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Lecture No. # 18 

 

Dynamic Programming - Examples Involving Discrete Variables 

 

In this lecture we continue our discussion on the reliability problems. We had seen 2 stages in the 

previous lecture. So we continue and move to the third stage where we have n = 3; 3 more stages 

to go. 

 

(Refer Slide Time: 01:32) 

 

 
 

So here we make decision for item or component B and we have to decide how many we can buy 

of this component B, so the state variable will be s i.e., the amount of money that is available. So 

decision will be X2 = 1, 2, 3 and 4. Now what are the values that the state variable can take? The 

minimum value that state variable s can take should be the minimum money required to buy at 

least one of B, one of C and one of D, which means the minimum money that we should have is 

80 + 75 = 155 + 60 is 215 that is the minimum amount of money. The maximum that we would 

have if we had bought only one of A and spent 100, so the maximum would be 300. So if we 

start with state variable = 215 and we decide to buy one of B so we spend 80 rupees on B to get a 

reliability of 0.7. So we would get 0.7 and out of 215, we have spent 80, so we have remaining 

135 which we carry to the previous stage.  When we have 135 then the maximum we could get is 

0.56 so this will be 0.7 into 0.56 which will be 0.392. Now we cannot be evaluating X2 = 2, 3 or 

4 because we will not have money to buy the other C and D. So the bare minimum is 215. There 
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is only one alternative that is possible, so we do this. Very similar to the previous table we have 

to now look at the value of the state variable from 215 to 300 which means we have to look at 

about 86 values starting from 215 to 300. We do not individually consider all the 86 values. We 

look at the range in which the maximum value will remain intact and wherever there is a scope to 

bring in another alternative or wherever there is a scope for one of the numbers to change we 

evaluate that separately. This will be from 215 to 219. We can have only one option which is this 

option. So we say from 215 to 219, we have only one option the moment we have 220 now we 

see that something else can happen. When we have 220, we can buy one of B and spend 80 and 

with the balance 140, we can go here and the best one becomes 0. 64, so we get 0.8 into 0.64 and 

X2 = 2 would give us 0.7 into 0.64. We cannot consider X2 = 2 because we would have spent 100 

on B which means we would be carrying 120 and we do not have anything.  So we need at least 

135 here. There is only one option that is possible here and that would give us a reliability of 

0.448 and the only option is the best option. This would hold from 220 to 224. Now the moment 

we have 225, we find some other options possible. We buy one and spend 80, so we have the 

remaining 145 and so we could get 0.7 into 0.72.  

 

Even here if we want to buy 2 of B and spend 100, we would still be having only 125, so only 

when the state variable becomes 235, there is a possibility of the next option coming in. So 225 

to 229 would give us only one option which would mean 0.504. So similarly we look at 230 to 

234, the only option is we spend 80 here and for the balance we go back to 150 so for the 80 

rupees spent, we get 0.7. Now for 150 that is available in the previous table, we find that we 

could get a reliability of 0.76 and therefore this number becomes 0.532 and once again 1. The 

moment we have 235 we realize that 2 possibilities exist. We could buy one spend 80 and carry 

the 135. So spend one, 0.7, buy one, and spend 80. We get 155 and for 155 we get 0.765. Now 

we could spend 100, buy 2 of B, get reliability of 0.75 and with the balance 135, we go back to 

this table and get reliability of 0.56. So 2 possibilities exist now and between the 2, we have to 

choose that one which is higher. We get 0.5355 and go back to 1. So like this we have to 

complete this table. This is a fairly lengthy table. This would be valid for the range 235 to 239 

and we would have another range coming from 240 to 244 and for this range we would have 0, 

56525 and 1, for the range 245 to 249 we would have 0.5852 should be 1, 250 to 254, 0.5985 and 

1. 255 to 259, we have the same 0.5985, 1 and so on. Now all these are shown in these 2 tables. 

We first go to the previous table.   
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Now 215 to 219, we have only one alternative 0.392 that is shown here in the beginning of this 

table and that is shown here as well. The last one that is shown here is 250 to 254 which is this. 

