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Cutting Plane Algorithm 

We shall continue the discussion on integer programming, so we take this example. 

(Refer Slide Time: 00:20) 

 

The first rule in solving any integer programming problem is to relax the integer 

restriction, treat it as a linear programming problem and solve it. If it turns out that the 

LP optimum is an integer valued, then it is also optimum to the IP. We try solving this 

problem by relaxing the integer restriction, making it a linear programming problem 

and we get this.  
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(Refer Slide Time: 00:49) 

 

The optimum solution to the corresponding LP is X1 equal to 28 by 9, X2 equal to 133 

by 45, Z equal to 273 by 45. Both X1 and X2 have non-integer value or fractional 

value; we can take any one of them for further consideration. We choose that variable, 

which has the largest fractional coefficient, as a general consistent guideline. So we 

take variable X2 and write the constraint corresponding to the basic variable X2, which 

is the second constraint, from the simplex table, and we get X2 plus 4 by 15 X3 plus 7 

by 45 X4 equals 133 by 45. 

(Refer Slide Time: 01:28) 
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Now, this equation is rewritten in a certain form, wherein the right-hand side value, 

because, this is an optimal simplex table or an optimal table in a simplex iteration, this 

right-hand side should always be non-negative. This is written as an integer plus a 

fractional value less than 1. So this becomes 2 plus 43 by 45. Left-hand side, the 

coefficients are again written in the same form: an integer plus a positive fractional 

value. In this case, it turns out X2 is an integer, so X2 remains; 4 by 15 has a fractional 

value which is positive, which is less than 1; so it is straight away written as 4 by 15 

X3. For example, if this had been say 24 by 15, then we would write it as 1 plus 9 by 

15; X3 plus 9 by 15 X3. This again becomes 7 by 45 X4. For example if it had been 

say minus 7 by 45 then, we would write it as minus X4 plus 38 by 45 X4. So, it should 

always be written as an integer plus a positive coefficient less than 1. The integer 

could be negative; if the coefficient itself is negative, then the corresponding integer 

will be negative, but you will have a positive coefficient less than 1. So we have 

written this.  

Now, we try to match the integer part on the left-hand side with the integer part on the 

right-hand side and the fractional part on the left-hand side with the fractional part on 

the right-hand side. So this is the only integer part, this is matched against this (Refer 

Slide Time: 03:34). This whole thing is to be matched against this. Now, we know 

that this part of the equation has strictly positive coefficients for each of these 

variables. This is clearly a positive term. The right-hand side has a fractional portion, 

which is also a positive term. From this, we can write an inequality which looks like 

this: 4 by 15 X3 plus 7 by 45 X4 is greater than or equal to 43 by 45. The greater than 

or equal comes because, this is an integer, this is an integer and this is an equation; so, 

the fractional portion will have to match. So 4 by 15 X3 plus 7 by 45 X4 will have a 

fractional portion which has to be 43 by 45, but this is a positive quantity; so this 

could be simply 43 by 45 or 1 and 43 by 45 or 2 and 43 by 45 and so on. Therefore, 

we make a general assumption here. We do not restrict it to an equation. We make it 

an inequality. If we make it to an equation, there can be a situation where we could be 

wrong, but then you make it an inequality, you are always right.  

So you make this constraint from an existing equation (Refer Slide Time: 05:02). This 

is called a cut and this is called a Gomory Cut based on Ralph Gomory, whose 

algorithm we are right now seeing. Then we rewrite the cut. The cut is written as 4 by 
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15 X3 plus 7 by 45 X4 minus X5 equal to 43 by 45; from which, X5 minus 4 by 15 X3 

minus 7 by 45 X4 equal to minus 43 by 45. Multiply this whole thing with a minus 1, 

you get minus 4 by 15 X3 minus 7 by 45 X4 plus X5 equal to minus 43 by 45. Now 

write it exactly here with X5 as a basic variable. Create another row with X5 as basic 

variable.  

