star of S3 – 2X2 is 4 times S3 – 2X2 + lower integer value of S3 – 2 X2/2. 

This on simplification would give us 4X3 + lower integer value of S3 – 2X2 divided by 2. 

Now once again assuming that S3 is a non negative integer, the maximum occurs at X2 star = 

0. This is because the 8X2 and 8X2 are canceled out in this example. The only place where X2 

appears has a negative sign. It has a linear function. So the maximum occurs when X2 star = 0 

and f3 star of S3 is 4S3 + lower integer value of S3/2.   
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Now n = 4; 4 more stages to go, we started with 15 here. Item 1 requires 3 units of the 

resource. So we have 15, X1 is 7X1, 7X1 comes from here which is the utility associated with 

variable X1. So 7X1 + f3 star of S2, now 15 is available. 3X1 is the resource consumption so 

15 – 3 X1 is the resource left over which becomes S3 so f4 star of 15 is the best value of X1 

that maximizes 7X1 + f3 star of 15 – 3X1 subject to 3X1 less than equal to  15 and X1 integer. 

Now going back here, 3X1 is less than or equal to 15 and X1 is an integer. Now f4 star of 15 is 

to maximize 7X1 + 4 times 15 – 3X1 + lower value integer of 15 – 3X1 – 2. This comes 

because f3 star of S3 is 4S3 + lower integer value of S3/2.  So f4 star of 15 is to maximize 7X1+ 

4 times, 15 – 3X1 + lower integer values of 15 – 3 X1/2. Now X1, we can take only integer 

values such that 3X1 is less than or equal to 15, so X1 can take values 0, 1, 2, 3, 4 or 5. 

 

This being in the last stage, we evaluate the function at values 0, 1, 2, 3, 4 and 5 to get X1 = 0. 

We would get 0 + 60 + 7. 0 comes from the first term, 60 come from the second term, 7 

comes from the third. When X1 = 0, 4 into 15 is = 60, now 15/2 lower integer value is 7, so 

we get 67.  X1 = 1 we get 7 + 48 + 6. 7 from 7X1; 48 from 15 – 3 into 1 = 12, 12 into 4 = 48. 

Now when X1 = 1; 15 – 3 is 12, 12 divided by 6, we get 6. So this way we calculate the 
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objective function and all integer values of X1 and realize that at X1 = 5, f4 star of 15 is 35. 

Now the best value happens at X1 = 0 and we get a value of 67. So the optimum value 

happens at X1 star = 0. 15 is carried over to the next stage. Now X2 star is 0, so we have X2 

star is 0. 15 is carried over to the other stage. At this stage the best value is lower integer 

value of S2/2, so lower integer value of 15/2 is 7. So X3 star is 7. So X3 consumes 2 resources 

or 14 resources are consumed. S1 becomes 1 and X4 star is = S1 so X4 star is = 1. So the 

solution is X1 star = 0; X2 star = 0; X3 star = 7; X4 star = 1, Z = 67 but this is a solution for the 

modified problem. So the solution to the first problem should be rewritten once again and we 

know that X4 becomes Y3, X3 becomes Y4, so we get Z = 67 solution to the original problem. 

Now what are the new things that we have seen in this example 1? We have solved a problem 

where the variables take integer values and secondly we have a single constraint problem as 

always but we were able to solve the 4 variables in this case. Most of the integer 

programming problem is of this type. When we solve using dynamic programming we will be 

able to solve only for 3 stages. In this case we were able to solve for a 4th stage simply 

because here we had a situation particularly here, we had a situation where the 8X2 and 4 into 

– 2X2 cancelled out and therefore we were able to get a X2 star = 0.  

 

Normally we will be able to solve for 3. As a special case in this example we were able to 

solve for 4. It is also important in these examples that there is at least 1 variable which has a 

constraint coefficient of + 1, so that that variable is always pushed as the last variable or first 

variable in a backward recursive approach and we solve for it so that we always start with X4 

star = S1 and f1 star of S1 is = some constant into S1. Now this makes the solution easy. Now 

we could have this as a problem where all the YJ’s or if we take the modified problem where 

all the XJ’s are integer values. Now we could have easily solved the problem by the tabular 

approach. The tabular approach that we had seen earlier in the dynamic programming could 

have been used and we could have solved this but we did not do that simply because the 

resource being large particularly in the middle stages, the tables become extremely large.  