For 250 to 254, we have 2 possibilities, so we quickly explain both these possibilities. One is we 

decide to buy one of B, X2 = 1 which means you spend 80. So spend 80, with the reliability of 

0.7. We see 0.7 here in the first part here, we see a 0. 7 here and with the remaining 170 we go 

back to the previous table and we could get 0.855. So we have 0.7 into 0.855 which is 0.5985. 

Now the other possibility of buying 2 of B is X2 = 2 which you can see there in the third column 

of the table. X2 = 2 in green and there we realize that we to buy 2, we spend 100, get a reliability 

of 0.75 which is shown here. We spend 100, so for the balance 150, we could go back to this 

table and get a reliability of 0.76, so you have 0.75 into 0.76 which is 0.57 which is shown here. 

Between the two, 0.5985 is higher, so the best value is 0.5985 with the best decision at 1.  
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In the next table we continue this from 255 to the maximum 300 and we now have several 

alternatives coming in. We will just go through a couple of instances of calculation. For example 

let us look at the case when the state variable is 270. Let us say we are here at 270. Now there are 

3 possibilities. For example when you could decide to buy X2 = 1 and get a reliability of 0.7 and 

so, among 270 we have spent 80 so there is a balance of 190. So 190 would give us another 

0.855, so you would get 427, 0.7 into 0.855 which is 0.5985. Now we could also consider X1 = 2, 

spend 100 get a reliability of 0.75. Now out of 270 we have spent 100, so we have 170 and for 

170, you go back to the previous table you get 0.855. So this number is 0.75 got from here into 

0.855 got from here (Refer Slide Time: 12:12) which is shown as 0. 64125. Now we could also 

consider X2 = 3, so spend 120, get a reliability of 0.8.  There is a balance of 150 which is carried 

out, that 150 would give us 0.76 so we get 0.8 into 0.76 which is shown here which is 0.608. We 

cannot consider X2 = 4 because X2 = 4 would mean you spent 140, so you have a balance of 130 

that is carried to buy C and D which is not enough.  

 

We need a minimum of 135, so we do not look at the 4
th

 one. So there are 3 alternatives possible. 

Now among the 3, the best one is 0.64125 with the best decision at X1 = 2. The moment we 

come to 275, we realize that all 4 options are possible. So when we have 275, the 4
th

 option is 

possible. So you could buy 4, spend 140, get 0.85. 0.85 is shown there and spend 140 out of the 

275. To carry 135 and for 135 you get 0.56 so you have 0.85 into 0.56 = 0.476. But meanwhile 

the rest of the reliabilities have changed. So the best value is again 64125 among the 4 values 

that we have computed. So like this, we complete this table and go up to 300 and we also realize 

that for 300, the best one would be to buy 4 of this. So we have completed the third table. We 

have only shown a part of it here. The entire table is shown here as 2 tables in this slide.  So the 

recursive equation here would be f3, 3 more stages to go.  
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I have s state variable, s rupees available with me. I decide to buy X2 units of this. So I get a 

reliability of R of X2 into f2 star of (s – C) of X2. I start with s. In order to buy X2, I spend C of 

X2 so s – C of X2, I carry to the previous table, f2 star of this. Now the best value f3 star is to 

minimize this. So f3 star would be to minimize f3 of sX2 subject to the condition that C of X2 is 

less than or equal to s. I cannot exceed the amount that I have plus more of course so accepted. 

This is how the third table is completed. So at the end of the third table, we had the state variable 

taking a value of 300 which is shown here and the best value is 0.686375 with X = 4. Now we go 

to the last stage which is the stage here. We have 4 more stages to go, so we go back and look at 

n = 4. 
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We now move to n = 4; 4 more stages to go so we are at the beginning here and we have 400 

available with us. s is the state variable which is the amount of money available. X is the 

decision variable or X1 in this case is the decision variable, where we like to choose the number 

of parallel units of A that we are going to have.  X1 can take any one of these 4 values.  You have 

X1 = 1 2 3 and 4 and we have 400 that is available with us. We evaluate when X1 = 1, you have a 

reliability of 0.6 that comes out of it. You spend 100. So there is a balance of 300 that is 

available. So we go to the previous stage n = 3 and find out that for 300 the best value is 

0.686375, so this multiplication would give us a value 0.411825. Now we can consider X1 = 2 

and when we have X1 = 2 we get a reliability of 0.7. Then out of the 400 we spend 130, so we 

have a balance of 270 and for 270 from the previous table, we would get 0. 64125. When we 

multiply these two 0.7 into 0.64125, we would get 0.448875. When X1 = 3, we get a reliability of 

0.8 and we spend 150 out of the 400 available.  