(Refer Slide Time: 05:59) 

 

This becomes 0X1 plus 0X2 minus 4 by 15 X3 minus 7 by 45 X4 plus X5 equal to 

minus 43 by 45. Introduce an X5 again into the problem. So, a Gomory cut introduces 

an additional constraint and also introduces an additional variable. The additional 

variable is always a negative slack variable, because a Gomory cut is always a greater 

than or equal to cut. So you will get a negative slack and the negative slack will come 

into the basis; it will come into the basis because you multiply the whole thing with a 

minus 1; because, a negative slack comes into the basis, it comes into the basis with a 

plus 1 coefficient, the effect being right-hand side being negative. So the current 

solution will be infeasible; in all Gomory cuts the current solution will be infeasible, 

you will be adding a new constraint and the very fact that you should have a negative 

here, it indicates here you are doing it all right.  

Now introducing variable X5, X5 has 0, 0, 1 that come here. X5 becomes a basic 

variable with 0. Because, this is a basic variable with 0 and in the Gomory cut you 

always write the new variable in terms of existing non-basic variables, like what we 
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have done, because you take it from an equation in a simplex table; any equation in a 

simplex table represents a basic variable in terms of the non-basic variables and 

because, we do it that way and we put this X5 in, the Cj minus Zj will not be affected 

by the addition of the new variable. Because this has a coefficient of 0, the values 

come only against the non-basic variables. The coefficient in objective function is 0, 

so Cj minus Zj is not affected. Just because it is a negative slack with a contribution of 

0, Cj minus Zj is not affected. So optimality condition does not change, feasibility is 

affected; so you go ahead and do a dual simplex iteration on this. 

Do a dual simplex iteration by pushing this out and calculate a theta. Right now, you 

have to calculate a theta, let us do that; since we are doing it first time, let us calculate 

a theta.  

(Refer Slide Time: 08:40) 

 

This is a maximization problem, so minimum theta straight away comes. In a dual 

simplex iteration, pivot has to be a negative number. So 9 by 15 divided by 4 by 15 is 

9 by 4 and 4 by 7. So this enters and this is your pivot (Refer Slide Time: 09:02). Now 

go back and do one more iteration here. 9 by 4; I must multiply by 3. This is 12 by 7 

and still smaller; so 12 by 7 enters, you have X1, X2 and you have X4 and do a 

straightforward iteration. 

The contribution will be 1, 1, 1, 1 and 0. Let me just write down the next table here, 

just to save time. You will get 1, 0, 1 by 7, 0, 5 by 7, 17 by 7; 0, 1, 0, 0, 1, 2 and X4 
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has 0, 0, 12 by 7, 1, minus 45 by 7, 43 by 7 and this will be 0, 0, minus 1 by 7, 0, 

minus 12 by 7, 31 by 7. This is the table that we have after one iteration. 

Yes, it happens in this case, but later you will see that you need not get the same thing 

in the branch and bound as well as in the Gomory. It can be different. We will see it a 

little later after we complete it. 

The implied question is: does this reduce to X2 less than or equal to 2, in which case 

we did exactly that in the branch and bound. So are we doing the same thing? The 

answer is: later we will see that this actually reduces to X2 less than or equal to 2 and 

we will verify that. Whether it implies X2, the same constraint or whatever, the 

Gomory cut will not and need not be the same as the branch and bound cut. You will 

realize later once we see. In the branch and bound algorithm, at every stage or at 

every node, the cut is always an upper bound or a lower bound on the variable. You 

will always get cuts of the form xk less than equal to some lk or greater than equal to lk 

or xk less than equal to uk. 

In a Gomory cut you could have a general constraint. This can reduce to, for example, 

some 3X1 plus 2X2 less than or equal to constant. It could reduce to something like 

that. Please remember the way this problem is written, it is also a very general 

assumption that in integer programming problems if the right-hand sides are integers, 

then the slack variables are also bound to be integers; otherwise, you are in a slightly 

different spot. For example, you may have a situation where decision variables are 

integers and slack variables need not be; you may get into that situation. In general 

terminology, when you say something is an all integer algorithm, it implies that 

decision variables are integers, right-hand sides are integers, which means slack 

variables are also integers. So decision variables and slack variables are integers.  