 

Now as far as this problem is concerned, whether we had 15 or whether we had 115 as 

resource, the solution methodology is the same. Whereas if we had used the tabular method 

to solve this problem, if this right hand side value of the inequality becomes large then the 

tables become very large and so we do not use the tabular method to solve even though we 

know that we can solve this by the tabular method. Now single constraint integer 

programming problem can be solved comfortably up to 3 variables using BP when one of the 

variables has a + 1 coefficient in the constraint. Special cases, we can solve up to 4 variables 

as we have shown in this example. Here being a linear objective function in the linear 

constraint we do not use different ion and find out maximum or minimum. Maximum or the 

minimum happens at the extreme points in the first stage.  

 

 

 

 

 

 

 

 

 

 

 

 



 
 

16 

 

(Refer Slide Time: 41:58) 

 

 

 

The last example that we will be seeing in the dynamic programming is to show how we can 

solve a linear programming problem using dynamic program. Now to do that we go back to 

the familiar example we have seen in this lecture series. Maximize Z = 6 X1 + 5X2; 

X1 + X2 less than or equal to 5; 

 

3X1 + 2X2 less than or equal to 12;  

 

X1 X2 greater than or equal to 0. 

 

Now this is a linear programming problem. This does not have integer restriction on the 

variables. Variables are continuous. Now there are very special things about this which is 

very different from the example that we have seen. We are looking at 2 constraints here and 

not 1 constraint. There are 2 constraints, 2 resources, 2 values at the right hand side. We have 

2 state variables. So far in all the examples we have had only 1 state variable. In this case we 

have 2 state variables. Instead of using the notation‘s’ for the state variables we use notations 

U and V respectively for the state variables. So in this problem we define state stage decision 

variable and the criterion of effectiveness. Stage is each variable. There are 2 variables here. 

We will be solving for 1 variable at a time, so stage is each variable. State is the amount of 

resources available. There are 2 resources U and V namely first and the second. So the 2 

resources are state variables. There will be 2 state variables for this problem. Decision 

variables are the values of X1 and X2 and the criterion of effectiveness is to maximize the 

objective function which is Z which is given by 6X1 + 5X2  
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Now N = 1; 1 more stage to go. f1 of U1 V1 X2 = 5X2; we are trying to solve a problem, 

maximize 5X2 subject to X2 less than or equal toU1, 2X2 less than or equal toV1. X2 greater 

than or equal to 0. So we want to maximize 5X2 subject to the condition X2 less than or equal 

toU1. 2X2 less than or equal toV1; X2 greater than or equal to 0. Now here what will happen is 

the maximum value assuming U1 and V1 are non negative values which is also not a very bad 

assumption because these values are non negative. The coefficients are all non negative and 

the variables are non negative. So the state variables will be non negative values. Now the 

maximum value that X2 will take is actually the minimum of U1 and V1/2 because X2 less 

than or equal toU1; 2X2 less than or equal toV1 would give us X2. The maximum value X2 can 

take is the minimum of U1, V1/2. So X2, the star X is the minimum of U1 and V1/2 and f1 star 

of U1V1 is maximize or 5 times minimum of U1, V1/2. The best value of X2 is a minimum of 

U1, V1/2. So X2 the star is being minimum of U1 V1/2. f1 star of U1,V1 will be 5 times  

minimum of U1, V1/2.  Now N = 2; 2 more stages to go and we come back to the problem 

where we are solving 6X1 + 5X2 subject to X1 + X2 less than or equal to 5; 3X1 + 2X2 less 

than or equal to 12. X1 X2 greater than or equal to 0. So we are solving this problem.  
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Now we go back and say 6X1 because for X1 the objective function is 6X1 and whatever 

resource is left over this X1 is given here, 5 – X1 goes as U1 and 12 – 3X1 goes as V1. So we 

have f1 star of 5 – X1 and 12 – 3X1 which go as U1 and V1. f2 star of 5, 12 is the best value of 

X1 that maximizes this 6X1 + 5 times  minimum of 5 – X1; 12 – 3X1/2. We have already seen 

that X2 star is minimum of U1 V1/2 and the value is 5 times  minimum of U1, V1/2. So 5 times 

minimum of U1 5 – X1; V1/2; 12 – 3X1/2 subject to the condition 0 less than or equal toX1 

less than or equal to 5. 0 less than or equal to 3; X1 less than or equal to 12, which comes 

from here.  X1 less than or equal to 5, 3X1 less than or equal to 12. Now what we need to do 

is this. Now we look at both these functions 5 – X1 and 12 – 3 X1/2 or we need to find out the 

range at which one of them becomes minimum.  

