
1

Advanced Operations Research

Prof. G. Srinivasan

Department of Management Studies

Indian Institute of Technology, Madras

Lecture No. - 15

Branch and Bound Algorithm for Integer Programming

Today we continue our discussion on zero-one problems. We try to look at a few things.

(Refer Slide Time: 00:23)

We said that our standard problem is a minimization problem with all constraints of the

greater than or equal to type and of course all variables are 0 and 1. More importantly, the

minimization objective function is such that the objective function coefficients are all non-

negative. So, if we have a less than or equal to constraint then we multiply the constraint with

a minus 1 and convert it to a greater than or equal to which is a known way of doing it and we

do not have unduly worry about the right-hand side values. The standard problem does not

assume that the right-hand side values are non-negative; right-hand side values can still be

negative, so it does not matter.

Step 1: If you have a less than or equal to inequality, multiply with a minus 1 to get a greater

than or equal to inequality here. If you have a maximization objective, once again multiply

2

the objective function with a minus 1 to make it a minimization problem. So, these two things

are possible.

Now, how do we ensure that every term in the objective function has a non-negative

coefficient?

If there is a variable Xj with a negative coefficient in the objective function, replace it with an

Xj dash equal to 1 minus Xj so that it effectively takes a non-negative coefficient in the case

of a positive coefficient and because Xj is a 0, 1 variable Xj dash is 1 minus Xj, Xj dash is

also a 0, 1 variable. So, this way, we will be able to convert every given problem into the

standard form.

Standard form is the form where you have a minimization objective function, all constraints

of the greater than or equal to type and all variables in the objective function having a non-

negative value. There can be a constant. As a result of this conversion we might have at the

end a plus or minus constant and that constant is all right. You can always take a constant out

of the objective function, solve it and then add or subtract that constant depending on what

the sign of the constant is. The only thing that we have not looked at is what happens when I

have an equation?

The variable definition is only one way which is 0, 1 so we do not worry about initialization

with respect to the nature of the variables. We are only worried about initialization with

respect to nature of the constraints and the objective function. We have seen objective

function, constraints except the equation.

3

(Refer Slide Time: 03:32)

Suppose we have an equation X1 plus 2X2 minus X3 equal to 6. Now, what we do is, we write

X1 equal to 6 minus 2X2 plus X3. I was just giving you a value; if you do not like 6 you could

keep it as 1. So, you have 1 minus 2X2 plus X3 and then this X1 being a 0 or 1 would simply

give you two constraints with an either or relationship. So, when X1 is 0, this becomes 2X2

minus X3 equal to 1. When X1 is 1, it becomes 2X2 minus X3 equal to 0. That’s what happens

here when you do this.

What we do is this is X1 equal to this, X1 being a 0, 1 variable is now written as X1 greater

than or equal to 0, X1 less than or equal to 1. X1 defined as a 0, 1 variable. Now X1 greater

than or equal to 0 would give you 1 minus 2X2 plus X3 greater than or equal to 0 so 2X 2 plus

X3 less than or equal to 1 and 1 minus 2X2 plus X3 less than or equal to 1 would give us

minus 2X2 plus X3 less than or equal to 0.

Every equation now becomes two constraints. So, we end up adding one more constraint for

every equation, the variable retains, but we have eliminated one variable from the analysis.

So the variable X1 does not exist in anymore.

Typically if you have to solve zero-one problem with many equations you would get into this

kind of a situation. Now if you say five equations then we end up writing five constraints for

the greater than or equal to five constraints. For the less than or equal to 1 and the greater

than or equal to 0. One of them you can simply add.

4

Particularly the less than or equal to type constraints you can add and convert five of them

into a single constraint depending on the problem. But as a general rule if you have an

equation, then you end up creating two constraints for you eliminate one variable from the

equation but then you have to create one additional constraint so there will be two constraints.

To that extent the problem becomes little more involved and cumbersome whenever you are

having equations because the time taken obviously depends on the number of constraints and

with equations the number of constraints increases considerably.

(Refer Slide Time: 07:43)

The last part that we have to see in this is what happens when we have variables of this form.

Suppose, I have this minimize Z equal to X2X3 plus X2 plus X3 or to generalize it we put

some X2 square plus X3 cube where all X are 0,1 variables. We know that this X2 square and

X3 cube will become simply X2 and X3 because of the 0,1 nature of the variables. Only thing

we need to do is to model this X2 X3 and just write down the equations for you.