 

We have a balance of 2150, so we go to the previous table to find out for 250 the value is 0.5985. 

This is 0.5985 and this multiplication 0.8 into 0.5985 gives 0.4788 and for X1 = 4, you could get 

a reliability of 0.9. We spend 170 so we have a balance of 230 would which would give us 0.532. 

We spend 170 there is a balance of 230. So you get 0.532, this on multiplication also gives us 

0.4788. Now the best value which is f1 star of s1 happens to be 0.4788 and X1 star, we have 2 

values which are 3 and 4. We also have to write the recursive relationship. So for this, the 

recursive relationship will become f1 star of s1, f1 of s1X1 would give us R of X1. The reliability 

that you get multiplied by f2 star or f4 star of f1X1 would give us f3 star of s1 – C of X1 i.e., we 

have s1 = 400 here, out of which we can take any one of the 4 values. There is an associated cost. 

So 400 minus that cost goes into the next stage from which we took these 4 values so this is the 

recursive relationship. Now as far as the solution is concerned we have 2 possibilities X1 = 3 and 

X1 = 4. So we have some kind of an alternate optimum. 
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So we look at both these cases. We look at the case X1 = 3 and X1 = 4. X1 = 3 would mean you 

spend 150 and there is a balance of 250. Going back to the 250 you would get X2 = 1 for 250 

here. so this gives us X2 = 1, so from 250, X2 = 1 means you have spent another 80, so you get 

170 and now you go to 170 here you get X3 = 4 from here, 90. There is an 80 that is remaining so 

you would have X4 = 4. Alternately when you have X1 = 4 you have spent 170, there is a 230 

that is remaining. So from this you get again X2 = 1, so from the 230, you have spent 80. So 150 

remains and for 150 you would get X3 = 4 which means you spend 90, you have another 60 so 

that would give us X4 = 1. So there are 2 solutions that we have here. One is 3144 and the other 

is 4141. 3144 would mean 3144 and the other would mean 4141. Both have the same 0.4788 

reliability.  
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We look at one more example where we consider decision variables taking discrete value I get s 

of i which is a salvage value. I have to buy a new one so – C or s of 0, they mean the same. Now 

I have a new machine with age 0, so I have + p of 0. I have the profit associated with a new 

machine. I have a maintenance cost associated with the new machine. Then at the end of the year 

I go back.  I have to make a decision f n – 1 star but the age of the equipment is one at the end of 

the year. So I have f n – 1 star of 1. So these are the recursive relationships with which we will 

work and then we will make a table and proceed with our calculations.  

 

(Refer Slide Time: 22:54) 

 

 
 

This is n = 1, one more stage to go.  



9 
 

(Refer Slide Time: 22:49) 

 

 
 

Decision to keep (K) or replace (R), the age is age is given by 0, 1, 2, and 3 and so on. So we get 

into the situation where the age is 0 and I have one more stage to go. I keep the machine. When I 

keep the machine, my decision would be here. So when I keep it as p of i – m of i, 200 – 10 

which is 190, I do not have anything else to do. So I have 190 which come up. When I have one 

more year to go and I have a brand new machine, I already have a brand new machine so even if 

I decide to replace it, we assume that when you sell a brand new machine you get 800. You incur 

another 800 to buy. So they cancel out and then you have a new machine. You have p of i and m 

of i so you will get 200 – 10 which is again 190. When I have a machine that is one year old, I 

have p of i – m of i, 180 – 15 which is 165. When I decide to replace, I sell this. So I get 700, I 

have to buy a new one. I spend 800. So net is – 100 and then I made 200 – 10 = 190. So 190 – 

100 is = 90. So you have 90. So we can complete the rest of this table and we will show it again. 