 

Now the point at which they are equal is X1 = 2. At X1 = 2, we have 5 – X1 which is 3.12 – 

6/2 which is also 3, so at X1 = 2, these 2 are equal. So f2 star of 5, 12 is to maximize 6X1 + 5 

into 5 – X1 the first function. In the range 0 less than or equal to X1 less than or equal to 2 and 

maximize 6X1 + 5 into 12 – 3 X1/2, the second function is in the range 2 to 4. 4 comes in 

because this would give us X1 less than or equal to 5. This would give us S1 less than = 4, so 

4 becomes the upper range. So we have 2 functions here. We want to maximize 6X1 + 5 into 

5 – X1 in the range 0 to 2 and 6X1 + 5 into 12 – 3 X1/2 in the range 2 to 4. At X1 = 0 we have 

Z = 25. We are in this range. So 0 + 25 is 25. At X1 = 2 we have 12 coming from this and 15 

coming from this giving us 27.  

 

From the other expression, also we have 12 coming and 15 coming from the second term 

which is 27. At X1 = 4 which is in the other expression, we have 6 into 4 = 24; 12 – 3 X1 is 0. 

So the best value is that X1 star = 2; Z = 27. When X1 star = 2, U1 is 5 – X1 which is 3; V1 is 

12 – 3; X1/2 which is V1 is 12 – 3X1 which is 6, so from the previous table minimum of U1, 

V1/2 is X2 star. Minimum of U1, V1/2 minimum, so minimum of 3 and 6/2 which is 3, so we 

get X1 = 3X2 or the X1 = 2; X2 = 3 and Z = 27 which would give us 12 + 15 which is 27. So 

this is how we solve linear programming problems using dynamic program. Just to illustrate 

this we have taken a 2/2 problem. We have also taken a maximization problem. We have 

taken a 2 variable, 2 constraint problems. We also have taken a very simple problem where 

all the coefficients are positive terms and non negative terms in this problem. Problems 
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become a little more complicated when we have negative terms here. Problems become 

complicated when we have greater than or equal to constraints. In fact you would have seen 

in all our problems whether they were problems such as linear programming or integer 

programming or nonlinear objective function or constraints or problems that are descriptive 

in nature which had non linear or linear terms, the resource constraints were all less than or 

equal to constraints. We did not encounter a greater than or equal to constraint in our 

example. For a first course less than or equal to constraints are easier to handle and we have 

taken a variety of examples but all them are consistent about the fact that the constraints were 

of the less than or equal to 5. Now do we use DP or dynamic programming to solve large 

linear programming problems? The answer is no. The reason is we have as many state 

variables as the number of constraints. Each constraint represents the resource. So we have as 

many state variables as the number of constraints and therefore the problem now gets too 

many constraints whenever we solve problems of a larger size. Now this is called curse of 

dimensionality. Now we could solve comfortably a 2/2 problem but beyond that it becomes 

little bit more involved to solve linear programming problems. But before we wind up 

dynamic programming, let us also look at some additional comments. 

 

(Refer Slide Time: 50:51) 

 

 
 

In almost all the examples we had constraints of less than or equal to type. These constraints 

can be handled very well by the DP algorithm. It is very difficult to interpret the greater than 

or equal to type of constraints even as a state variable. In linear programming problems when 

we have more than 3 constraints or more than 2 variables it becomes difficult to solve by DP. 

This is called curse of dimensionality where the problem dimensions, the state variable 

increases with increase in the number of resources.  Most of the examples we have used were 

of the single constraint problems indicating a single resource and a single state variable. In 

the integer programming application we were able to solve a 4 variable problem, 1 variable 

definitely took a 0 value. Normally we solve 3 variables, single constraint problems using the 

approach that we used. 
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If whenever we solve problems with continuous variables, we need not write the recursive 

relations or separately as we did for the cases where we took discrete values. The integer 

programming problems could have been solved by the tabular method but the tabular method 

becomes cumbersome as the right hand side value increases. It is always advisable to use the 

tabular method whenever the variable takes integer values.  
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Now at the end of the dynamic problem, we move to the last topic of the first course. In the 

fundamentals of operation research we addressed deterministic inventory models. We now 

look at the very basic of inventory control in this lecture, in the introductory part of it and in 

the subsequent lectures. Now the inventory control deals with ordering and stocking policies 

for items used in manufacture of industrial products. In every manufacturing environment, we 

realize about nearly 80% or more of the items are bought out from outside and the rest enter 

as raw material are manufactured and assembled into the final product. Now items bought 

from outside or bought from vendors have the following costs associated with the purchase. 

