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In the last lecture we looked at the complementary slackness condition and we also said that the 

simplex method also gives the solution to the dual at the optimum. We also wanted to find out 

how the Cj – Zj’s in the intermediate iterations represent something or do they even represent 

anything? To consider that further, we will take the familiar example and try to interpolate the   

Cj – Zj’s corresponding to the intermediate iterations of this simplex algorithm.  
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So the example is maximize 6X1 + 5X2 subject to X1 + X2 less than or equal to 5  

3X1 + 2X2 less than or equal to 12; X1 X2 greater than or equal to 0 

 

(Refer Slide Time: 02:30) 

 

 
 

Very quickly performing this simplex iteration, we get X1, X2, X3, and X4 at the right hand side.  

We start with the X3, X4 1 1 1 0 5, 3 2 0 1 12, 6 5 0 0. 

Now variable X1 with the largest positive Cj – Zj enters. Corresponding theta values are 5 and 4 

is a minimum theta. Variable X1 enters to get X3, X1 and Cj – Zj, Dividing by the pivot element, 

we would get 1, 2/3, 0, 1/3, 4. This minus this would give us 0, 1/3, 1 – 1/3, 1 is t = 24. 0 0 6 into 
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2/ 3 is 4. 5 – 4 is = 1. 6 into 1/3 is = 2.  We get – 2 here. Variable X2 enters the basis so this is 1 

divided by 3 is = 3; 4 divided by 2/ 3 is = 6. This leaves pivot element.  

X2 replaces X3 in the basis, so the final table will look like this.  Dividing by the pivot element 

we get 0, 1, 3 – 1, 3. This – 2/3 times this will give 1, 0 – 2, 1/3 + 2/3 which is = 1; 4 – 2/3 into 3 

is 2.  Cj – Zj values are 5 into 3 = 15 – 12 = 3; I get a – 3 – 5 and 6 which will give us – 1 and 27. 

 

In the last lecture we saw that this – 3 and – 1 when multiplied with the – 1 again would give us 

3 and 1 which are the values of the dual at the optimum. We also said that amongst X1, X2, X3, 

and X4 now X3 and X4 are our u1 and u2 which are the primal slack variables. We replace them 

by u1 and u2 here. X3 also becomes u1. From the complementary slackness we understand that 

there is a relationship between X and V and y and u. 

Whatever comes under X, we can write it as V1 and V2. Primal decision variables have a 

relationship with the dual slack. Primal slack have a relationship with the dual decision variables.  

So we say that with the minus sign, y1 = – 3y2 = – 1 represents the value here y1 = + 3y2 = + 1 

represents that the values are dual at the optimum. Now let us look at an intermediate iteration 

here.  

 

(Refer Slide Time: 06:32) 

 

 
 

In this, intermediate iteration, solution to the primal is X1 = 4; u1 = 1. Let us apply the 

complementary slackness and see what happens. When we apply complementary slackness to 

this, X1 basic indicates V1 = 0. u1 basic indicates y1 = 0  and non basic. Here X2 and u2 are non 

basic indicating that V2 and y2 are basic for the equivalent solution to the dual if we apply 

complementary slackness condition. We are writing the dual for this problem. Dual is to 

minimize 5y1 + 12y2, subject to y1 + 3y2 – V1 = 6; y2 + 2y2 – V2 = 5; y1, y2, V1, 1 V2 greater than 

or equal to 0. When we apply complementary slackness to this we have to solve for V2 and y2 

which are the basic variables. This solution will become 3y2 = 6 from which y2 = 2 and from 

here we have y2 – V2 = 5 from which V2 = – 3. When we apply complementary slackness 

conditions two and intermediate iteration of the simplex algorithm and evaluate the 

corresponding dual as we have done here, the corresponding primal solution is u1 = 1; X1 = 4; Z 
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= 24. When we apply complementary slackness and solve we get y2 = 2; V2 = – 3; Z or W = 5y1 

+ 12y2 W is also = 24. Let us go back to this intermediate iteration and see whether we have this 

solution reflected somewhere in this Cj – Zj. If we go back now we have y2 = 2; we realize this is 

y2 so the value here under the Cj – Zj once again multiplied with the – 1 gives us the value of       

y2 = 3 and from this and I have y1 + 2y2 – V2.   

So 2y2 – V2 is = 5; V2 is – 1; V2 is here which is shown under X2 and we realize the negative of 

this number is – 1.  

