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In today’s lecture we continue our discussion on sensitivity analysis. In the last lecture we had 

seen the effect of changes in the objective function value for a non basic variable as well as for a 

basic variable. This is the example problem that we had discussed in the last lecture. 

 

(Refer Slide Time: 01:50) 

 

 
 

This is the optimum simplex table. Earlier we first looked at changes in objective function 

coefficient of a non basic variable. We considered variable X2 and worked out.  

Then we looked at change in objective function coefficient of a basic variable. We made a 

change in X1 and we worked out the effects of the change. Today the first thing we would do is 
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to see what happens to the solution if the right hand side values changes. One of the right hand 

side values changes or both can change. 
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The right hand side vector is given by b = 9, 12. We now assume that this 9 is going to change to 

some value and therefore we start with b1 here and 12. If this 9 becomes b1 then the effect of this 

change will only be seen in the right hand side values. These right hand side values will change.   
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We now know that right hand side value is = B inverse b and we have already seen that 

corresponding to the basis X3, X1. We can read B inverse directly from the simplex table. You 
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could read B inverse from 2/5, – 1/5, – 1/5 and 3/5 into b 1, 12. So the right hand side values will 

become (2/5b1 – 12)/5 or 2b1 – 12/5, 36 – b1/5. If b1 is such that these are greater than or equal to 

0 then we have the primary feasible as well as dual feasible and the present set of basic variables 

will be optimal with the corresponding value here. For example if we substitute b1 = 9 which is 

in the original problem so 18 – 12/5 is = 6/5, 36 – 9 is = 27, 27/5 is what we have here. This 

would mean that (2b1 – 12)/5 greater than or equal to 0 gives 2b1 – 12 greater than or equal to 0; 

b1 – 6 greater than or equal to 0; b1 greater than or equal to 6. 36 – 5, (36 – b1)/5 greater than or 

equal to 0 would give b1 less than or equal to 36.  

 

As long as b1 is within the range 6 to 36, 6 less than or equal to b1 less than or equal to 36, the 

present set of basic variables will remain optimal with values to (2b1 – 12)/5, (36 – b1)/5. We 

need to substitute the values of b1 in this to get the right hand side. Now the b1 violates outside of 

this range.  Then one of these will become negative.  
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For example when b1 is 40 then right hand side will become 80 – 12/5 which is = 68/5 and – 4/5  
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Now if b1 is = 40, then these will change and this will change to 68/5 and – 4/5. 

Now the value of the objective function will also change. We do not write the value here because 

right now we have a negative here which means we have an infeasible solution. Now this 

solution is infeasible. The primal is infeasible but the dual is feasible therefore we can perform a 

dual simplex iteration till we get to the optimum. We leave out this variable, we compute theta. 

Therefore – 18/5 divided by 7/5, we do not evaluate theta here because there is a strictly positive 

value. Pivot element should have a negative. – 6/5 divided by – 1/5 is 6. Here again, we do not 

evaluate because of the positive value. There is only one candidate to enter. So variable X4 enters 

and replaces variable X1. Now that is shown here in this table.   
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Now you realize that variable X4 has entered the basis and variable X1 leaves the basis and we 

perform one dual simplex iteration. At the end of iteration we have a solution X3 = 12; X4 = 4;   

Z = 48. The optimum solution after this change is X3 = 12; X4 = 4; Z = 48.  

It happens that within one iteration we are able to get the optimal solutions for this. Wherever 

there is a change in the right hand side values, the effect of the change is seen in the right hand 

side value in the last iteration the simplex algorithm. We need to evaluate that by doing this. 