5

(Refer Slide Time 09:07)

You can take any variable you can choose it or you it is not necessary that you should

eliminate only X1 you could eliminate X2 or X3 equations will change accordingly. So you

will have Y you will replace X2 X3 by Y and then say that X2 plus X3 minus y1 less than or

equal to 1. minus X2 minus X3 plus 2y1 less than or equal to 0 X2 X3 y1 equal to 0, 1, X2 X3

will be replaced by y1 and then you will have this.

For every product term you will have two constraints which are coming in and an additional

variable that also come in. There is another way of representing it also by which you do not

define y1 as a 0, 1 variable you define y1 as continuous variable and add three constraints

instead of two. Obviously this is a more desirable one than the other one simply because in

the other one you add three constraints so you do not increase the size of the problem.

Secondly, you also bring in a y which is not a 0, 1 variable, it is a continuous variable, so the

problem loses all its 0, 1 structure and it will be difficult to solve that problem using the

implicit enumeration algorithm.

We will not look at that but we would rather keep this as the way to convert a product form

into a single variable. Nonlinear problems become linear zero-one problems by this method.

Any higher power automatically becomes the same variable only when you have product

forms you will get this. When you have three terms appearing you can write a corresponding

6

the spirit is y1 will take a value 1 only when X2 and X3 take 1. If either of them takes 0 then

y1 will be forced to 0 that is the underlying assumption which is solved by both these.

If we have three terms product terms coming in a single variable then you will have one more

additional constraint that would come in and that has to be written accordingly. So, this kind

of brings us to the end of the discussion on zero-one problems we have just seen one

algorithm of course there are so many other refinements the algorithm that we saw is a very

old 1959 algorithm so in the last forty-five years you could imagine much more development

in this field.

Nevertheless, it gives us a feel of what implicit enumeration is and how easy it becomes,

particularly, to write a computer program or a code which would solve zero-one problems.

We will then move into the next important topic which is to solve problems using a general

integer programming problem.

(Refer Slide Time: 11:30)

Now we look at, how we solve a general integer programming problem. We will take a

specific example and explain the IP (Integer Programming). We will take this problem as a

standard problem and try to solve this. Now the first thing that we do is in all integer

programming problems, right now this is all integer programming problem because all the

variables are integers. When some of the variables are continuous and some of them are

integers it is called a mixed integer programming problem. We will first consider the all

integer example. In all these kind of problems or in general for any integer programming

7

problem the first thing to do is, to relax the integer restriction and try to solve it as a linear

programming problem.

If the linear programming optimum is integer value for all the integer variables then it is it is

optimal to the IP so the first thing we need to do is to relax the integer assumption or

restriction and solve it as a linear programming problem.

(Refer Slide Time: 13:28)

We will create the first thing by a node which says LP optimum will be X1 star equal to 28 by

9. Now X2 star equal to 133 by 45 and Z equal to 273 by 45. Now let us assume, that please

remember that we know how to solve a linear programming problem not only that we know

how to solve it efficiently. You could use many things like your column generation if needed

or the efficient ways of inverting the matrix and then solve it.

Now, this LP optimum does not have an integer value for either of the decision variables so

we need to do something to get to this and what we do is this. Now let us try to pictorially

depict this LP optimum.

8

(Refer Slide Time: 14:39)

Let us say we need to plot both the constraints so 7X1 m 5X2 less than or equal to 7, say if we

call this as 1 and 2. So, the first constraint would have a 1, 0 here X1 equal to 1, X2 equal to 0

and then we have 0 and 7 by 5. I have 1, 0 for the first one and X2 equal to 7 by 5 which is

roughly ah which is which is 1. 4. So this is the first line which is here second one would give

us X2 equal to 7 by 15 which is somewhere here and X1 equal to minus 7 by 12 which would

be say somewhere here so this would be our… one second, let me just check …7X1 minus

5X2.

The 7X1 minus 5X2 less than equal to 7, minus 12X1 plus 15X2 less than or equal to 7. (Refer

Slide Time 16:38)

9

The first one is 1, 0 and this would be minus 1.4 which is somewhere here first line would go

like this. Second line would be 7 by 15 which is somewhere here and minus 7 by 12.