 

What we observe here is if we take an intermediate iteration of the simplex algorithm, write the 

complementary slackness corresponding to that and then evaluate a corresponding dual, we 

realize that the solution to that dual is also seen under the Cj – Zj of the intermediate iteration.  

Simplex satisfy complementary slackness conditions at every iteration of the algorithm not only 

at the optimum. We see some more interesting things happening. It satisfies the complementary 

slackness conditions. It gives an equivalent solution to the dual after the complementary 

slackness conditions are applied. We get the same value of the objective function for the primal 

and dual respectively. We also realize that the dual is infeasible here because V2 is – 1 we would 

want y1, y2, V1 and V2 all greater than or equal to 0. Now V2 is – 1.  

The infeasibility of the dual which is V2 = – 1 is now reflected in the corresponding non 

optimality of the primal. You can see that V2 = – 1 is actually represented as a C2 – Z2 = + 1 

which enters the basis to get the next iteration.  

 

Whichever dual variable is infeasible or whichever dual constraints are infeasible. After all V2 = 

– 1 comes from the fact that y1 + 2y2 is not greater than or equal to 5.  

This V2 is nothing but the extent to which y1 + 2y2 is greater than 5 because the actual constraint 

is y 1 + 2y2 greater than or equal to 5. If y1 + 2y2 is strictly greater than 5 then V1 will take a 

positive value. In this case because y1 + 2y2 is less than 5; V1, V2 takes a negative value.  

V2 taking a negative value indicates that the second constraint is violated. A dual is infeasible 

when either the decision variable takes negative value or the slack variables take negative value.  

Slack variable taking negative value represent the extent of not satisfying a particular constraint 

so the extent of infeasibility of the dual represents the extent of non optimality of the primal. If 

the second dual constraint is violated by one unit then it implies that in the simplex algorithm, 

the corresponding digestion variable (if this slack variables take a negative value) which is non 

basic because of the complementary slackness condition will now try to enter the basis and will 

indicate the rate of increase of the objective function which is 1 which is the same – 1 which we 

see here (Refer Slide Time: 13:49) Simplex not only satisfies the complementary slackness 

conditions at the optimum. At every iteration of this simplex algorithm, the complementary 

slackness conditions are satisfied. In every intermediate iteration a non optimal iteration with 

respect to the primal, is an infeasible solution to the dual and the extent to which the entering 

variable in the intermediate iteration corresponds to the infeasible dual slack if a decision 

variable or a dual decision variable or slack variable enters. 
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The rate of the Cj – Zj corresponding to the entering variable is actually the extent to which the 

dual is infeasible. Non optimality of the primal which is represented by an intermediate iteration 

represents infeasibility to the dual. There is a different way of looking at this Cj – Zj. What this 

simplex algorithm does is remember that the right hand side is always greater than or equal to 0. 

The rule for the leaving variable will ensure that the right hand side will never become negative. 

A simplex as an algorithm will always have a primal solution which is basic feasible. It will not 

have an infeasible solution at all. Now this represents the feasibility of the primal now this 

represents either the optimality of the primal or the feasibility of the dual. This plus value here 

indicates that the corresponding dual is infeasible with the negative. What simplex tries to do is it 

starts with a feasible primal and an infeasible dual. This would mean both X1, V1 and V2 are 

negative. So it starts with a feasible primal. It has an infeasible dual and it tries to make the dual 

feasible. The extent of infeasibility of the dual is given by the Cj – Zj of the corresponding value. 

It tries to take that variable which is least feasible by picking up this 6 here which is nothing but 

the maximum rate at which I can increase objective function for the primal. In successive 

iteration it tries to make the dual feasible.  

 

Here you have two dual variables that are infeasible. We have one dual variable that is infeasible. 

It tries to make the dual also feasible by applying complementary slackness. In the end when 

both the primal and the dual are feasible, then the optimal is reached after applying the 

complementary slackness. The optimality can be looked at in this way. We can go back and try 

to even interpolate all the duality theorems. One, you have a basic feasible solution here with an 

objective function value of 27 that is feasible to the primal. You also have a feasible solution to 

the dual with a same value of the objective of function therefore it is optimal to both primal and 

dual respectively. A simplex as an algorithm is always feasible to the primal. It applies 

complementary slackness and tries to evaluate the corresponding dual in every iteration. The 

moment it finds that the corresponding dual is also feasible then it is optimum. Simplex can be 

seen in an algorithm which actually solves both the primal and the dual, but it keeps a basic 

feasible solution to the primal and works towards getting a feasible solution to the dual 
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there/making it optimum. Now simplex comes under a category of what are called primal 

algorithms.  