Now what happens to the slack variable corresponding to the Gomory cut? The slack 

variable corresponding to the Gomory cut should also be an integer, because, this is 

the governing constraint from which this equation is written. When you match the 

left-hand sides and the right-hand sides, you know that this quantity is either 43 by 45 

or 43 by 45 plus an integer; it cannot be anything else. Therefore, the minus X5 that 

comes in here it becomes plus X5 after you multiply with a minus 1, should also 

become an integer greater than or equal to 0.  
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You will have all your variables, original slack variables in the problem plus every 

slack variable corresponding to every Gomory cut will be greater than or equal to 0 

and integer. So, the moment we say we are solving an all integer problem, we are 

assuming all that. Now go back, we realize X1 and X4 which are meant to be integers 

are now having fractional values. Please remember, that at the optimum, all the basic 

variables will have to be integers. Non-basic variables are at 0; so we do not worry 

about them, they are having an integer value, but all basic variables have to be 

integers. For example, it may not occur, but if it happened in this iteration, that X1 is 2 

and X4 has a fraction or if we had X1, X4 and X3 with X4 and X3 having fractional 

values and X2 having an integer value, we have still not reached the optimum. At the 

optimum, all basic variables will have to take integer values. So we look at these two 

and then find out the variable that has, once again, the largest fractional coefficient 

and generate another Gomory cut.  

Yes, understood. The point I was trying to convey is the message that if you are 

looking at an all integer problem, then you will have; thinking along with the problem 

this statement is right because X3 and X4 are slack variables that come and only one 

constraint. Absolutely; it is right, but then the point I was trying to convey is that it is 

absolutely necessary that all basic variables have to be integers. So you take X4 which 

comes here and write the corresponding.  

X1 is 17 by 7, now this is 1 by 7, this is 3 by 7. So we will take this (Refer Slide Time: 

15:47). This would help us in understanding something, but we will still be consistent 

in taking this. If you have taken this, then you have a minus term here. So when you 

write the Gomory cut, this will become minus 1 or minus 7 plus something. This 

would become something else.  
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(Refer Slide Time: 16:09) 

 

So we will still go by X1 and write X1 plus 1 by 7 X3 plus 5 by 7 X5 equal to 17 by 7. 

This simply becomes X1 plus 1 by 7 X3 plus 5 by 7 X5 is equal to 2 plus 3 by 7, from 

which the Gomory cut will be 1 by 7 X3 plus 5 by 7 X5 is greater than or equal to 3 by 

7, which would give us minus 1 by 7 X3 minus 5 by 7 X5 plus X6 equal to minus 3 by 

7. This will be the Gomory cut corresponding to this solution.  

(Refer Slide Time: 17:15) 

 

We have to write this again. I need to create some more things here. You need to 

create it little carefully. Just introducing an X6 here. X6 gets 0, 0, 0, 1. I have an X6 
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here with a 0 here, 0, 0, minus 1 by 7, 0, minus 5 by 7, 1; you get 17 by 7 and what do 

you have here? 2, 43 by 7, minus 3 by 7. I have not written the Cj minus Zj; we did not 

compute the Cj minus Zj. So 0, 0, 0; this is 0, 0, 0, 0 (Refer Slide Time: 18:20). This 

will be minus 1 by 7, 0, 5 by 7 plus 1 is 12 by 7. So I have a minus 12 by 7, 0; 2 plus 

17 by 7 is 31 by 7.  

Now we do one more iteration. Again, it is a dual simplex iteration. Every Gomory 

cut results in a dual simplex iteration, so this goes. We need to find a theta; so minus 

12 by 7 divided by minus 5 by 7 is 12 by 5; 1 by 7 1 by 7 is 1. So this variable enters, 

so X3 enters again.  

(Refer Slide Time: 19:07) 

 

The next simplex iteration, we will do it here. We will have X1, X2, X3, X4, X5, X6; 

with X3 replacing X6, so X1, X2, X4, X3. This is your pivot element; divide it by the 

pivot you get 0, 0, 1, 0, 5, minus 7 and 3 here; this minus 1 by 7 times this or simply 

this plus this. This R1 minus 1 by 7 times this row is the same as simply adding this 

and this. You would get 1, 0, 0, 1 by 7 minus 1 by 7, again 0; 5 by 7 minus 5 by 7, 0; 

0 plus 1, 1; 17 by 7 minus 3 by 7 is 14 by 7 which is 2. 