Right hand side becomes B inverse b and then for the given value if one of them becomes 

negative, as we saw here, when b1 = 40, this became negative and then we continue with dual 

simplex iterations till we reach the optimum.  
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Now the next thing is that we will see is what will happen if there is a change in the change in 

the constraint coefficient of a non basic variable. 
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If you do that let us go back and write the original simplex table with the values here. Let us 

consider a non basic variable X2 here and let us look at a change in the coefficient of this 

variable in any one of the constraints which means we are looking at a change either in this 2 or 

in this 3. In order to do that let us consider a change here. Let us assume that this number 3 

becomes something else. So what happens here is P2 from the original problem now becomes    

2, a. Now when this 3 changes to a value a, now what will happen to the optimum table? 
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When this changes, this becomes 2a instead of 2, 3 this will also change because this is P bar 2 = 

B inverse P2. B inverse can be read from the table.  We get 2/5, – 1/5, – 1/5, 3/5 into 2a which 

will give us 4 – a/5, 2/5 into 4/5 – a/5 So 4, – a/5, – 2/5, + 3/5 a, so 3a – 2/5.  This will become (4 

– a)/5, (3a – 2)/5 and because of this change this C2 – Z2 will also change.  

 

(Refer Slide Time: 10:58) 

 

 
 

So we evaluate C2 – Z2 = C2 – YP2; C2 is 3 – y. y can be read again from the simplex table. y 

represents the value optimum solution to the dual 6/5, 7/5 under the primal slack variables so 6/5, 

7/5. P2 has changed to 2a. This becomes 3 – 12/5 – 7a/5 which is 3/5 – 7a/5. Now if a is such that 

3/5 – 7a/5 is negative then this will become negative and the present solution will remain 

optimum. Such a change will not have any impact on the optimal solution. For example for the 

present value of a = 3 we would get 3 – 21/5 which is – 18/5 therefore it remains as negative. If a 

is such that this term becomes positive then this will become positive and a variable X2 will enter 

so if we consider for example a = 0, then C2 – Z2 will be 3/5. 

 

 P bar 2 will be 4/5 and a is 0 – 2/5. So when a, is = 0 which means when this 3 becomes 0 then 

we will have 4/5 – 2/5 and we will have + 3/5. Because of this + 3/5, variable X2 will enter the 

basis we need to find out theta for the leaving variable.  6/5 divided by 4/5 is 3/2, 27/5 divided by 

negative therefore we do not divide. This becomes dash. This variable leaves the basis. Variable 

X2 enters and variable X3 leaves the basis.  We need to do simplex iterations till we get to the 

optimal and that is shown here.   
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Variable enters with 3/5; Cj – Zj = 3/5 and variable X3 leaves with theta 3/2 which is shown by 

the arrows and in the next iteration we have X2 and X1 as basic variables with the solution X2 = 

3/2; X1 = 6 and Z = 57/2. The optimum solution is X1 = 6; X2 = 3/2 with Z = 57/2. We get the 

optimum once again in one iteration for this example. In summary if we have a change in the 

coefficient of a non basic variable in any of the constraint, then that will be reflected by change 

in Cj – Zj for that non basic variable and change in the P bar in the corresponding column in the 

optimum simplex table. If the Cj – Zj becomes positive because of the change, the variable enters 

the basis and we perform or continue to do simplex iterations till we get to the optimum.  

Now let us look at one more thing here. Let us look at something called adding a new product.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 
 

(Refer Slide Time: 15:17) 

 

 
 

Let us look at adding a new product. Let us go back to the optimum simplex table that we had. 
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Now the original problem has three variables X1, X2 and X3. Let us assume that these represent 

some decisions with respect to producing three products 1, 2 and 3 respectively. We have set up 

the problem and we have found the optimum solution using the simplex algorithm. Let us 

assume that we want to introduce a new product into this and let us call that new product by a 

variable X6 because X4 and X5 will be the slack variables corresponding to these two.  We now 

introduce a new variable X6 which represents a new product. A new product is characterized by 

its contribution in the objective functions as well as the values in these two constraints.  Let us 
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assume that C6 which is the objective function coefficient corresponding to the new product X6 is 

given by 6 and the constraint coefficients in both the constraints 1 and 2 which is given as P6 is 

given by previous table 1 and 3. The problem becomes 4X1 + 3X2 + 5X3 + 6X6 subject to X1 + 

2X2 + 3X3 + X6 less than or equal to 9; 2X1 + 3X2 + X3 + 3X6 less than or equal to 12.  