 

(Refer Slide Time: 17:21) 

 

 
 

A primal algorithm always has a feasible solution to the primal. It satisfies complementary 

slackness or applies complementary slackness and terminates when the corresponding dual is 

feasible indicating that both primal and dual are feasible and optimum. We do not need to solve a 

dual at all. We now realize that when we solve the primal we are automatically solving the dual 

and we can always get the solution to the dual of the problem that we are solving from the primal 

iterations. This is the primal that we have solved. Solution to the primal is here. Solution to the 

dual of this problem is here to the y1 = 3; y2 = 1; Z is = 27. Let us go back and see this.  
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The optimum solution to the dual can be read from the optimum tableau of the primal in the 

simplex algorithm and we need not solve the dual explicitly at all.  

 

(Refer Slide Time: 18:48) 

 

 
 

Now we look at the intermediate iteration. Whatever we have tried to show here is what is 

explained here. This solution is infeasible to the dual because variable V2 takes a negative value 

which is here. We have to remember constantly that we need to multiply this with the – 1. This is 

actually the negative dual variable not this (Refer Slide Time: 19:07). It just shows us that this 

constraint is violated by the same quantity of one which is seen here and the optimum when the 
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complementary slackness conditions are applied resultant solutions is feasible to the dual and 

hence optimum.  

 

(Refer Slide Time: 19:28) 

 

 
 

Simplex can be seen as one that evaluates basic feasible solutions to the primal and applies 

complementary slackness conditions and evaluates a corresponding dual. When the primal basic 

feasible solution is non optimal as in an intermediate iteration, a dual will be infeasible and as 

and when the dual becomes feasible, we get the optimal solution for both the primal as well as a 

dual.  
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We next look at what is called as dual simplex algorithm and try to see another version of 

simplex which is quite interesting and different from the version that we have seen.  

 

(Refer Slide Time: 20:23) 

 

 
 

 We take an example. Minimize 4X1 + 7X2 subject to 2X1 + 3X2 greater than or equal to 5; X1 + 

7X2 greater than or equal to 9; X1, X2 greater than or equal to 0.  

We add slack variables because of the greater than or equal to. We have negative slack 

So we have – X3 = 5; – X4 = 9; X3, X4 greater than or equal to 0.  

Normally we would added two artificial variables a1and a2 to get the basic feasible solution 

because X3 and X4 by themselves are not capable of giving us a starting basic feasible solution 



10 
 

because X3 = – 5; X4 = – 9 is infeasible but now let us see what happens if we still start with X3 

and X4. 

 

(Refer Slide Time: 21:41) 

 

 
 

Now we first thing we do is we convert this problem to a maximization problem. We have X1, 

X2, X3 and X4. We are not going to add artificial variables at all. The problem becomes 

maximize – 4X1, – 7X2, 0X3 and 0X4. We now still keep X3 and X4 as basic variables.  

We multiply this because this is equal to 5. We multiply this with the – 1 to get                            

– 2X1 – 3X 2 + X3 = – 5. Hence, – 2X1 – 3X2 + X3 + 0X4 = – 5  

– X1 – 7X2 – 1X1 – 7X2, 0, 1, X4 = – 9.  We have 0 and 0 

Now we have violated a very important assumption in simplex that the right hand sides should be 

greater than or equal to 0. Now we have a solution which is not basic feasible but  has a 

completely negative right hand side values. But let us look at Cj – Zj values.  Cj – Zj for this 

would give us a – 4 here – 7 here 0 0. We have 0s here and they do not contribute at all Cj – Zj 

would simply become Cj so we have this.  

 

Because of the problem we will now come back to what is peculiar about this problem. But we 

definitely observe that the optimality condition is satisfied. The optimality condition is satisfied, 

feasibility condition is not satisfied or just extending whatever we had seen, the dual 

corresponding to the solution X3 = – 5; X4 = 9 is feasible because I have a completely negative Cj 

– Zj. The dual is feasible. So we have a simplex iteration where the primal is infeasible but the 

dual is feasible in all our earlier simplex versions. In any first iteration or intermediate iteration 

the primal will be feasible. Dual will be infeasible. Now we have exactly the opposite happening. 

The primal is infeasible. The dual will feasible. Now we can still workout simplex.  