We do not have this f n – 1star coming in because we have only one more stage to go. So when 

the age is i, we decide to keep the value will be p of i – m of i and when we decide to replace, it 

will be s of i – C + p of 0 – m of 0. So that is shown as a first table here. For example the 190, 

190, 165 and 90 can be seen here. When i = 2, we get 140 which is this 160 – 20 and to replace 

we would get a 40 which comes like this. 

 

650 + (– 800) is = – 150 and then you get a new machine + 190, so 190 – 150 is = 40 and that 40 

is shown. Like this we complete this table and go up to i = 8 to write 5 and – 210. Now when we 

have n = 2; 2 more stages to go and I decide to keep. Now when the age of the machine is 0, 

even though I have 2 more stages to go, I decide to keep. So the expenditure, if the age is 0 

would simply be p of 0 – m of 0. This means whatever be the situation if I decide to keep for that 

age; this is going to be 190.  When I decide to keep a 0 1at the end of the year, the age will be 1. 

So I go back to the previous table and when the age is 1, the best decision here is 165. So I get 

190 + 165 which is 355 here and that 355 is shown there. When I decide to replace, as long as 

the age is 0 for that year, the value is 190. At the end of the year, the age is 1, so go back to the 

previous table. The best decision is again 165 so you get 355. When I have a 1 year old machine 

that I decide to keep the money will be 165 for that year and then at the end of the year the age 
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would become 2, so go back to the previous table and see what the values of 2 are. That is shown 

here as 140 and 40. So now coming back when I have n = 2, no matter what this n is, if I decide 

to keep and if the age is 1 the profit is 165 which is shown here which comes here. The age being 

1, I decide to keep at the end of the year, the age will become 2, so go back to the previous table 

and see for age = 2. The best decision is to further keep and add a 140. So this will be 305.  

When n = 2 and I decide to replace. The moment I decide to replace, no matter what n is if the 

age is 1, then I get 90 for that year. When I replace at the end of the year, the age of the 

equipment is 1, so go back to the previous table and see what is good here so 90 + 165 = 255, so 

that is shown here as 305 and 255 respectively. Similarly you can work it out. But you can work 

it only up to i = 7 here, because we cannot work out i = 8 because you need i = 9 for this. 

Wherever you keep, you realize that you are picking something from the previous table, but the 

one to the right because age goes up by one. Since we have data only up to i = 8, we cannot do    

i = 8 here because that would require numbers for i = 9 of the previous table. So you do only up 

to i = 7 and write this. Similarly we can continue with this and all these are shown in this table 

now.  

 

(Refer Slide Time: 29:25) 

 

 
 

For example when you are at n = 3 and you decide to keep it and i = 0 and decide to keep that 

190 comes because no matter what n is if you decide to keep a 0-year-old equipment you get 190 

which is from the first table which is this 190. When you decide to keep at the end, the age is one 

so go back to the previous table. The best is to choose between 305 and 255. To choose between 

305 and 255, the best value is 305, so add 305 to 190 to get 495. Similarly when you decide to 

replace for that year, it is 190. The 190 comes from i = 0. Replace this 190. The moment the age 

is 0, no matter what n is, you get this 190. Now you have already replaced it. At the end of the 

year the age is one go back to the previous table and realize that 3 not 5 is better so 190 + 305 = 

495. You will also realize that this column will have the same number coming in for all of them. 

It makes more sense to start looking at it from the second column where the numbers will be 

different. Now when you are at n = 3, you can proceed only up to i = 6, you cannot go beyond 

because you cannot do i = 7 because you do not have i = 8 for n = 2 
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Like this we proceed and do it till n is = 8 because we have data here for i = 8 up to 8 years now, 

and we can go back and complete this table up to n = 8 and you have only one entry there. Once 

this table is completed we can start evaluating the decisions depending on where we are.  