Now should we solve the problem all over again because of the introduction of a new variable or 

can we make these changes? How these reflect itself in the optimum simplex table and on 

addition of a new product can we proceed from that?  We can proceed from the simplex table. To 

do that, let us just create another column for X6.  X6 the right hand side values will remain as it is 

6/5 and 27/5. We need to find out P bar 6 and C6 – Z6. In order to do this P bar 6 first, we have to 

find out C6 – Z6 to see whether there is an effect. C6 – Z6 is = C6 – YP6.  6 – C6 is 6, y is the 

optimum solutions to the dual which can be seen under the primal slack variables so 6/5, 7/5 with 

the minus sign of course.  P6 is the requirement of the resources 1 and 3 so C6 – Z6 is now 6 – 6/5 

– 21/5.  

 

This is 6 – 27/5 which is 3/5. Now if we can make a product which is 4, reflected by a variable 

X6 which can give us a unit contribution of 6 and requires 1 and 3 respectively of these 

resources. Now under the present optimal, since C6 – Z6 is positive then this variable X6 will 

enter the basis and it is profitable to make the new product. So this becomes 3/5. Now this will 

enter. In order to find the leaving variable, we need to know these two values which is the 

corresponding column in the optimum simplex table which is here.  P bar 6 is given as B inverse 

P6.  
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We have already seen that any P bar j is B inverse Pj. P bar 6 is B inverse P6. B inverse is seen 

under the identity corresponding to the slake variables in this case. Variables X4 and X5 had 

identity matrix. B inverse is 2/5 – 1/5 – 1/5, 3/5 into P6 is 1 and 3. You get 2/5 – 3/5 is – 1/5 – 

1/5 + 9/5 is 8/5.  
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So you get – 1/5, 8/5. This has 6. Now variable X6 enters the basis. To find out the leaving 

variable we need to compute theta 6/5 – 1/5. We do not compute theta because we have a 

negative number here 27/5 divided by 8/5 is 27/8. So this variable X1 leaves and variable X6 

enters. 
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That is show in the table here. So we started with X3, X1. When we introduced a new product X6 

with objective function coefficient 6, you can see that above X6 and Cj – Zj is 3/5. 

For the given values contribution 6, requirements 1 and 3, we compute Cj – Zj to 3/5 and variable 

X6 enters. We compute P bar j = B inverse Pj – 1/5, 8/5.The same value is here that you see in 
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that table. Variable X6 enters the basis and variable X1 leaves the basis. The next simplex table 

has X3 and X6 with values 15/8 and 27/8 after one simplex iteration objective function is two 

37/8. The optimum solution is X3 = 15/8; X6 = 27/8; Z = 2 37/8. So in this case adding a new 

product is profitable and we add a new product. If we turned out that C6 – Z6 were negative then 

we will not enter variable X6 and say that it is not advisable to produce the new product and the 

present solution would remain optimum. The next thing that we will see is adding a new 

constraint.  
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Let us write the simplex table without the new product. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 
 

(Refer Slide Time: 23:17) 

 

 
 

Let us look at this problem again and the optimum solution. We have solved this problem for 

these two constraints. At the end, after getting the optimal solution, we realize that the other 

constraint has to be included. Let us assume that inadvertently, we have left out the constraint or 

suddenly we realize that there is another resource that may be needed which has not been taken 

into account which results in a new constraint coming in. If such a new constraint is introduced 

once again we need to know whether we should solve the problem optimally. 

 

Is it possible to go back to the optimum table, make the changes with respect to the new 

constraint in this table and can we proceed from here towards the optimum? 

Let us consider a new constraint.  
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Let us have new constraint which is this. We get X1 + X2 + X3 less than or equal to 8. Let us look 

at a constraint X1 + X2 + X3 less than or equal to 8 as a third constraint. If we look at this 

constraint let us go back and see whether the optimal solution here satisfies this constraint.   