If we can maintain the feasibility of the dual and slowly make this feasible then it will become 

optimum. In a normal simplex what we did is we maintained this feasibility. We tried to bring 

the dual feasible and we got the optimum. Now here if we can keep the dual feasible consistent 

and then make this one feasible then it will be become optimum. Let us do that. Now we can 

have an entering variable here because all the variables are with a negative Cj – Zj. The first thing 
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we need to do is we need to somehow make this feasible which means we need a positive value 

or a non negative value on the right hand side. The most negative of this will leave first so we 

first find out the leaving variable and leave out the variable with the most negative value of the 

right hand side. So this will leave. We are trying to do some steps. Some part of the simplex 

which is the opposite and some part of the simplex which is common to the earlier one. Here first 

find out the leaning variable. We need a variable that can enter and substitute this X4. In order to 

do that, we compute a theta but theta now comes in the row because we have to find out an 

entering variable. Next, to do that, we do something very similar. Take this value and divide 

here.  – 4 divided by – 1 is = 4; – 7/– 7 is = 1; we have 0. We can leave this because these are the 

basic variables. We want only one of the non basic variables to enter. We do not have to evaluate 

the theta for what are presently the basic variables.  

 

You will evaluate the theta only to represent non basic variables. These are the theta values. 

Once again the smallest theta will enter so we have this. Now what happens, as a result of this, in 

this algorithm the Cj – Zj’s will always be negative and we need a negative pivot because when 

we do the simplex iteration next, we divide this by the pivot element we will then get a positive 

value here. In this case we would need a pivot that is negative and this value will always be 

negative. So you will compute thetas only for negative values in the row corresponding to the 

leaving variable. If there is an element with the positive value in the row corresponding to the 

leaving variable you will not compute the theta even if that is a non basic variable. For example 

if this had been a + 1 we would not have computed this theta at all which is very similar to 

situations where we do not compute theta in the earlier version of this simplex. (in the earlier 

version of the simplex if that number is negative you would not compute theta or if that number 

is 0 you would not compute theta). Here if that number is positive or 0 you will not compute 

theta. So you will not compute theta here because of this 0. In any case this is a basic variable so 

you won’t do that. 

 

Now variable X2 enters and variable X4 leaves I have X3, X2. This is – 7 this is 0, so divide by 

the pivot element to get 1/7, 1, 0, – 1/7, 9/7. We need a 0 here. This + 3 times this would give a 

0. This + 3 times this (Refer Slide Time: 27:49) will give a 0 – 2 + 3/7 is = – 11/7, 0, 1 this + 3 

times this would give us – 3/7. This + 3 times this – 5 + 27/7 is – 8/7.  The – 8/7, 9/7, 9/7 and we 

have Z is = – 9 here. Now we need to find out Cj – Zj, X3 and X2 are basic variables.  

We get 0 here. This 0 into – 11/7 + (– 7) into 1/7 – 1 – 4 – (– 1) is = – 3. Here I have a + 1  

So 0 – (+ 1) will gives me = – 1. Once again I have Cj – Zj less than or equal to 0. The optimality 

condition is satisfied. How is it satisfied?  It is satisfied because of the minimum theta rule that 

we followed to define the entering variable.  We made sure that the optimality condition is 

satisfied. The feasibility condition is not satisfied because this as a negative right hand side. This 

has to go now. We need to find out the entering variable corresponding to this leaving variable. 

How do we do this? 
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We compute theta again. – 3 divided by – 11/7 is = 21/11.  

– 1 divided by – 3/7 is 7/3; 21/11 is smaller than 7/3. Variable X1 enters and this is the pivot. 

Remember that the pivot element has to be negative in this case. Only when the pivot element is 

negative, the right hand side will become non negative in the next iteration. We continue with 

this simplex. The simplex iteration part of it is same. It does not change. The row operations are 

all the same. We will have X1, X2. X1 you get – 4; X2 you get – 7. So dividing by the pivot 

element or multiplied by – 7/11 which is 1, 0, – 7/11 + 3/11. This is 8/11, this – 1/7 times this is     

= 0, so 1/7 – this is = 0. This is 1. This – 1/7 times gives me + 1/11 – 1/7 – 1/7 into 3/11. 