This is all right, there is no problem here; there is already a 0; so write it as it is 0, 1, 

0, 0, 1, 0, 2; this plus 12 times this will give me a 0. So I have 0, 0, 0; this plus 12 

times this is still 1; minus 45 by 7 plus 12 times, so minus 105 by 7, which is minus 

15. This plus 12 times this is 12. 43 by 7 minus 36 by 7 is 1 and you have reached the 
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optimum. Because it is a dual simplex iteration, you do not have to do the Cj minus Zj 

again. It is a dual simplex iteration, so optimality condition will anyway be satisfied. 

The moment you get your right-hand side’s integer value, you have reached the 

optimum. For the sake of completion, you would still have 1, 1 coming in here; 1, 1 

coming in here (Refer Slide Time: 21:48); 0, 0, 0, 0, minus 1, minus 1, 4. So, you 

have the same optimal solution with X1 equal to X2 equal to 2 and Z equal to 4. 

What are the other issues in the Gomory cutting plane algorithm? One, in every 

iteration, when you have a non-optimal solution,  when the LP optimum is non-

optimal to IP, then you need a Gomory cut and every Gomory cut is going to result in 

an additional constraint and an additional variable. Therefore, the time taken per 

iteration is gradually going to increase, because, subsequent iterations are going to 

have more constraints. The other advantage perhaps is you still need to do an 

iteration, but you could think in terms of a sensitivity analysis type, because, every 

Gomory cut is like adding a binding constraint to an existing LP optimum; so you can 

treat it like sensitivity analysis.  

Since the Gomory cut does not ensure that you have a constraint which is a bound, for 

example, a Gomory cut could become something like some a1x1 plus a2x2 less than or 

equal to b1 or greater than or equal to something. It does not become a bound on the 

variable, therefore unlike in branch and bound, you cannot just impose an upper 

bounded simplex algorithm on it; you need to treat it like adding a constraint, which is 

like sensitivity analysis and then you proceed. This is called the Gomory's cutting 

plane algorithm and every cut is a Gomory cut.  

The Gomory cutting plane algorithm converges to the optimum, if an optimum exists 

in a finite number of iterations. But there is no proof or there is no result saying or 

having an upper limit on the number of iterations. When such a similar thing for 

simplex is exponential, you do not expect a nice polynomial bound on the number of 

iterations for the Gomory algorithm; you do not. The only nice thing about the 

algorithm is that it will eventually converge. That is all. There is no backtracking, 

there is no fathoming, there is nothing. In terms of storage, it is again a peculiar thing. 

You might get into a situation where, as far as storage is concerned, it may behave 

better than branch and bound. But as far as running time is concerned, depending on 

the problem, you may get into a situation where branch and bound is better, because, 
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time per iteration or time per node would remain more or less constant in a branch and 

bound, whereas time per iteration varies in a Gomory cutting plane algorithm. 

Next, there is absolutely no guarantee that choosing a variable that has the largest 

fractional coefficient would terminate faster; but both experience and a greedy 

approach to the problem would make us consistently choose that variable, which has 

the largest fractional coefficient; done more for uniformity and consistency and not 

for anything else. The most positive Cj minus Zj is accepted based on 

experimentation; this is also accepted based on experimentation. You normally try to 

create a Gomory cut for a variable that has the largest fractional coefficient. You 

could branch or you could use any other variable also to create a Gomory cut. 

A Gomory cut is always characterized by a negative value on the right-hand side. 

When you write your Gomory cut, you should have a negative value on the right-hand 

side. If you do not get one, then you have made a mistake somewhere. Now, let us go 

back and do a couple of other things. 

How does the algorithm go towards an integer solution? We will do that now by 

mapping it on the graphical method. We will just draw the graph corresponding to the 

original problem. We have seen two Gomory cuts, we will go back and see what the 

two Gomory cuts represent or how they are and what is the difference between a 

branch and bound cut and a Gomory cut? Let us draw the graph as it is here.  