 X1 = 27/5; X3 = 6/5; X2 is non basic at 0.  X1 + X2 + X3 left hand side is 33/5 which is less than 

8. This constraint is satisfied. When this constraint is satisfied you could go back and say that 

this constraint will not have any impact on the optimal solution. The optimal solution will remain 

as X3 = 6/5; X1 = 27/5; Z = 138/5.  

 

When a new constraint is introduced we first think we need to verify whether the present optimal 

solution satisfies the constraint or not. If it satisfies the constraint then in spite of the inclusion of 

the new constraint, the original solution will remain optimal. If on the other hand the new 

constraint had been X1 + X2 + X3 less than or equal to 6, then we realize that X1 + X2 + X3 the 

left hand side is 33/5 which is more than 6. The present optimal solution violates this constraint 

and because it violates this constraint, this constraint will have an impact in the solution and we 

need to do that.  
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We write the new constraint as X1 + X2 + X3 less than or equal to 6. X1 and X3 are basic 

variables. Write the basic variables in terms of the non basic variables so X1 + 1/5X2 + X3 + 

2/0X1 + 1/5X2 + 1X3 + 2/5X4 – 1/5X5 = 6/5 

1X1 + 7/5X2 – 1/5X4 + 3/5X5 = 27/5  

X1 is written from this equation as 27/5 – 7/5X2 + 1/5X4 – 3/5X5 + X2  

 X3 is written from this equation as + 6/5 – 1/5X2 – 2/5X4 + 1/5X5 less than or equal to 6  

Let us go back and look at all the right hand side values 27/5 + 6/5 is = 33/5. We take it to the 

other side, we get less than or equal to – 3/5.  

Let us look at all the X2 values – 7/5 + 1 is – 2/5 – 2/5 – 1/5 is – 3/5 X2,  

Let us look at X4 + 1/5 – 2/5 is – 1/5 X4 and let us look at X5 – 3/5 + 1/5 is – 2/5 X5 less than or 

equal to – 3/5 or the less than or equal to constraint. So we add a slack variable to convert it to an 

equation.  We get – 3/5 X2 – 1/5 X4 – 2/5 X5 + X6 which is now the slack variable. To convert 

this to an equation = – 3/5 so this is how the new constraint gets reflected in this table. 
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We include this into this table; we add another row here with variable X6 which is slack variable 

that comes in. We add another column here for variable X6. The right hand side values will 

remain the same, 6/5, 27/5, 138/5. The Cj – Zj values will remain the same, 0 – 18/5, 0, – 6/5, – 

7/5. We write this constraint. This is 0X1 – 3/5X2; 0X3 – 1/5X4 – 2/5X5 + X6 = – 3/5.  

These two will not have X6. Therefore X6 will have 0 0 1, identity column. X6 will be introduced 

here. It is a slack variable with an objective function coefficient of 0 and Cj – Zj of C. If the new 

constraint is binding as it is in this case, if the new constraint is violated by the existing optimal 

solution then this will get reflected as another constraint in the simplex table. The important 

thing is that when we write this and when we introduce a slack variable which becomes a basic 

variable with the identity column then we will have a negative value here. 

This negative value indicates that the present constraint is binding or the newly introduced 

constraint is violated by the existing optimal solution.  

 

For example if we had X1 + X2 + X3 less than or equal to 8 with which we started which was 

satisfied by the present optimal solution 6/5, 27/5. So we said when a new constraint is 

introduced the first thing to do is to check whether the new constraint is satisfied. Only if it is 

violated we go back, write it in terms of the existing basic variables and write this equation. In 

case we had not checked whether it is violated or not, for example if we had simply taken this 

eight here and carried out this exercise then you would realize that we would have a positive 

value here which means that the present solution is optimal.  