So – 1/7 – 3/77 is – 14/77 which is – 2/11, 9/7 – 1/7 into 8/11.  9/7 – 8/77, so 99 – 8 is 91/77 

which is 13/11.So we get 13/11 here and then the value here will be 32 + 91 is = 123/11 with the 

minus sign, 123/11.  Cj – Zj values are all 0 and this is + 28/11 – 7/11 is + 21/11.  0 – (+ 21/11) is 

= – 21/11 – 12/11 + 14/11 is = 2/11. So 0 – 2/11 is – 2/11. Once again the Cj – Zj values are 

negative indicating that the optimality condition is satisfied. Now we realize that the solution is 

feasible. Feasibility condition is also satisfied therefore this is optimum. You can also show that, 

for example (21/11 into 5) + (2/11 into 9) will also gives us 123/11, 105 + 18 will give 123. So 

the optimal solution to the primal is X1 = 8/11; X2 = 13/11; Z = + 123/11. The minus comes 

because we have converted a minimization problem into maximization problem by multiplying 

with the   – 1. Optimum solution to the dual will be Y1 = 21/11; Y2 = 2/11; W = 123/11.  

 

 

 

 

 

 

 

 

 

 



13 
 

(Refer Slide Time: 33:46) 

 

 
 

This algorithm is called the dual simplex algorithm.  Now let us go back to this.  

 

(Refer Slide Time: 34:00) 

 

 
 

Both X1 and X2 are feasible. Right from the first iteration, the optimality condition is satisfied. 

We do not have a leaving variable. The algorithm terminates to give us the optimum.  
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The above algorithm is called the dual simplex algorithm. What is special about the dual simplex 

algorithm? A dual simplex algorithm is very well suited when you have all greater than or equal 

to constraints. We are not unduly worried about the objective. But it is very well suited when you 

have a minimization problem with all positive coefficients here. So that the equivalent 

maximization will have all negatives and the first Cj – Zj will have all negatives. It is very well 

suited for a minimization problem with all positive coefficients in the objective function and all 

constraints of the greater than or equal to type and with a non negative right hand side. A non 

negative right hand side is granted when we formulate the problem. So in all greater than or 

equal to constraints with non negative right hand side minimization function, all non negative or 

positive coefficients, this algorithm is very well suited.  

 

We do not need to introduce artificial variables at all. We do not need to do the big M method. 

We can still use the dual simplex and so on. The condition for the dual simplex is we will have to 

have the Cj – Zj’s negative to begin with. This will also be the negative indicating infeasibility. 

We will retain the optimality condition by a careful choice of the entering variable and theta by 

following a similar minimum theta rule by making the pivot element negative or by pivoting on a 

negative element corresponding to the leaving variable. We make the corresponding right hand 

side non negative. We ensure that we are converting in every iteration at least one negative value 

to a non negative value. Once again it is not absolutely necessary that within two iterations this 

has to converge. We may encounter a situation where for example here by doing one iteration, 

we are making sure that we have non negative number here. But this could turn out to be 

negative and then it could go on. But if the algorithm has a solution then it will terminate.  In the 

dual simplex algorithm, we have to make sure that the pivot element is negative.  

 

Only when the pivot is negative we can get a positive here. Therefore the theta is computed in 

such a way that it is computed only for those non basic variables which have negative 

coefficients or are not completely negative coefficients in the leaving row. Then the minimum 

theta will ensure that the optimality condition is satisfied. Feasibility is not satisfied by the 
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starting solution. If the solution is feasible we say that the optimum is reached. It is called dual 

simplex for a very specific reason. There are two ways of looking at it. So far we are used to 

having a maximization problem with less than or equal to as our primal. Then we might be 

tempted to believe that the dual of the primal by the way we have defined is a problem that fits 

into this structure which is correct. The dual of the problem that we defined as primal through 

fits into this structure. We might be tempted to call this dual simplex, because it can solve the 

dual of our primal while that is not the real reason. The real reason is whatever problem you 

chose to solve, moment you start the dual simplex algorithm, if you look at this carefully the 

optimality condition being satisfied indicates that solution to the dual of the problem that you are 

solving is feasible. So right through the dual simplex algorithm you have a dual feasible solution, 

primal infeasible and the moment primal become feasible it is optimum.  

 

It is called dual simplex because at every iteration of this simplex, that dual of the problem that 

you are solving is feasible whereas in the regular simplex which you may now call as primal 

simplex, the primal problem that you are solving is feasible in all iterations. At the moment its 

dual becomes feasible and it is optimum. We need to understand that it is call dual simplex 

because at every iteration of this simplex algorithm, the dual to the problem that you are solving 

is feasible and represented by the optimality condition being satisfied. Therefore it is called a 

dual simplex algorithm. This comes under the category of what are called dual algorithms.  