(Refer Slide Time: 26:53) 
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I think we had something like (1,0) here and the other one turned out to be minus 1.4, 

which could be here. So the first constraint was something like this. Second constraint 

is 7 by 15 on X2. So this is somewhere here and minus 7 by 12 on X1 is somewhere 

here. We got something like this; with the corner point 28 by 9 and 133 by 45. Now 

let us go to the first Gomory cut. What was the first Gomory cut in terms of X3, X4 

and the right-hand side; you can leave out the X5.   

(Refer Slide Time: 28:25) 

 

4 by 15 X3 plus 7 by 45 X4 is greater than or equal to 43 by 45. Now go back and 

write X3 here. X3 is 7 minus 7X1 plus 5X2. So 4 by 15 into 7 minus 7X1 plus 5X2 plus 

7 by 45 into 7 plus 12X1 minus 15X2 is greater than or equal to 43 by 45. So multiply 

the first one, you would get 12 into 7 minus 7X1 plus 5X2 plus 7 into 7 plus 12X1 

minus 15X2 is greater than or equal to 43. Very quickly simplifying, you get 84 minus 

84X1 plus 60X2 plus 49 plus 84X1 minus 105X2 greater than or equal to 43. The 84X1 

gets cancelled, 84 plus 49 is 133, 133 minus 43 is 90; so greater than or equal to 

minus 90. I have 60 plus 45 is 105, so minus 45X2 greater than or equal to 90, gives 

me X2 less than or equal to 2. 

In this case, it turns out that the first constraint is the same as the branch and bound 

constraint; normally, it will not happen, it need not happen. A Gomory cut need not 

finally result in this form - like an upper bound or a lower bound; you could have the 

other one.  
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We will look at the next one and see what happens. What did we do here? We just 

added another constraint X2 less than equal to 2 and brought down the feasible region 

here. Now, what is the next Gomory cut? The next Gomory cut again turned out to be 

X1 less than equal to 3. What was the Gomory cut? 1 by 7 X3 plus 5 by 7 X5 becomes 

greater than or equal to 3 by 7; X1 less than or equal to 3. But it just happens again in 

our example that the Gomory cut is becoming a bound. Please remember that this may 

not be the best example to illustrate that or it may end up misleading you that Gomory 

cut is always a bound; it just does not happen. You could always have a Gomory cut 

for a two-variable problem; a Gomory cut of the form a1X1 plus a2X2 less than or 

equal to b1. 

We could have done that. What happens here is X1 less than equal to 3 takes us here. 

This is here and this becomes the optimum which is (2,2). In a normal Gomory cut, it 

does not happen this way; this perhaps is not the correct example for it. It also 

removes areas as the branch and bound does; but what it does is, for example, if this is 

the optimum you could get a Gomory cut, which could behave like this. Instead of the 

first cut, you could get a Gomory cut, which is like this. It need not result in cuts 

which are parallel or perpendicular to the X and Y-axis.  

 

(Refer Slide Time: 32:31) 
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You could get a cut like this. It kind of takes away areas from the feasible region, it 

makes the present optimum infeasible. It removes areas and then it progressively 

chips off areas. Branch and bound is more like a guillotine cut, it just cuts either 

horizontally or vertically. Gomory is like chipping it off; it just chips off a certain 

portion of the area, progressively you keep chipping off the areas till the LP optimum 

is integer value. Both of them try to do the same thing, but branch and bound does it 

in a certain systematic way, Gomory does it in a different way. 

This could be your first cut, maybe this could be your second cut (Refer Slide Time: 

33:27); it could happen that way. At times, it can make drastic cuts as it happened in 

this case, but after some iteration you will realize that the Gomory Cut progressively 

removes smaller and smaller area. If you work out on large problems, which might be 

difficult to demonstrate in a class, you will realize that one of the disadvantages of the 

cutting plane algorithm is that as the number of iterations increases, you will see that 

it does remove a certain area, as in two-dimension, in every iteration; but as the 

iterations increase, the extent of gain becomes less and less and Gomory’s algorithm 

takes a little more number of iterations.  