 

When the constraint is satisfied by the present optimal solution, we leave it as it is or even if we 

take the trouble of converting it and seeing its effect in this simplex table we would get a feasible 

solution here indicating optimum. Only when the newly added constraint is violated by the 

present optimal solution we will get a negative here and that is when we do this exercise. (To get 

a negative here) .The negative here is a check for us that this constraint is not satisfied by the 

present optimal solution. With this we perform a dual simplex iteration because the feasibilities 

conditions are affected, the optimality condition remains intact. So we perform a dual simplex 
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iteration so variable X6 leaves the basis and we need to find out an entering variable which is 

theta. Now to do that we go back and check – 18/5 divided by – 3/5 is = 6, – 6/5/ – 1/5 is = 6, – 

7/5 divided by – 2/5 is 7/2. So for all the 3 negative Cj – Zj values, we have negatives here. So 

compute the theta and then we enter the variable which has minimum theta. Variable X5 enters 

the basis, X6 leaves the basis and we do a dual simplex iteration that is shown here. The effect of 

the constraint, the first thing we did is verified that this constraint is violated by the present 

optimal solution.  

 

We did all these calculations or computations and then wrote the new constraint. That is reflected 

here as an additional third constraint in the optimum table.  
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It is also shown here. These results in an introduction of a new row corresponding to the new 

constraint as well as a new column corresponding to a slack variable associated with the new 

constraint. We have one more row and one more column. The slack variable becomes a basic 

variable here and the corresponding right hand side is negative which indicates that the newly 

added constraint is binding. This is violated by the present optimal solution.  

We go back and then perform a dual simplex iteration by leaving out variable X6 and entering 

variable X5 and within one iteration we get the optimum solution which is X3 = 3/2; X1 = 9/2 and 

X5 = 3/2 with Z = 51/2 which is shown here.  
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There is one more aspect of sensitivity analysis which we have to look at. What happens to 

change in constraint coefficient of a basic variable? When we do that we go back and write the 

optimum table as it is.  
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The last thing that we need to look at in sensitivity analysis is what happens if a constraint 

coefficient of a basic variable changes. For example we have variables X1 and X3. X1 has 

coefficients 1, 2 in the two constraints. X3 has coefficients 3, 1 and these two constraints. 
Earlier we looked at change in constraint coefficient of a non basic variable. We took variable X2 

and we said with this changes to a and so on. Now we are looking at what will happen to the 
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problem. If for example this number changes to or this or this or this. When any of these changes 

take place that is if a basic variable’s coefficient in a constraint changes, then the answer is do 

not perform sensitivity analysis. Solve the problem all over again. Only in this case when there is 

a change in the coefficient corresponding to a basic variable in any constraint, the answer is do 

not perform sensitivity analysis. 

 

 Do not try to see the change in this. But solve the problem all over again. Why?  In all the things 

that we have seen so far, there are many aspects of sensitivity analysis. Let us write all those 

here.  
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The various aspects that we have seen in sensitivity analysis is, change in the objective function 

coefficient of non basic variable, two changes in objective function coefficient of basic variables,  

Change in right hand side values, constraint coefficient of non basic variable, adding a new 

product and adding a new constraint. In all these six, we reflected the changes in the optimum 

table and continue either with simplex iterations or dual simplex iterations. The reason we could 

do this was the B inverse was intact. Any of this change did not change the basis corresponding 

to X3, X1. Any one of this six changes would still keep the basis corresponding to X3, X1 as 3 1 1 

2.  The basis remained intact. These changes did not affect the basis. Because of that these 

changes were reflected either as changes in the right hand side values or effectively changes in 

the Cj – Zj. These changes could be written in terms of B inverse. Right hand side values where 

B inverse B. Cj – Zj was Cj – CB B inverse Bj 

 

B inverse did not change and B inverse could be read from the optimum simplex. When we make 

a change here, the basis changes and because the basis B changes, the B inverse also changes.  