 

 

(Refer Slide Time: 38:49) 

 

 
 

Now dual simplex is an example of a dual algorithm. A dual algorithm will have a feasible dual 

always or dual to the problem that you are solving is always feasible, applies complementary 

slackness and the moment primal becomes feasible, it is optimal to both primal and dual. The 

regular simplex also called primal simplex is a primal algorithm. Dual simplex is an example of 

a dual algorithm. 
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Let us go to another type of problem. We have taken a problem which has mixed type of 

constraint. You have a greater than or equal to type constraint. You have less than or equal to 

type constraint. You have all these. More importantly you have an objective function though it 

has maximized it does not have all positive coefficients. So far we have not looked at a problem 

that had a negative coefficient in the objective function. We looked at only after we convert it to 

a maximization problem, you could get negatives but we never had a mixed set of objective 

function coefficients. We never add a mixed set of right hand sides. If we have a problem like 

this then what do we do is, the simplest and the easiest thing to do is the second constraint  

X1 + X2 less than or equal to 3 is the kind of constraint that we want because the slack variable    

+ X4 will automatically qualify to be a basic variable. The first constraint being a greater than or 

equal to type would now give us a negative slack which would not qualify normally. We would 

have added an artificial variable a1 there and it is easy to start the simplex table with a1 and X4, 

use the big M method and solve it. After having learned the dual simplex which helps us to solve 

problems without introducing artificial variables, can we apply dual simplex to this problem?  

Right now we cannot apply dual simplex to this problem as it is because, when we when we 

write a – X3 here and a + X4 here, the combination X3, X4 has an infeasible right hand side as 

you can see here (Refer Slide Time: 40:33)  

 

Right hand sides will be 1 0 0 1 with a – 1 and 3. When we write this Cj – Zj, we write it and 

convert it. We have a maximization problem. If we start with X3 and X4, we have a – 1 and 5. So 

we encounter situation where neither the primal is feasible nor the dual is feasible. This 5 

indicates that the dual is infeasible. A positive Cj – Zj would indicate that this variable can enter 

which means that the corresponding dual when I apply complementary slackness is infeasible. 

When we applied the dual simplex algorithm, we made sure that all these were less than or equal 

to 0 and the dual was feasible in all the iterations.  

 

 

 



17 
 

(Refer Slide Time: 42:18) 

 

 
 

Now we come into situation where the dual is infeasible but we can still do this. So let us go 

back and see. You can do two things. You can leave this variable, treat this as a leaving variable 

first and then perform a dual simplex iteration, or you can enter this as your variable and perform 

a simplex iteration. You can do either. So what we are trying to show now is we have a negative 

value for variable X3 as well as a positive value for Cj – Zj indicating that both the primal and the 

corresponding dual are infeasible. So you cannot entirely apply the simplex algorithm or entirely 

apply the dual simplex algorithm. If you want to solve this problem without artificial variable, 

you have to judiciously mix simplex iteration and a dual simplex iteration and proceed till the 

optimum. We show that through this example. You can actually do a simplex iteration by 

entering variable X2 here with the 5 or you can do a dual simplex iteration by leaving out this.  

 

So we choose the simplex iteration. In fact there is a general thumb rule that when both the 

simplex and dual simplex iterations are possible, the thumb rule is, do the simplex iteration first.  

We enter variable X2 with 5 and perform a simplex iteration. For this you cannot have theta 

because in a simplex iteration you would want the feasibility to be maintained. You will not 

compute the theta for this. You will compute a theta only for this. You have right hand side 3, 

you have X2 = 1, so the theta value is 3 and variable X4 will leave the basis. This is 3 instead of 2 

and variable X4 will leave the basis. We do the next iteration. Next iteration is with X3 and X2.  
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When we do simplex iteration, you now get into situation where, your Cj – Zj‘s are negative 

which means that dual is feasible but then the primal is infeasible because X3 now has a negative 

value. Now in this iteration you can do a dual simplex iteration because your optimality 

condition is satisfied and the feasibility condition is violated. You can do a dual simplex iteration 

which is the only thing possible. Simplex iteration is not possible here because you do not see an 

obvious entering variable whereas you see an obvious leaving variable. So you do a dual simplex 

iteration by leaving out variable X3. That is what is written here. The primal is not feasible but 

the dual is feasible. You can only do a dual simplex iteration with X3 as a leaving variable. When 

we tried to compute the theta you will get 6/5 and 5/3, 6/5 being smaller. Variable X1 will now 

enter. You will do a dual simplex iteration with variable X1 replacing variable X3 and that is 

shown in the next iteration.  
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(Refer Slide Time: 45:29) 