Let us say 28 by 9 is somewhere here and 133 by 45. This should be somewhere here and

assume that it goes like this and somewhere here is the LP optimum. We will say that this is

3.1, 2.45 threes are 135 so 2.0 something.

We have X1 equal to 3.1 X2 is 273 by 45 which is like 2.95. Now what we understand from

this is this corner point solution is not optimal that is number 1 number 2 is we would we

would not be interested in. For example, if I take a variable say X2 under consideration and I

kind of draw a line here that represents X2 equal to 2 and there is a line here which is X2

equal to 3. I know for sure that every point here on the feasible region which is above X2

equal to 2, is not actually feasible with respect to the integer programming because I have a

restriction that X2 should be an integer value.

X2 can only take a value 2 or 3. If I am in this territory, X2 could take 1 if I am in another

territory but looking at the optimum if I basically take one variable which is X2 I could do the

same interpretation for X1. If I take variable X2 which is at 2.95 I know that I am not

interested in this value it is infeasible to the IP.

I am interested in all integer values where X2 is less than or equal to 2 or X2 is greater than or

equal to 3. I am not interested in any value which is in between this. So, what I will do now is

I take any one of the variables which has a non-integer or a fractional value at the optimum in

this cases I might take X2. I can do the same thing with X1.

10

(Refer Slide Time: 20:04)

Look at the value 2.95 and I create two nodes from this tree one which says, X2 less than or

equal to 2 less than or equal to the lower integer value and X2 greater than or equal to 3 which

is greater than or equal to the higher integer value. Because I know that any X2 which is in

between these two for example anything that is slightly above 2 or slightly below 3 but

fractional value is not desirable because it is going to be infeasible to the integer

programming problem. So, you create two branches from the original LP by adding these two

constraints X2 less than or equal to 2 and X2 greater than or equal to 3 and solve two resultant

linear programming problems. You should not put both the constraints into the same problem

because if you put both the constraints into the same problem you end up creating X2

infeasible.

The very fact that you have written two constraints there is no feasible area corresponding to

these two but then you know for sure that such an area you do not want look at because it is

not feasible to the IP. So, you will create two integer programming problem two linear

programming problems at every node that your branch. One less than or equal to the lower

integer value of a fractional variable and the other greater than or equal to the higher integer

value of the fractional variable. In this case you get less than or equal to 2 and greater than or

equal to 3 and solve this problem all over again solve the original LP, with the additional

constraint that X2 less than or equal to 2, when you do that you get a solution X1 equal to 17

by 7 X2 equal to 2 and Z equal to 3 1 by 7 which means basically we put this constraint.

11

(Refer Slide Time: 22:11)

Now with this feasible region, I am trying to solve the problem and I realize that this is my

corner point. Now, from here I have moved to this point this is for my original P1 this is for

my P2. Now when you put X2 greater than or equal to 3 to the original set of constraints you

should not put the this one also again this has already been solved. You put X2 greater than or

equal to 3 into the original two constraints and solve the problem. You get infeasibility here.

Now, that is understandable from the graphical region one can easily see that X2 greater than

or equal to 3 results in infeasibility.

The moment a node is infeasible you fathom it by infeasibility fathoming by infeasibility we

have already seen in the 0, 1. So, you do not proceed further, because proceeding further

would mean putting some more restriction already it is infeasible so, putting another

restriction can never bring in feasibility. So, it will continue to be infeasible. You do not do

that. The moment it is infeasible you fathom it. You fathom which means, you do not move

further from the infeasibility, there is no back tracking involved in this algorithm so we just

fathom by infeasibility.

12

(Refer Slide Time: 23:37)

Now look at this node, which is active. Now here this has an integer value this does not have

an integer value. So what do I do? I branch on this. I take this one 17 by 7 is 2.0 and

something so I create two nodes one with X1 less than or equal to 2 and the other with X1

greater than or equal to 3. When I put an additional restriction that X1 less than or equal to

2…

(Refer Slide Time: 24:09)

Now I come back here. Now, this is where my 17 by 7 is so. Let me assume that my X1 less

than equal to 2 is somewhere here and X1 greater than or equal to 3 is somewhere here.