This means every element in this would change and there is likelihood that we may get a 

negative as well as a positive here. We may have a situation where both the feasibility and the 

optimality condition could be violated. Whereas will all these changes if at all there is a violation 

it would be either the feasibility violation or the optimality violation. Because of the possibility 
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that due to change in basis, B inverse changes and the entire matrix changes which could give us 

for example a situation where we have infeasibility here and non optimality here. We do not 

want to start with a matrix which is both infeasible as well as non optimal. It is customary that 

we do not perform sensitivity analysis if we have constraint coefficient of a basic variable 

changing. Let us go back and summarize the various aspects of sensitivity that we have seen.  
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We have seen six aspects of it. So if there is change in the objective function coefficient of a non 

basic variable that gets reflected in Cj – Zj value of that variable and only thing that could happen 

is that variable could enter the basis. We looked at simplex iterations till we reach the optimum. 

Objective function coefficient of a basic variable would be reflected in Cj – Zj of all non basic 

variables and then we could do a simplex iteration to solve. Changes in right hand side would 

mean changes in the right hand side again in the optimal solution. It could get a negative right 

hand side so we use dual simplex iteration to solve. Constraint coefficient of a non basic variable 

would mean Cj – Zj of that variable and if that variable enters, we looked at a simplex iteration.   

Adding a new product would mean Cj – Zj of that product which is presently non basic. We 

could use simplex to proceed. Adding a constraint would mean constraint violated. So right hand 

side is negative and we could use dual simplex. That is summarized in this table.  

 

We have this table summarizing the various changes that could take place that could be modeled 

in using sensitivity analysis. These are the six that we have seen and these are the corresponding 

methodologies which could take you to simplex or dual simplex respectively.  

Now all these six changes where possible because we said the B inverse did not change the basis. 

B inverse did not change.  
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B inverse could be read from the optimum simplex table. We know that for a maximization 

problem when the optimum simplex table is known then we could read the B inverse from where 

we had the identity matrix in the first iteration. For example if we had started this problem from 

the beginning, we would have seen variables X4 and X5 would be the slack variables and they 

would be the initial basic variables. Under X4 and X5 you could see B inverse. If we had a 

minimization problem with all greater than or equal to then we need to know where in the 

simplex we could see the B inverse. If we had a minimization problem then our simplex 

iterations would look like this.  
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Example, if we have a minimization problem  with three decision variables then we would have 

had X1, X2, X3, X4, X5, a1 and a2 and right hand side we would (assuming we would have added 

greater than or equal to constraint) have added to artificial variables. We would have started the 

simplex iteration with the a1, a2 with the coefficients here with a, – 1 0 0 – 1 under slack and a 1 

0 0 1 here with the right hand side. Under the artificial variables in the optimum iteration you 

would see B inverse if we did or used a big M method to solve. If assuming that we either have 

problems with all less than or equal to constraints or if we had any other combination, then we 

would be using big M method to solve. Then wherever identity we had in the original table then 

under that table you would see for example, this is the last table then your B inverse will be here. 

Because this had a – i, you would have a – B inverse under the slack variable. This is something 

that we need to know if you want to do sensitivity analysis using the matrix method that we have 

seen.   

 

 B inverse, the location or where we find B inverse in the simplex table is something that we 

need to know. If we have an all less than equal to constraint problem then the slack variables 

would become the starting basic variables. Under the slack we have here under X4 and X5. If we 

had any other combination of constraints, either mixed or with greater than or equal to, then we 

would be adding suitable artificial variables and using the big M method. Wherever we had had, 

the identity matrix we would see the B inverse under that. If we had only greater than or equal to 

then both the artificial variables would qualify to be the basic variables in which case the 

artificial variable portion will have the identity matrix. The slack variable portion will have – i. 

Under the artificial variable you see B inverse. Under the slack you will see – B inverse.  

