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Branch and Bound Algorithm for Integer Programming 

Today we continue our discussion on zero-one problems. We try to look at a few things. 
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We said that our standard problem is a minimization problem with all constraints of the 

greater than or equal to type and of course all variables are 0 and 1. More importantly, the 

minimization objective function is such that the objective function coefficients are all non-

negative. So, if we have a less than or equal to constraint then we multiply the constraint with 

a minus 1 and convert it to a greater than or equal to which is a known way of doing it and we 

do not have unduly worry about the right-hand side values. The standard problem does not 

assume that the right-hand side values are non-negative; right-hand side values can still be 

negative, so it does not matter. 

Step 1: If you have a less than or equal to inequality, multiply with a minus 1 to get a greater 

than or equal to inequality here. If you have a maximization objective, once again multiply 
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the objective function with a minus 1 to make it a minimization problem. So, these two things 

are possible. 

Now, how do we ensure that every term in the objective function has a non-negative 

coefficient?  

If there is a variable Xj with a negative coefficient in the objective function, replace it with an 

Xj dash equal to 1 minus Xj so that it effectively takes a non-negative coefficient in the case 

of a positive coefficient and because Xj is a 0, 1 variable Xj dash is 1 minus Xj, Xj dash is 

also a 0, 1 variable. So, this way, we will be able to convert every given problem into the 

standard form. 

Standard form is the form where you have a minimization objective function, all constraints 

of the greater than or equal to type and all variables in the objective function having a non-

negative value. There can be a constant. As a result of this conversion we might have at the 

end a plus or minus constant and that constant is all right. You can always take a constant out 

of the objective function, solve it and then add or subtract that constant depending on what 

the sign of the constant is. The only thing that we have not looked at is what happens when I 

have an equation? 

The variable definition is only one way which is 0, 1 so we do not worry about initialization 

with respect to the nature of the variables. We are only worried about initialization with 

respect to nature of the constraints and the objective function. We have seen objective 

function, constraints except the equation. 
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Suppose we have an equation X1 plus 2X2 minus X3 equal to 6. Now, what we do is, we write 

X1 equal to 6 minus 2X2 plus X3. I was just giving you a value; if you do not like 6 you could 

keep it as 1. So, you have 1 minus 2X2 plus X3 and then this X1 being a 0 or 1 would simply 

give you two constraints with an either or relationship. So, when X1 is 0, this becomes 2X2 

minus X3 equal to 1. When X1 is 1, it becomes 2X2 minus X3 equal to 0. That’s what happens 

here when you do this. 

What we do is this is X1 equal to this, X1 being a 0, 1 variable is now written as X1 greater 

than or equal to 0, X1 less than or equal to 1. X1 defined as a 0, 1 variable. Now X1 greater 

than or equal to 0 would give you 1 minus 2X2 plus X3 greater than or equal to 0 so 2X 2 plus 

X3 less than or equal to 1 and 1 minus 2X2 plus X3 less than or equal to 1 would give us 

minus 2X2 plus X3 less than or equal to 0. 

Every equation now becomes two constraints. So, we end up adding one more constraint for 

every equation, the variable retains, but we have eliminated one variable from the analysis. 

So the variable X1 does not exist in anymore. 

Typically if you have to solve zero-one problem with many equations you would get into this 

kind of a situation. Now if you say five equations then we end up writing five constraints for 

the greater than or equal to five constraints. For the less than or equal to 1 and the greater 

than or equal to 0. One of them you can simply add. 



4 
 

Particularly the less than or equal to type constraints you can add and convert five of them 

into a single constraint depending on the problem. But as a general rule if you have an 

equation, then you end up creating two constraints for you eliminate one variable from the 

equation but then you have to create one additional constraint so there will be two constraints. 

To that extent the problem becomes little more involved and cumbersome whenever you are 

having equations because the time taken obviously depends on the number of constraints and 

with equations the number of constraints increases considerably. 

(Refer Slide Time: 07:43) 

 

The last part that we have to see in this is what happens when we have variables of this form. 

Suppose, I have this minimize Z equal to X2X3 plus X2 plus X3 or to generalize it we put 

some X2 square plus X3 cube where all X are 0,1 variables. We know that this X2 square and 

X3 cube will become simply X2 and X3 because of the 0,1 nature of the variables. Only thing 

we need to do is to model this X2 X3 and just write down the equations for you. 
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You can take any variable you can choose it or you it is not necessary that you should 

eliminate only X1 you could eliminate X2 or X3 equations will change accordingly. So you 

will have Y you will replace X2 X3 by Y and then say that X2 plus X3 minus y1 less than or 

equal to 1. minus X2 minus X3 plus 2y1 less than or equal to 0 X2 X3 y1 equal to 0, 1, X2 X3 

will be replaced by y1 and then you will have this. 