 

(Refer Slide Time: 31:25) 

 

 
 

For example, from this table we can compute the cost and the strategy when you are given 

number of years to go and age of the equipment. 
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Fo example if we are looking at n = 3, 3 more years to go and the age of the equipment is 1. Let 

us go back and see what the decisions are. Go back to the previous table when n = 3, I have i = 1, 

now for n = 3; i = 1 when we keep the value as 428. When we replace, the value is 395, higher 

one being 428. We decide to keep for the first year, so we decide to keep. Now once you decide 

to keep at the end of that year, the age goes up by 1, so go to the previous table n = 2 and look at 

the age also = 2. So n = 2, age = 2, to keep it is 263, to replace it is 205, so decision again is to 

keep. Now the decision is to keep at n = 2, i = 2, so age becomes 3 at the end of that year. So go 

back to n = 1 and i = 3. So decision would be once again to keep, so in this case when n = 3 and i 

= 1, the decision would be to keep. When you have n = 7 and i = 2 let us see what we do. Go 

back to the table now at n = 7 and i = 2, is this next one. We have 763 and 768, so the better 

decision would be to replace for the first year to replace. When you replace for n = 6, you have to 

look at i = 1, because you have brought a new machine so for n = 6 look at i = 1, so decision 

would be to keep. Now when you decide to keep at i = 1, then the age goes up by one more, so I 

have to look between 558 and 563, so the decision again is to replace at n = 5, decision is to 

replace.  

 

Now go back to n = 4 and look at age = 1, because you have replaced it so n = 4, age = 1 is 

between 523 and 518, 523 being higher decision is to keep. Age becomes 2, go back to n = 3 and 

i = 2, the relevant values are 358 and 345 so once again the decision is to keep. Now go back to n 

= 2; i = 3, so 218 and 155, once again the decision is to keep. Now at n = 1 between 95 and – 60 

the decision again would be to keep so these would be the decisions. For this equipment 

replacement problem, now once the table is drawn, now depending on the given values of n and 

I, we could go back and look at the table and try to find out what the corresponding decisions 

are. The only drawback in some sense is that when we begin the problem with 8 years data, then 

with every stage we are able to evaluate one less. So we can go only up to n = 8 in this problem 

and we cannot go beyond that and we also realize that the alternatives that we have are also 

becoming lesser and lesser. Alternately if we have more data here and the other thing that will 

happen is that the table will become too cumbersome. So depending on the data that is given 
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depending on the values of p, i, m, i and s, i1 can construct this table, part of this table is shown 

in the board while the complete table is shown in the power 0 slide. Then depending on the value 

of n and the value of i, depending on how many stages we have, how many years to go and the 

age of the equipment, we go back into the table and then we would complete this. Now coming 

back to this for n = 7 and i = 2, the relations are shown.  Whenever we decide to keep, we go 

back to the previous stage, go back to the previous table and shifted i + 1, move 1 to the right and 

so on. When you replace, you should look at i = 1 because you bought a new machine at the end 

of the year. The age of the machine will be 1.  

 

(Refer Slide Time: 36:26) 

 

 
 

Now from after this example we now start looking at problems where we look at variables that 

have continuous values. So far we have seen 3 examples and in all the 3 examples the decision 

variables had discrete integer values and now we look at examples where the decision variables 

would take continuous values. Let us look at some simple problems that we are familiar with. 

We could even know the solution to these problems but then we will try to show how we apply 

dynamic programming to solve these kinds of nonlinear problems.  
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The problem that we choose is to minimize X1 + X2 + X3 subject to X1, X2, X3 = 27, Xj greater 

than or equal to 0. There is no integer restrictions on the Xj,. Xj’s can take any continuous values. 

It is a nonlinear problem. Because of the constraint which exhibits nonlinearity there is a product 

form in the constraint. Let us first define the stage, state, decision variable and the criterion of 

effectiveness for this problem before we proceed. Here there are 3 variables and we will be 

solving them one at a time. So here in all these kind of problems, the stage is each variable is a 

stage and we will be solving for one variable at a time the state always represents the resource 

that is available. There is a single constraint. We do not know what this constraint physically 

represents. In all the 3 earlier examples, we knew there is some physical entity associated with 

the problem like age of the machine or the money that is available or the city from which the 

person moves. We do not know what this constraint is so we simply say that the state variable is 

a resource available, decision variable are the values of X1, X2, X3 and the criterion of 

effectiveness is to minimize Z. We now start the problem with n = 1 more stage to go.  
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When we have one more stage to go we are solving for the first variable. Basically we are at this 

part of the problem. So we try to minimize an X3, subject to X3 = something, X3 greater than or 

equal to 0. So f1, one more stage to go, I have s1. Let us say, I am trying to solve for X3. This will 