There are 4 normal costs that are important to us. The actual cost of the product or the item is 

shown here. There is an ordering cost that the organization incurs, the amount of money that 

is spent in placing an order for the items. All these items are special items that need to be 

ordered and the vendors make these have a supply. There is a carrying cost or holding cost 

for the items. Items are not bought on a daily basis or bought frequently. They are bought in 

certain quantities and are stocked within the organization. So there is a cost associated with 
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carrying or holding these items and sometimes there are shortage costs or backorder cost 

when the items are not available and the production stops for want of these items.  
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Now in this course in the first course, the introductory course on recent research, we 

introduce inventory models. We are going to consider deterministic multi-period inventory 

models in this chapter. We are going to look at inventory problems where inventory decisions 

are made more than once during the planning period not the static problems with the dynamic 

problems and we are also going to look at some deterministic problems where all the data are 

available at the beginning of the planning period. Now the assumptions annual demands for 

the items are known. The various costs associated with the inventory, the 4 costs that we 

looked at are cost of the product, ordering cost, carrying or holding cost and shortage cost. 

They are known with certainty and do not change during the planning period and we also 

consider single item as well as multiple item inventory models in the introductory portion.  

 

There are 2 decisions in inventory problems. The first and the most important decision is 

called how much to order. The second decision is called when to order. Now orders have to 

be placed for these 2 items. So the 2 questions would be how much I order every time I place 

an order and when I decide to place an order. Now the answer to the question how much to 

order is given by something called the economic order quantity or the order quantity which is 

denoted by the letter Q. Now let us go back and look at the various costs that we decide. We 

introduced 4 types of costs. Cost of the product, ordering cost, carrying cost and shortage 

cost. Now obviously the ordering quantity or the economic order quantity depends on these 4 

costs. So let us get into these 4 costs in detail and see.   
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 What constitutes these 4 costs? Now the cost of the product of the item is usually represented 

by the capital C and that will be the notation that we will be using. Now this is given as 

rupees C per unit or C rupees per item or the annual demand for the item is known and we 

have to meet the annual demand. This cost does not play a significant part in determining the 

ordering quantity. No matter what the order quantity is, cost is going to be the same or we 

later show that the order quantity does not depend on the actual cost of the product. However 

the only effect of the unit price C in the ordering quantity is when there is discount. Now 

when there is a discount the unit price reduces by a known fraction. Therefore it influences 

the ordering quantity. The only situation where the price will have a C in the determination of 

the order quantity is when we are looking at discount models. We will be looking at discount 

models subsequently in this lecture series and we will see the effect of the discount and the 

economic order quantity. In the next class we will look at order cost.  

 

Order cost is the cost that is incurred whenever an order is placed for an item. Now this is 

represented by the notation C0 or C subscript 0 or O in this lecture series.  C0 is the order 

cost and its unit is rupees per order. Every time there is an order placed, there is an amount of 

money spent. It is either money per order or rupees per order. Now there are many costs that 

constitute the order cost. Now these are the following order. Cost of people, there are 

normally people who work in an organization who are in charge of purchase and who place 

these orders. So cost of hiring these people and cost of their salary and pay role is included as 

part of the ordering cost. However small it is, cost of office and cost of stationery also 

becomes a part of the ordering cost. If there is a cost of communication now, the purchase 

orders are made and they have to be communicated to the vendors which would involve cost 

of fax, cost of sending the courier or cost of making long distance calls and so on. There are 

also costs of follow up.  

 

Once the purchase order is made, the organization follows up with the vendors. So there is a 

cost of follow up associated with this and this cost of follow up would mean sometimes 

courier, fax, telephone calls as well as travelling. Sometimes people have to go to the 

vendor’s place and then get the items. So it involves a certain travel. There is a cost of 

transportation because the items have to be transported from the vendor to the organization. 
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There is a cost of inspection and counting which we have. Whenever the items come in, they 

are inspected and counted, so there is a cost of the pay roll or the time that is spent in these 

activities. Sometime there could be rejects which are sent backs or some rework which has to 

be made which would contribute a little bit to the total cost. All these are the components of 

the order cost.  
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The other one is called the carrying cost or the holding cost which is often represented as Cc. 

C subscript c. Cost of carrying, this is represented as rupees per unit per year, money per unit 

per year, Cost that contribute to the carrying  of the items are many cost. First and most 

important in the cost of capital when items are bought, a certain amount of money is spent 

and a certain amount of interest is paid on the money that is being borrowed. Cost of capital 

is the most dominant cost or the holding cost. Other cost would also include cost of space, 

Cost there would be a warehouse, Cost of people who manage the warehouse, cost of power 

and other electrical utilities. Sometimes we would need cost of special facilities such as air 

conditioner, chillers, and dust free environment and there could be pilferage obsolescence. 

Now all these constitute the cost of carrying or holding which is represented by Cc.  

 

Now we look at the other cost such as the shortage cost as well as the inventory models in 

detail in the next lecture.   

 