For every product term you will have two constraints which are coming in and an additional 

variable that also come in. There is another way of representing it also by which you do not 

define y1 as a 0, 1 variable you define y1 as continuous variable and add three constraints 

instead of two. Obviously this is a more desirable one than the other one simply because in 

the other one you add three constraints so you do not increase the size of the problem. 

Secondly, you also bring in a y which is not a 0, 1 variable, it is a continuous variable, so the 

problem loses all its 0, 1 structure and it will be difficult to solve that problem using the 

implicit enumeration algorithm. 

We will not look at that but we would rather keep this as the way to convert a product form 

into a single variable. Nonlinear problems become linear zero-one problems by this method. 

Any higher power automatically becomes the same variable only when you have product 

forms you will get this. When you have three terms appearing you can write a corresponding 
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the spirit is y1 will take a value 1 only when X2 and X3 take 1. If either of them takes 0 then 

y1 will be forced to 0 that is the underlying assumption which is solved by both these. 

If we have three terms product terms coming in a single variable then you will have one more 

additional constraint that would come in and that has to be written accordingly. So, this kind 

of brings us to the end of the discussion on zero-one problems we have just seen one 

algorithm of course there are so many other refinements the algorithm that we saw is a very 

old 1959 algorithm so in the last forty-five years you could imagine much more development 

in this field. 

Nevertheless, it gives us a feel of what implicit enumeration is and how easy it becomes, 

particularly, to write a computer program or a code which would solve zero-one problems. 

We will then move into the next important topic which is to solve problems using a general 

integer programming problem. 

(Refer Slide Time: 11:30) 

 

Now we look at, how we solve a general integer programming problem. We will take a 

specific example and explain the IP (Integer Programming). We will take this problem as a 

standard problem and try to solve this. Now the first thing that we do is in all integer 

programming problems, right now this is all integer programming problem because all the 

variables are integers. When some of the variables are continuous and some of them are 

integers it is called a mixed integer programming problem. We will first consider the all 

integer example. In all these kind of problems or in general for any integer programming 
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problem the first thing to do is, to relax the integer restriction and try to solve it as a linear 

programming problem. 

If the linear programming optimum is integer value for all the integer variables then it is it is 

optimal to the IP so the first thing we need to do is to relax the integer assumption or 

restriction and solve it as a linear programming problem. 

(Refer Slide Time: 13:28) 

 

We will create the first thing by a node which says LP optimum will be X1 star equal to 28 by 

9. Now X2 star equal to 133 by 45 and Z equal to 273 by 45. Now let us assume, that please 

remember that we know how to solve a linear programming problem not only that we know 

how to solve it efficiently. You could use many things like your column generation if needed 

or the efficient ways of inverting the matrix and then solve it. 

Now, this LP optimum does not have an integer value for either of the decision variables so 

we need to do something to get to this and what we do is this. Now let us try to pictorially 

depict this LP optimum. 
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Let us say we need to plot both the constraints so 7X1 m 5X2 less than or equal to 7, say if we 

call this as 1 and 2. So, the first constraint would have a 1, 0 here X1 equal to 1, X2 equal to 0 

and then we have 0 and 7 by 5. I have 1, 0 for the first one and X2 equal to 7 by 5 which is 

roughly ah which is which is 1. 4. So this is the first line which is here second one would give 

us X2 equal to 7 by 15 which is somewhere here and X1 equal to minus 7 by 12 which would 

be say somewhere here so this would be our… one second, let me just check …7X1 minus 

5X2. 

The 7X1 minus 5X2 less than equal to 7, minus 12X1 plus 15X2 less than or equal to 7. (Refer 

Slide Time 16:38)  
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The first one is 1, 0 and this would be minus 1.4 which is somewhere here first line would go 

like this. Second line would be 7 by 15 which is somewhere here and minus 7 by 12.  

Let us say 28 by 9 is somewhere here and 133 by 45. This should be somewhere here and 

assume that it goes like this and somewhere here is the LP optimum. We will say that this is 

3.1, 2.45 threes are 135 so 2.0 something. 