be = X3 because, this is the function that we are trying to minimize. f1 star of s1 is a minimum 

value of X3 subject to X3 = s1, X3 greater than or equal to 0. What we are trying to solve here is 

minimize X3 subject to X3 = s1 is available for allocation to X3 which means something has been 

allocated to the product X1 X2 and available for X3 And because it is an equation we have to 

allocate everything that is available to this variable X3. If this was an inequality, then we have a 

choice of whether we allocate everything to X3 or something less and so on. Now because we 

have an equation here, all of s1 has to go to X3 and X3 has to be greater than or equal to 0. Now 

we are going to make an assumption that since X1, Xj is greater than or equal to 0, we assume 

that the state variables cannot be negative. So state variables themselves are greater than or equal 

to 0. So straightaway for this case you have X3 star = s1, because you have to allocate everything. 

f1 star of s1 will be s1 because we allocate everything. So the minimum value that it will take is 

s1, it cannot take anything lower than that.  
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Now when we have 2 more stages to go n = 2, 2 more stages to go, f2 of s2X2. Here we are 

somewhere in the middle trying to solve for this, so I have s2 resources available which I have to 

allocate to X2 in a certain form. Now this will be X2 plus because the objective function is X2 

plus if I have s2 and I allocate X2 here then s2/X2 is carried as s1 because of the product form of 

this. Whatever is carried as s1 is actually s2/X2, so this will become f1 star of s2 /X2. Once again 

we assume when we have 2 more stages to go, that there is some s2 available here which is 

obtained after something is allocated to X1. Please remember it is not subtraction, it is a product 

form. So something is allocated to X1 and there is an s2 that is available for allocation to X2 and 

X3. So we allocate something to X2. So s2/X2 will go to X3 or we are looking at a constraint 

which is like X2, X3 = f2. So if this X2 goes then the balance will be s2 /X2 will go as X3. So you 

have f1 star of s2 /X2. For f2 star, the best value would be that value of X2 which minimizes for 

minimum of X2 plus. We know that f1 star of s1 is s1 itself, so f1 star of s2 /X2 will be s2/X2 

subject to the condition, of course X2 greater than or equal to 0, less than or equal to, need not be 

because it is a product form. So it need not be less than or equal to f2. Because of the product 

form if it were an addition, then you could go back and say X2 should be less than or equal to f2 

here. This we need to minimize and the minimum is obtained by equating the first derivative to 

0, 2 = 0 gives, 1 – s2/X2 square = 0 from which X2 = + root of s2 + root of s2 because X2 is 

greater than or equal to 0.  So X2 star is = root of s2 and f2 star of s2 is X2 which is root of X2 + 

s2/root of s2 which is 2 root s2.   
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Now we have n = 3, 3 more stages to go which means we are making a decision for variable X1. 

So we are trying to solve X1 + X2 + X3 subject X1 into X2 = 27, so something out of the 27 goes 

to X1 and because of the product form whatever is carried to X2, X3 is 27/X1 so we have f3. We 

start with 27 and we decide to allocate X1. This will be X1 + f2 star of 27/X1  because from this 

27 we have given an X1 here, so whatever gets carried as s2 is 27/X1. So now f3 star of 27. So the 

best decision will be that value of X1 which minimizes X1 + f2 star of s2 is 2 times root of s2. So 

f2 star of 27/X1 is 2 times root of 27/X1. Now this the minimum value of X1 which is got by 

differentiating with respect to X1 and setting the first derivative to 0. So df3/dX1 = 0, gives 1 + (2 

root 27), this X1 to the power – 1/2, so – 1/2X1 to the power – 3/2 = 0. Now this 2 and this 2 gets 

cancelled so we have root of 27 into X1 to the power – 3/2 is = 1. Now this is 27 to the power 

1/2. So 27 to the power half into X1 to the power – 3/2 = 1. X1 to the power – 3/2 is = 27 to the 

power – 1/2 from which we would have X1 = cube root of 27, 27 to the power 1/3 which is 3. 

The best value of X1 which is X1 star is given by X1 star = 3, now f3 star of 27 will be 3 + root of 

27/3 which is 3 plus. So 2 root 27/3, 3 + 2 times root of 27/3, so 3 + (2 into 3), this is = 9. X1 star 

= 3, which means we have given 3 to variable X1. The product whatever goes as s2 is 9, so s2 is 9. 