 

 
 

Now you have X1 = 2; X2 = 1 with Z = 3 which is your feasible solution to the primal. The 

feasible solution to the dual will be Y1 = 6/5; Y2 = 7/5 and W = 3. You have a situation where 

your right hand sides are non negative. Primal is feasible. We have optimality condition satisfied.  

So dual is feasible. You have now reached the optimum to both primal as well as dual. The 

simplex method can also be used to solve situations where we can have mixed type of 

constraints.  

 

(Refer Slide Time: 46:15) 

 

 
 

When have mixed type of constraints and mixed coefficients in the objective function, as we saw 

in this example, you could have a positive and negative here. You could have a greater than or 
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equal to constraint and less than or equal to type constraints. When you have an equation you 

may still be forced to use an artificial variable if necessary, because splitting the equation into 

two constraints complicates further because you are increasing the number of constraints and the 

effort will increase. We wouldn’t choose to do that if you have only inequalities and if you have 

a mixed type of constraints, you can still use a judicious mix of simplex and dual simplex 

iterations and solve the problem. The only assumption that we have made here is, the problem 

has a solution and we have got the optimal solution but we could get into certain situations if for 

example a problem with mixed type of constraints with positive and negative coefficients in the 

objective, if the problem is unbounded or infeasible then we need a way to understand whether 

the problem is unbounded or infeasible. The usual conditions will still apply. For example even 

when you mix a simplex and a dual simplex iteration or even within a dual simplex iteration you 

might get into a situation where I can find a leaving variable, I may not be able to get an entering 

variable that can happen. Now that does not directly ensure unboundedness whereas those things 

are very well defined in a simplex iteration.  

 

 In a dual simplex iteration if we get into a situation where I have a leaving variable and I do not 

have an entering variable. That can happen. Such a thing would actually indicate infeasibility of 

the problem. We have to go back and define how we look at unboundedness and infeasibility 

with respect to the dual simplex or we look at unboundedness and infeasibility with respect to 

applying simplex and dual simplex alternatively as in the case of problems with different types 

of constraints and different positive and negative coefficients in the objective function.  

Now both the dual simplex algorithm as such and the example that we saw here where we solve 

problems with mixed type of constraints, we have just tried to show that particularly in the 

second case when you have problems with mixed constraints, where it is possible to solve using 

a judicious mix of simplex and dual simplex iterations but then one has to be careful.  

 

If there is an optimum, we will definitely get it but if the problem exhibits other things like 

unboundedness or infeasibility then we need to carefully define unboundedness and infeasibility 

rules for those iterations. Here again we need to be little careful to define the unboundedness and 

infeasibility but the equivalent unboundedness rule actually represents infeasibility in the dual 

simplex iteration. Let us spend a couple of minutes on understanding the simplex and dual 

simplex, the differences and so on. The regular problem that we had solved, i.e., the 

maximization problem which has all less than or equal to constraints and all greater than or equal 

to variables is very ideal for a straight simplex application because slack variables will qualify to 

be the basic variables.   

 

We can solve it entirely by the simplex algorithm. A minimization problem with all positive or 

non negative coefficients in the objective with greater than or equal to constraints is a very ideal 

situation or ideal problem to use the dual simplex. If we have problems with a mixture of 

constraints and types of coefficients and so on, one would take the risk of solving it by 

judiciously applying simplex or dual simplex or one would follow a very safe way of solving it 

only by simplex algorithm by adding artificial variables. Both simplex and dual simplex 

algorithms solve linear programming problems extremely efficiently. We have also seen the 

relationships between the primal and dual that one is the primal algorithm and the other is a dual 

algorithm and so on. The next thing that we have to see is, if we can efficiently represent the 

simplex algorithm or the dual simplex algorithm.   
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For example if we have to write a computer program for the simplex algorithm, we will use the 

tabular form or are there better ways of solving the simplex algorithm other than using the 

standard tabular form that we have seen? We will see that in the next lecture  

 

 

 

 

 

 

 

  

    

 

 

 