If you start mapping it on the graph, you will see that the area that is removed by the 

Gomory cut progressively becomes lesser and lesser and that is very important. In a 

branch and bound, what will happen is when you make a cut, this can happen both in 

Gomory as well as in branch and bound, a variable which at present has an integer 

value because of a cut in the next iteration, can take a non-integer value. That actually 

makes the whole thing interesting, because, if you put a restriction that the moment a 

variable takes an integer value, it cannot take non-integer, it automatically leads you 

to a way of writing a bound on the number of iterations. That does not happen in any 

of these. A variable that takes an integer value in a particular iteration, in a subsequent 

iteration can take non-integer values, both in the Gomory’s cutting plane method as 

well as in the branch and bound method. So this is how the Gomory's cutting plane 

algorithm actually works.  

As I said, there are proofs that this algorithm converges or terminates at the optimum 

in a finite number of iterations. For large problems, you will realize that the Gomory 

cuts become weak; weak in the sense that they remove smaller and smaller areas. You 

will realize that very quickly you are very close to the IP optimum. The gap between 
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the present LP optimum and the IP optimum is very small, but in a single cut it is not 

able to get you the IP optimum. So it takes you to another cut and once again, you 

make a cut, you are still in between. As you keep proceeding, the gap just narrows 

down and finally it gives you the integer optimum. That is how the Gomory cutting 

plane algorithm works. 

It is kind of advantageous to use a branch and bound when you have a mixed integer 

programming problem, because, the more continuous variables you have, the easier it 

is for a branch and bound algorithm. You need only to branch on those variables that 

has fractional values for the integer. You might be tempted to think on the same lines 

with the cutting plane. Remember that the Gomory cutting plane algorithm that we 

have seen is meant for all integers. It is not directly meant for a mixed integer, 

because, remember that every Gomory cut results in a slack variable, which is also an 

integer variable. It is an all-integer cutting plane algorithm that is what we have seen. 

This comes under the category of cutting plane algorithms. Cutting plane algorithm is 

an all-integer algorithm and the Gomory cut is an all-integer cut. It is for an integer 

algorithm.  

There are modifications of Gomory cuts for mixed integer problems. When you are 

working on a mixed integer problem and you have an optimum simplex iteration, you 

will not bother about that variable which can take a continuous value. But if an integer 

variable takes a continuous value, you cannot create a Gomory cut like what we did. 

That cut is meant under the all-integer assumption. There are some mixed integer 

cuts. Mixed integer cuts are slightly different from all-integer cuts. You may find 

them, but we will not go to that detail. As far as this course goes, we will say that we 

can use the cutting plane algorithm for all integer and we will use it. For mixed 

integers, there are modifications to the Gomory cutting plane algorithm, but we would 

recommend using branch and bound if you were to solve a mixed integer problem, 

because, branch and bound under the same algorithm and structure, you can solve an 

all-integer as well as mixed integer. Whereas, if you want to adapt the Gomory's 

method for the mixed integer, then you have to change the way the Gomory cut is 

written.  

Branch and bound has some advantages when it comes to solving mixed integer. In 

every node of a branch and bound tree, you only create an upper bounded variable. As 
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I said earlier, the size does not increase with increase in the number of iterations. In 

general, for integer programming problems, branch and bound is preferred to the 

cutting plane, because branch and bound can handle both all integer and mixed integer 

under the same algorithm, whereas the cutting plane algorithm has to have different 

cuts for each of these. In branch and bound, somewhere a time taken per iteration is 

more or less fixed because every cut results in a bound. One can always have 

situations where the cutting plane algorithm is faster than the branch and bound and 

so on. Cutting plane may be better in terms of memory and branch and bound may be 

better in terms of time. So, depending on the problem, one needs to look at both, but 

as a general rule branch and bound is used more widely than cutting plane, simply 

because of its ability to handle both all-integer and mixed integer under the same 

algorithm.  

Now, let us look at another thing here. There are two more types of all integer 

algorithms that we will see here as part of our integer programming. There is an all 

integer dual algorithm and there is an all integer primal algorithm. We will have to see 

both these, the all integer dual algorithm as well as the all integer primal algorithm. 