Now X2 star is = root of s2 which is root of 9, which is 3 + 3 and because of this, s1 will be s2/X2. 

So we have 9/3 which is 3 and X1, X3 star, X3 star is = s1 which is also = 3. So we have X1 = 3 

X2 = 3; X3 = 3. The minimum value will be 3 + 3 + 3 which is = 9. So we have actually solved 

this problem to get the solution even though the problem to the solution is well known even by 

looking at the problem.  

 

Now there are a couple of other things that we need to address. One is this. When we made this 

differentiation and said, we set the first derivative to 0 we got the value of X1 = 3. We have to 

make sure that X1 = 3 actually minimizes. So that is verified by looking at the second derivative 

and from this, one would realize that the second derivative would be positive.  Because there is a 

minus term here and differentiating further would give us another – 3/2 X1 to the power – 5/2 

which would make the term positive for X1 positive.  When X1 is positive, X1 to the power 

negative term also is also a positive number, so second derivative is positive indicating that it is a 
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minimum. Here again the first derivative = 0, it would give us this 1 – s2/X2 square = 0. If we do 

a second derivative we would again have a + term coming in and X2 to the power something. X2 

to the power something is again a positive term, so here again this value + X2 minimizes this. We 

have to ensure that not only do we set the first derivative to 0 and get the minimum or the value 

minimum or the maximum, we also have to look at the sufficient condition and look at the 

second derivative to 0 and check that it actually minimizes in both these cases. Setting second 

derivative = 0, gives a positive coefficient which means these corresponding values minimize the 

objective function. The next thing is, in these situations, these are problems where the decision 

variable takes continuous values. They do not take integer values like the 3 previous examples. 

They take continuous values. For example it is incidental that the values were nice round integers 

but on the other hand if these were not 27, but these were something else then we would get 

continuous values here. If this was 30, then each would be cube root of 30 to get 3 times cube 

root cube root of 30. So the decision variable could take continuous values here.  

 

Now in all these problems we need not separately write the recursive relationships unlike in the 

discrete case where wherever we use the tabular form to solve. It is necessary for us to write the 

recursive relationships separately. In all these cases when we work with continuous variables, the 

equations themselves represent the recursive. After all the recursive relationships are written and 

from which they are solved. So one need not explicitly write the recursive relationship nor is it 

necessary for one to write a general recursive form. We have done it for each and every stage as 

it is. The other thing that we need to look at here is there is a single constraint. Most of the 

problems that we will be addressing would be single constraint problems and in this case it is an 

equation. Because the single constraint is an equation, when we have one more stage to go and 

we have one variable to allocate, we would always get into a situation of X3 = s1.  

 

Whenever we have an equation in the first stage at n = 1, we do not optimize the resource that is 

available for this variable. If the constraint is an equation and when we have one more stage to 

go, we do not optimize. We simply allocate as we did here because X3 = s1, whether you 

minimize or maximize or whatever be the thing, X3 is forced to take the value s1, so there is no 

optimization in this case. Whereas in the subsequent stages n = 2 and n = 3, there is scope for 

optimization. So here we evaluate the function and then we realize we have to minimize 

something. So you set the first derivative to 0 and then you optimize here and then show that 

actually at root of s2 it minimizes by looking at the second derivative and showing that the 

second derivative is positive. So in all the problems involving equations, we do not optimize in 

the first stage or stage n = 1, we optimize only at subsequent stages. So whenever we have an 

inequality coming in as a constraint, then there is a scope to optimize right in the first stage. We 

need to look at those aspects as well in the subsequent examples that we will be looking at. We 

would also be trying to address problems which have maximization instead of minimization. Of 

course the methodology would more or less remain the same. It will not change except that when 

we address maximization problems and when we optimize, we have to go back and say that the 

second derivative is negative at the value. So in that case we need to again look at the second 

derivative, set it to 0 or evaluate the second derivative at the optimum 0. Show that the second 

derivative is negative, indicating maximum. So in the next lecture, we will be looking at some 

more examples which involve maximization, which would involve inequalities and which would 

also involve linear functions.  