 

In summary we use sensitivity analysis to try and evaluate changes in the problem. We need not 

solve the problem all over again. If there are changes in the objective function coefficients both 

basic variables and non basic variable, if there are changes in the right hand side, if there is a 

change in the constraint coefficient of a non basic variable, if we add a new product which means 

we add a new variable into the problem and if we add a new constraint and if the constraint is 
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binding in all these situations, the six situations that we have seen. We need not solve the 

problem all over again. We could reflect the changes that have taken place in the problem into 

the optimum simplex table. Using the matrix equations proceed from the optimum simplex table 

either by using a simplex iteration or a dual simplex iteration depending on where the changes 

are. The only situation where we need to do workout the problem all over again, is when there is 

a change in the constraint coefficient of a basic variable. For our example since X3 and X1 are 

basic variables, if there is any change in the constraint coefficient, either here or here (Refer 

Slide Time: 47:03) or here or here then we need to solve the problem all over again. Now this 

brings us to the end of what is the linear programming portion of the course. 

 

 Let us spend couple of minutes for a quick recap to look at the number of things that we had 

learned in the linear programming portion of this course.  
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The first thing we did was we learnt the formulation. In the formulation part of the course, we 

learnt how to write or convert a real life situation into a mathematical model and then we defined 

the linear programming problem. We defined basic terminologies such are decision variables, 

objective functions, constraints and non negativity. We said a problem is called linear 

programming problem if it has a linear objective function subject to linear constraints and non 

negativity restriction. We also classified or found out that the we could have two types of 

objective functions maximization and minimization, three types of constraints less than or equal 

to greater than or equal to and equations and three types of variables greater than or equal to less 

than or equal to and unrestricted. Then we looked at solving the linear programming problem. 

Under solution we saw three aspects the graphical method which is applicable to a 2/2 problem 

or applicable to any two variable problem irrespective of the number of constraints.  

 

We saw the algebraic method and then we saw the simplex method. We saw the graphical 

method and we found it suitable if there are two variables. We looked at the algebraic method 

which evaluates all basic feasible solutions and then we looked at simplex which does not 
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evaluate all basic solutions and evaluates fewer than the many basic feasible solutions. It then 

improves as we proceed and then we continued our discussion on the simplex by looking at 

initialization, iteration and termination aspects of the simplex algorithm and then we also learnt 

how to standardize or how to initialize into a simplex table if you have mixed type of constraints 

and mixed types of variables. Under iteration, we learn degeneracy and under termination we 

looked at alternate optimum, unboundedness and infeasibility and bit of cycling of course. So we 

looked at the three aspects alternate optimum unboundedness and infeasibility. Later we looked 

at duality and showed that every linear programming problem has another associated problem 

called the dual of the linear programming problem and we also said that the given problem is 

called the primal and the other problem that we write is called the dual. Then we also saw how to 

write the dual for different primals given for example minimization, mixed type of constraints 

and different types of variables. Then we looked at duality theorems.  

 

We looked at the weak duality theorem, optimality criterion theorem and the main duality 

theorem. We also had an economic interpretation of the duality. We said what the dual variable 

means physically, mathematically, algebraically etc and we also saw the dual simplex method 

and dual simplex method that can be used if we have all greater than or equal to constraints and 

then we also for example in duality we looked at the relationship where the primal and the dual 

will have optimal solutions.  

 

If they have optimal solutions, the optimal solutions will have the same value of the objective 

function and then we also said that if primal and dual have feasible solutions then both have 

optimal solutions with the same value of the objective function etc.  

That also brings us to the relationship between unboundedness and infeasibility as far as these 

problems are concerned.  
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For example if the primal maximization problem is unbounded then the dual is infeasible and if 

the primal is infeasible then the dual is unbounded or infeasible. We did not see these results 
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explicitly earlier but these also follow as a result of our discussion on duality. From the duality 

theorems, one can understand that it is the primal to which the maximization problem is 

unbounded. The dual is infeasible and the primal is infeasible, dual is either unbounded or 

infeasible. Under duality we also looked at the dual simplex algorithm that helps us solve 

problems with all greater than or equal to constraints, algorithm which assumes or which can be 

used if the optimality condition is satisfied and the feasibility condition is violated.  