13

(Refer Slide Time 25:42)

Less than equal to 2 will give me another one which is somewhere here so when I do that I

am able to get this point which is in the feasible region. So I get X1 equal to 2 X2 equal to 2

and Z equal to 4 which is a feasible solution to the IP. This is feasible to the integer

programming problem and I update the solution. I have one integer solution which I update

now I do not proceed further here because I already have an integer solution so this is

fathomed by feasibility.

The moment I get a feasible solution to a maximization problem acts as a lower bound.,

because my optimum to the IP, can only have a value of 4 or more because I already have a

feasible solution with Z equal to 4. Now, I go back and do the additional one and get

infeasible here when I solve it. Remember that when I am solving for this or for this I should

add both X2 less than equal to 2 and X1 less than equal to 2. When I am solving here I should

add X2 less than equal to 2 and X1 greater than or equal to 3 to these two.

There are four constraints now two additions that have come in to this. Now, this infeasibility

is also indicated by the graph that it is totally out of the feasible region. So, it is infeasible and

it is fathomed by infeasibility now there are no nodes that are right now hanging the

algorithm terminate then I cannot branch. Now this is a simple branch and bound algorithm.

To solve integer programming problems, we have taken a very small and simple example

which kind of terminates in five nodes and gives us the optimum.

14

Now what we were trying to do in all these aspects whenever we branched from a node, we

were basically trying to eliminate a set a certain feasible region from this feasible region. For

example, when we branched on the first time, we were actually trying to leave out this much

of a feasible region by putting an X2 less than or equal to 2 and an X2 greater than or equal to

3, we eliminated this portion of the feasible region. So, every time you branch, you end up

eliminating or leaving out a certain portion of the feasible region and somewhere, in the order

in which you do it you will end up if the problem has the IP has an optimum then you will

reach the optimum in a finite number of iterations but there is no way to guarantee what is

that finite number. It can be a very large number of iterations but it does converge in a finite

number of iterations that’s one. The idea is whenever we branch we kind of create either two

horizontal lines in the graphical representation or create two vertical lines and that part of the

feasible region that lies between those two. In this case two horizontal lines if you branch on

X2 that part of the feasible region is eliminated.

You look at either this or the other it turns out in this case that it is infeasible and so on. Next

now another important thing is this; every branch and bound algorithm basically has three

things. It has a branching strategy. It has a branching strategy. It has a bounding strategy and

it has a node selection strategy. These are the three things that are associated with any branch

and bound algorithm. Now, what is the branching strategy? For example, what is the

bounding strategy? What is the node selection strategy?

Let us look at the bounding strategy that’s easy. Bounding strategy here is you fathom by

infeasibility you fathom by feasibility and you also realize that at every stage you are solving

a linear programming problem, you are solving a maximization linear programming problem

therefore the LP optimum is an upper bound to the IP optimum. I have a maximization

problem. For example, here the optimum is 4, now the value here; if you divide 273 by 45

would be anything between 5 and 6. It is a 6.0 and something 6 and 3 by 45 we got 6.0

something here now that is an upper bound to the IP optimum now when you branch and get

31 by 7 you get 4.0 something which also acts as an upper bound. In fact right here you could

have done one more thing. This is 4.0 and something all your coefficients are integers so 4.0

and something would imply that four is a realistic upper bound for the integer programming

problem. Here I have a feasible solution with Z equal to 4 which is a lower bound feasible

solution is a lower bound and right here I’ve got it. Even if I proceed here I can only get 4 or

15

less and do not even has to evaluate this infeasibility I can just say right here that I have

found the optimum. Now those things are possible depending on certain situations.

The bounding strategy would be every node solves a linear programming problem with a

maximization objective. So, what we get is an upper bound. Bounding strategy would be

bound by infeasibility bound by feasibility, and the fact that every bound we solve every node

we solve a linear programming problem which gives an upper bound to the IP optimum for a

maximization problem.

Now, what is the branching strategy we could have in the same problem we could have

branched on X1 or X2 at any stage, we started here branching on X2. We could have started

the same thing branching on X1 sometimes branching on X1 would result in fewer nodes

sometimes branching on X2 would result in fewer nodes. Branching strategy would simply

imply having chosen a node to proceed further from that node which variable are you going

to branch on. Very conventionally what you would do is you would pick a variable which has

the largest fractional component and then you proceed. It is a very customary practice that

you take a variable that has the largest fractional component.