Before we see that, we will try to represent the Gomory cut or the Gomory cutting 

plane algorithm in a slightly different format. We will get into another way of 

representing a simplex table, which is slightly different from what we have been 

doing; we look at it very carefully. We had seen already different ways of making the 

simplex table: the simplex table in its regular tabular form that we saw in the first 

course and then we have seen the matrix form of the simplex using the e1e2 matrices. 

Then, in the column generation algorithm we saw one way of representing the 

simplex table and then, in the decomposition we saw another way of representing the 

simplex table. Now we look at third way of representing the simplex table. We will 

take the same example and we solve it. The example is as follows. 
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(Refer Slide Time: 41:13) 

 

Maximize X1 plus X2; 7X1 minus 5X2 less than or equal to 7; minus 12X1 plus 15X2 

less than or equal to 7; X1, X2 greater than or equal to 0. Let us take first the linear 

programming problem and solve it. Then we will look at the integer programming 

problem and solve it. We will create a much smaller table here. X3 and X4 are the 

slack variables to begin with and they will become the basic variables.  

What we will do is we will have a column called X0, we will then see what this 

column is or we will have a row called X0. Then we will have here X3 and X4, which 

are the current basic variables. Then you have a right-hand side and then you have a 

minus X1 and a minus X2, where X1 and X2 represent the present non-basic variables. 

This maximize X1 plus X2 would be written as: 0, minus 1, minus 1. You can assume 

the standard format is for a maximization problem. So I have X1 plus X2 here. I 

already have a minus X1 minus X2. So the coefficients get multiplied to give me a 

plus X1 and a plus X2. Now, this will be written as X3 is 7, the equation becomes X3 

equal to 7 minus 7X1 plus 5X2. So 7 minus 7X1 will become plus 7 and this will 

become a minus 5. To repeat, X3 is equal to 7 minus 7X1 plus 5X2; 7 is written as 7 

here; minus 7X1 will become plus 7 because of the minus 1 and plus 5 will become 

minus because of the minus. X4 will become 7 minus 12 plus 15. Now, if you leave 

this out, this is like writing Zj minus Cj or this is like writing the dual. Right now, the 

dual is infeasible here, primal is feasible. Again, this is like writing the dual as it is. 

We are used to a convention in the tabular form where we write Cj minus Zj, which is 
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actually the negative of the dual. So we say a positive Cj minus Zj enters for 

optimality. 

You can always interpret it as a negative of the dual, so a positive Cj minus Zj implies 

a negative dual. A negative dual implies infeasibility which is non-optimality; 

therefore, it enters. This implies dual negative, primal positive (Refer Slide Time: 

45:13). So primal positive, dual negative, you will do a normal simplex iteration. 

When the primal is negative, you will do a dual simplex iteration. So you look at that 

variable where the most negative dual will come in, which is like saying the most 

positive Cj minus Zj will enter. 

In this case, there is a tie; you can break the tie arbitrarily. So you enter that one like 

this (Refer Slide Time: 45:37). Now the leaving variable is taken; there is only one 

leaving variable 7 by 7; here you cannot divide for theta, 7 by 7, so this is the leaving 

variable. You get into this. X1 comes in. I get a minus X3 here and minus X2 here. I 

have an X0, I have an X1 and I have an X4. Now, I am going to introduce a few rules 

with which you can directly make the simplex iteration.  

Now this is going to be your pivot. Rule one is pivot always becomes 1 by pivot, so 

this becomes 1 by 7. Rule two is divide every other element of the pivot row by the 

pivot. Pivot alone will become 1 by pivot; divide every other element of the pivot row 

by the pivot; so this becomes 1, this becomes minus 5 by 7. Divide every element of 

the pivot column other than the pivot, which is anyway written, divide every other 

element by minus pivot; so, this will become minus 1 by 7, this will become plus 1 by 

7 and this becomes 12 by 7. Sorry this becomes 1 by 7 and this becomes 12 by 7. 

Now come the next set of rules. The value here will be: this is the pivot column, this 

is the pivot row (Refer Slide Time: 47:51); so this minus this into this, 0 minus minus 

1 into 1 which is plus 1; 7 minus minus 12 into 1, 19. To repeat, 0 minus minus 1 into 

1 plus 1, 7 minus minus 12 into 1, 19 and we have to do this similarly.  

We will continue this in the next lecture. 