Then we also learnt the complementary slackness conditions and we said that the simplex 

algorithm not only solves the primal but also solves the dual and can give the optimal solution to 

both primal and dual. Then we applied the complementary slackness to all intermediate iterations 

of this simplex and showed that every non optimal intermediate iteration of this simplex 

corresponds to a situation where we corresponding dual is infeasible. We also showed that this   

Cj – Zj which is the extent of non optimality or the extent, to which we can enter a variable, 

represents extent to which a corresponding dual is infeasible and so on.  

 

From duality we move to sensitivity analysis and in sensitivity analysis we saw what we would 

do if there are changes in the problem and we modeled six possible changes in the objective 

function coefficient for the basic variables as well as the non basic variables, Changes in the 

right hand side, changes in the constraint, coefficient of a non basic variable, adding a new 

product and adding and new constraint. We have seen all these aspects under linear 

programming. There are two very interesting problems which are linear programming problems 

but they have special algorithms to solve them. Now these two are called the transportation 

problem and the assignment problem. 
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We look at these two. Next we have something called the transportation problem and we have 

something called the assignment problem. We will be looking at both these problems in detail. 

Both of them are interesting linear programming problems. Both of them can be formulated or 

modeled as linear programming problems. But they are not solved using the simplex algorithm 

directly.  
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Special algorithms are developed to solve the problems, the transportation as well as the 

assignment. Now in the next few lectures we will be going through these things in detail.   

However let us start the transportation problem and try to formulate the problem today.  

What is the transportation problem?  
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The transportation problem is as follows. Let us assume that there are a certain number of supply 

points and certain number of demand points. For example let us assume that there are three 

supply points which we write here and there are four demand points. Now we are interested in 

supplying a single product that is available in different quantities in each of these supply points 
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and to each of these demand points. In the transportation problem we supply a single product or a 

single item is transported from the supply points to the demand point. We assume that a certain 

number is available in each of the supply point. So we assume that a1, a2 and a3 are the supplies 

available in points, 1 2 and 3 respectively or in general ai is the quantity that is available in 

supply point i. In our example i = 1 to 3.  

 

We also know we call these requirements as b1, b2, b3, and b4 or in general bj as the requirement 

in the demand point j and it also takes some money to transport from the supply point to the 

demand point. We right now assumed that it is possible to supply from every supply point to 

every demand point. For example we can supply here, supply here (Refer Slide Time: 56:43), 

and supply here. Similarly one could supply to all the four demand points. The cost of supplying 

one quantity, one item from i to j is given by Cij. In this case this is C1 2 or C1 1, this is C1 2. For 

example this is C3 1 this is C3 4 respectively. Cost of unit transportation from i to j is given by Cij, 

so the problem is this, given a certain supply points, m number of supply points ai i = 1 to m, 

given a certain number of demand points. n demand points bj  = 1 to m. Where ai is the supply 

available at points i, bj is the requirement of point j. Unit transportation cost is Cij from point i to 

point j. How do we transport from this? 
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The formulation would be like this, Xij is the quantity transported from i to j now as far as every 

supply point is concerned we write this. So sigma Xij is less than or equal to ai. If I take a supply 

point i, then whatever that goes from the supply point should be less than or equal to i. 

So j = 1 to n is less than or equal to ai.  ai is the supply point i. This is the quantity that goes out to 

each of the destinations and similarly whatever that enters destination j. Now i = 1 to m. This 

comes into each of the destination point that should be greater than or equal to bj. For example b1 

is the requirement here so whatever comes from these should be greater than or equal to bj. This 

is for j = 1 to m. This is i = 1 to m. Xij greater than or equal to 0 and the objective function is to 

minimize the total cost of transportations which is double sigma Cij Xij.  Xij is a quantity that 
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goes from i to j. Cij is the unit cost of transportation from i to j, so this is summed over i = 1 to m; 

j = 1to n, Cij Xij. 

 

This is the formulation of the transportation problem and this (Refer Slide Time: 1:00:04) is a 

linear programming problem with the linear objective function and linear constraints and an 

explicit non negativity constraint.  

 

I will look at understanding the transportation problem further and trying to solve the 

transportation problem in the next lecture 