In this case this had 3.1 and something. The fractional portion was a 0. 1, here you had a 2.95

fractional portion is 0. 95. So, it is customary to take the one with that. There is no proven

evidence that if you branch on the variable that has the largest fractional value you will get

the optimum. In few iterations there is no such proven rule. It is only a greedy approach

where we think that because it is very close to an integer value you might get that value in the

next one. So, for all you know the 2X2 equal to 3 never figured in the solution. The 2.95

would make it closer to 3 but the optimum did not have X2 equal to 3. In fact X2 equal to 3

was infeasible but if it is customary that you branch on a variable that has the largest

fractional component.

Now, what is the node selection? Strategy node selection strategy we actually did not have

any node selection strategy in this example. The reason being we started with a first node

which was a linear programming solution and then you branched. One of the branches

became infeasible and only one branch you could proceed further. This was the only node

available for selection from here also we branched and right here we got the optimum. So, we

did not have any node selection to do. By default we were having only one node in this

example.

16

There can be situations where we may have more than one active node. In fact, in almost all

situations there will be a lot of active nodes and you may have to choose one out of the

existing active nodes to branch further. An active node is one, which has not yet been

fathomed and it has a fractional value for at least one of the integer variables. That’s called an

active node.

Normally, you branch on that node that has the largest value of the upper bound. LP optimum

indicating the upper bound that node among the active nodes that has the largest value of Z

LP is there space between z n LP. The LP optimum is usually the node that is selected for

branching. Again it is a greedy approach; for example, when I say here 6.0 and something if I

choose a node with there is a node with an upper bound of 6.0 and something there is a node

with an upper bound of 5.0 something. Let us say, if it turns out that the LP optimum is 4 that

it is it is pretty much possible that move proceeding from the node with 5.0 and something

may give it may reach the optimum faster.

We always end up being optimistic saying if there is a node with an LP value of 6; it gives us

an outside chance of getting an IP value of 6, whereas, proceeding from a node with an LP

value of 5.0 and something can only give us at the maximum an integer programming

solution with Z equal to 5 so, we do not do that. Eventually all nodes have to be evaluated.

There is nothing like saying that I won’t do this I will only ah branch on one node.

By and large all these three things have to be done very meticulously and it is also well

known, that depending on the choice of these three both the memory requirement as well as

the time requirement of the IP problems are defined. Why does the memory requirement

come in here? We do not in the earlier 0, 1 implicit enumeration algorithm the variable to

branch could take only two values. Backtracking was a very convenient way of moving from

one node to another in a branch and bound tree a variable that takes a value 1 can only take a

value 0 here that cannot happen. For example X2 may be between 2 and 3 so, you branch on

X2 with 2 and 3 somewhere later when you move down X2 would take a value between 1 and

2 and you might do some branching. You do not have that a variable appearing only once in

the branching with the 0, 1 and so on. So, here you have to store all the active nodes. Storage

becomes an issue in this kind of a branch and bound storage was not an issue in the implicit

enumeration algorithm.

17

Normally, if right at the time of storing you start in the decreasing order of LP optimum and

then store at the right place so, that your node selection becomes easy you always branch on

the first active node the node that has the largest LP optimum.

So, these are the various issues associated with a branch and bound algorithm for integer

programming. The three strategies branching bounding and node selection as well as the

branch every time we branch from this we actually eliminate a certain area from the feasible

region which is bounded by two horizontal lines or two vertical lines. If we have this is for an

all integer problem where all the variables are integers if we have a mixed integer

programming problem, where some of the variables are continuous and some other variables

are integers this becomes a little easier.

Out of all the variables set there are only going to be fewer variables that have to be integer

value. In some sense with fewer nodes we should be able to terminate at the optimum you do

not have to branch on the variables that have greater than or equal to. You need to branch

only on those variables that have integer restrictions and at that point do not have integer

values. So, this is how the general branch and bound algorithm works with the three things

branching bounding and node selection. Now we look at another way, to solve integer

programming problems yeah in fact before that we need to look at one more aspect which is

this.

(Refer Slide Time: 38:05)

18

If you take this branch and bound tree, for example we should remember that when we

created an additional node from here, with the addition of a constraint X2 less than or equal to

2. One need not solve the linear programming problem all over again one could use

sensitivity analysis as an additional constraint and do it or one could simply do an upper

bounded simplex from the existing LP optimum one can easily do that.