We have X1 equal to 3.1 X2 is 273 by 45 which is like 2.95. Now what we understand from 

this is this corner point solution is not optimal that is number 1 number 2 is we would we 

would not be interested in. For example, if I take a variable say X2 under consideration and I 

kind of draw a line here that represents X2 equal to 2 and there is a line here which is X2 

equal to 3. I know for sure that every point here on the feasible region which is above X2 

equal to 2, is not actually feasible with respect to the integer programming because I have a 

restriction that X2 should be an integer value. 

X2 can only take a value 2 or 3. If I am in this territory, X2 could take 1 if I am in another 

territory but looking at the optimum if I basically take one variable which is X2 I could do the 

same interpretation for X1. If I take variable X2 which is at 2.95 I know that I am not 

interested in this value it is infeasible to the IP.  

I am interested in all integer values where X2 is less than or equal to 2 or X2 is greater than or 

equal to 3. I am not interested in any value which is in between this. So, what I will do now is 

I take any one of the variables which has a non-integer or a fractional value at the optimum in 

this cases I might take X2. I can do the same thing with X1. 



10 
 

(Refer Slide Time: 20:04) 

 

Look at the value 2.95 and I create two nodes from this tree one which says, X2 less than or 

equal to 2 less than or equal to the lower integer value and X2 greater than or equal to 3 which 

is greater than or equal to the higher integer value. Because I know that any X2 which is in 

between these two for example anything that is slightly above 2 or slightly below 3 but 

fractional value is not desirable because it is going to be infeasible to the integer 

programming problem. So, you create two branches from the original LP by adding these two 

constraints X2 less than or equal to 2 and X2 greater than or equal to 3 and solve two resultant 

linear programming problems. You should not put both the constraints into the same problem 

because if you put both the constraints into the same problem you end up creating X2 

infeasible. 

The very fact that you have written two constraints there is no feasible area corresponding to 

these two but then you know for sure that such an area you do not want look at because it is 

not feasible to the IP. So, you will create two integer programming problem two linear 

programming problems at every node that your branch. One less than or equal to the lower 

integer value of a fractional variable and the other greater than or equal to the higher integer 

value of the fractional variable. In this case you get less than or equal to 2 and greater than or 

equal to 3 and solve this problem all over again solve the original LP, with the additional 

constraint that X2 less than or equal to 2, when you do that you get a solution X1 equal to 17 

by 7 X2 equal to 2 and Z equal to 3 1 by 7 which means basically we put this constraint.  
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Now with this feasible region, I am trying to solve the problem and I realize that this is my 

corner point. Now, from here I have moved to this point this is for my original P1 this is for 

my P2. Now when you put X2 greater than or equal to 3 to the original set of constraints you 

should not put the this one also again this has already been solved. You put X2 greater than or 

equal to 3 into the original two constraints and solve the problem. You get infeasibility here. 

Now, that is understandable from the graphical region one can easily see that X2 greater than 

or equal to 3 results in infeasibility. 

The moment a node is infeasible you fathom it by infeasibility fathoming by infeasibility we 

have already seen in the 0, 1. So, you do not proceed further, because proceeding further 

would mean putting some more restriction already it is infeasible so, putting another 

restriction can never bring in feasibility. So, it will continue to be infeasible. You do not do 

that. The moment it is infeasible you fathom it. You fathom which means, you do not move 

further from the infeasibility, there is no back tracking involved in this algorithm so we just 

fathom by infeasibility. 
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Now look at this node, which is active. Now here this has an integer value this does not have 

an integer value. So what do I do? I branch on this. I take this one 17 by 7 is 2.0 and 

something so I create two nodes one with X1 less than or equal to 2 and the other with X1 

greater than or equal to 3. When I put an additional restriction that X1 less than or equal to 

2… 

(Refer Slide Time: 24:09) 

 

Now I come back here. Now, this is where my 17 by 7 is so. Let me assume that my X1 less 

than equal to 2 is somewhere here and X1 greater than or equal to 3 is somewhere here. 
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Less than equal to 2 will give me another one which is somewhere here so when I do that I 

am able to get this point which is in the feasible region. So I get X1 equal to 2 X2 equal to 2 

and Z equal to 4 which is a feasible solution to the IP. This is feasible to the integer 

programming problem and I update the solution. I have one integer solution which I update 

now I do not proceed further here because I already have an integer solution so this is 

fathomed by feasibility. 