You have two constraints you have because all these constraints are only bounds you have

two constraints you will continue to have two constraints. Even if you do sensitivity analysis,

you will be introducing a third constraint explicitly whereas, when you straight away plug in

an upper bounded simplex from the existing optimum basis you still retain the two constraint

thing where the bound goes out of the problem.

Typically the problem size the number of nodes may increase significantly but the problem

size is always a two constraint. There could be some other issues when you start doing it but

certainly the problem the constraint set does not become large because of the addition of

these and each one is only a kind of a bound.

In spite of that the problem is a worst case hard or enumerative kind of an algorithm because

you do not know how many nodes you will evaluate before you terminate. Let us look at

another way to solve integer programming problem.

(Refer Slide Time: 40:12)

As usual we solve this first by the simplex algorithm to get an LP optimum so, let us

construct the simplex table and then solve it first using a simplex algorithm. You will have X1

19

X2 X3 X4 we start with X3 and X4 here so, you have X3 X4 here. There are 1 1 0 0 0 0 7 minus

5 1 0 7 minus 12 15 0, 7 1 1 0 0 0. You could enter on X1 you could enter on X2 so, let us go

back and enter on we enter X1 here.

Find there’s only one leaving variable so, this is a leaving variable because of this negative

there is only one leaving variable so, I have X1 X4. So, I have 1 and 0 1 minus 5 by 7, 1 by 7,

0, 1. This plus 12 times this so, 0 15 minus 60 by 7 is 45 by 7, this plus 12 times this is 12 by

7,1, 7 plus 12 into 1 is 19 so we get a 1 here. This becomes 0 this becomes 0 1 plus 5 by 7 is

12 by 7 and this is minus 1 by 7.

X2 enters again there is only one leaving variable here this here. I have X1-1 X2-1 this is the

pivot element 45 by 7 is the pivot. So, multiply or divide by the pivot to get 0, 1, 12 by 45, 7

by 45, 19 into 7 is 63 133 by 45 here.

This plus 5 by 7 times this 1 0, 1 by 7 plus 5 by 7 into 12 by 45, 12 by 45 is 4 by 15 so, you

get 1 by 7 plus 12 by 7 into this 12 by 35 so 1 by 7 plus 12 by is 17 by 35 and we get

something else here; minus 5 by 7 1 by 7 0 12 by 7 so this should become 12 by 45 which is

4 by 15 is written down here, this is 4 by 15 and you have a 7 by 45 here.

This is 1 by 7 plus 5 by 7 into this so, 20 by 105 which is 4 by 21 4 by 21 so, 1 by 7 plus 4 by

21 is 1 by 3 so, 1 by 3 this plus 5 by 7 into this which gives me 5 by 45 which is 1 by 9. This

plus 5 by 7 into this so, 1 plus 5 by 7 into 133 by 45 so that is 28 by 9 which we know

anyway so, 28 by 9.

The Z value is 28 by 9 plus 133 by 45 273 by 45 and you get 0 0 minus 9 by 15 minus 4 by

15 so, this is the LP optimum that we have. Now, we realize that both X1 and X2 are not

integer valued we can choose any one of them and proceed further.

We just now saw that it is customary to take that variable which has the maximum fractional

portion for subsequent addition or move in the algorithm so we take this and now we write

this in the form of an equation.

(Refer Slide Time: 45:45)

20

This becomes X2 plus 4 by 15X3 plus 7 by 45X4 equal to 133 by 45. Now, because this is a

simplex iteration and it represents LP optimum this will have to be nonnegative even if it is a

dual simplex iteration, it does not matter because this represents an LP optimum so this has to

be non negative. What we do is we rewrite this in such a way that I do not have a fraction for

X2 so I just write X2 the fraction the coefficient of X3 turns out to be a fraction less than one

right 4 by 15 so I just write is as 4 by 15X3.

For example, if this coefficient had been 19 by 15 I will write it as plus 1 X3 plus 4 by 15. I

will always write it as an integer plus a positive fraction which means if it were minus 4 by

15. I would have written it as minus 1 plus 11 by 15. I should always write it as an integer

plus a positive fraction. This becomes 7 by 45X4 becomes 2 plus 43 by45. Right-hand side is

also written as an integer plus a positive fraction. We use this and try to create a cut which we

will see in the next class