The moment I get a feasible solution to a maximization problem acts as a lower bound., 

because my optimum to the IP, can only have a value of 4 or more because I already have a 

feasible solution with Z equal to 4. Now, I go back and do the additional one and get 

infeasible here when I solve it. Remember that when I am solving for this or for this I should 

add both X2 less than equal to 2 and X1 less than equal to 2. When I am solving here I should 

add X2 less than equal to 2 and X1 greater than or equal to 3 to these two. 

There are four constraints now two additions that have come in to this. Now, this infeasibility 

is also indicated by the graph that it is totally out of the feasible region. So, it is infeasible and 

it is fathomed by infeasibility now there are no nodes that are right now hanging the 

algorithm terminate then I cannot branch. Now this is a simple branch and bound algorithm. 

To solve integer programming problems, we have taken a very small and simple example 

which kind of terminates in five nodes and gives us the optimum. 
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Now what we were trying to do in all these aspects whenever we branched from a node, we 

were basically trying to eliminate a set a certain feasible region from this feasible region. For 

example, when we branched on the first time, we were actually trying to leave out this much 

of a feasible region by putting an X2 less than or equal to 2 and an X2 greater than or equal to 

3, we eliminated this portion of the feasible region. So, every time you branch, you end up 

eliminating or leaving out a certain portion of the feasible region and somewhere, in the order 

in which you do it you will end up if the problem has the IP has an optimum then you will 

reach the optimum in a finite number of iterations but there is no way to guarantee what is 

that finite number. It can be a very large number of iterations but it does converge in a finite 

number of iterations that’s one. The idea is whenever we branch we kind of create either two 

horizontal lines in the graphical representation or create two vertical lines and that part of the 

feasible region that lies between those two. In this case two horizontal lines if you branch on 

X2 that part of the feasible region is eliminated. 

You look at either this or the other it turns out in this case that it is infeasible and so on. Next 

now another important thing is this; every branch and bound algorithm basically has three 

things. It has a branching strategy. It has a branching strategy. It has a bounding strategy and 

it has a node selection strategy. These are the three things that are associated with any branch 

and bound algorithm. Now, what is the branching strategy? For example, what is the 

bounding strategy? What is the node selection strategy? 

Let us look at the bounding strategy that’s easy. Bounding strategy here is you fathom by 

infeasibility you fathom by feasibility and you also realize that at every stage you are solving 

a linear programming problem, you are solving a maximization linear programming problem 

therefore the LP optimum is an upper bound to the IP optimum. I have a maximization 

problem. For example, here the optimum is 4, now the value here; if you divide 273 by 45 

would be anything between 5 and 6. It is a 6.0 and something 6 and 3 by 45 we got 6.0 

something here now that is an upper bound to the IP optimum now when you branch and get 

31 by 7 you get 4.0 something which also acts as an upper bound. In fact right here you could 

have done one more thing. This is 4.0 and something all your coefficients are integers so 4.0 

and something would imply that four is a realistic upper bound for the integer programming 

problem. Here I have a feasible solution with Z equal to 4 which is a lower bound feasible 

solution is a lower bound and right here I’ve got it. Even if I proceed here I can only get 4 or 
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less and do not even has to evaluate this infeasibility I can just say right here that I have 

found the optimum. Now those things are possible depending on certain situations. 

The bounding strategy would be every node solves a linear programming problem with a 

maximization objective. So, what we get is an upper bound. Bounding strategy would be 

bound by infeasibility bound by feasibility, and the fact that every bound we solve every node 

we solve a linear programming problem which gives an upper bound to the IP optimum for a 

maximization problem. 

Now, what is the branching strategy we could have in the same problem we could have 

branched on X1 or X2 at any stage, we started here branching on X2. We could have started 

the same thing branching on X1 sometimes branching on X1 would result in fewer nodes 

sometimes branching on X2 would result in fewer nodes. Branching strategy would simply 

imply having chosen a node to proceed further from that node which variable are you going 

to branch on. Very conventionally what you would do is you would pick a variable which has 

the largest fractional component and then you proceed. It is a very customary practice that 

you take a variable that has the largest fractional component. 

In this case this had 3.1 and something. The fractional portion was a 0. 1, here you had a 2.95 

fractional portion is 0. 95. So, it is customary to take the one with that. There is no proven 

evidence that if you branch on the variable that has the largest fractional value you will get 

the optimum. In few iterations there is no such proven rule. It is only a greedy approach 

where we think that because it is very close to an integer value you might get that value in the 

next one. So, for all you know the 2X2 equal to 3 never figured in the solution. The 2.95 

would make it closer to 3 but the optimum did not have X2 equal to 3. In fact X2 equal to 3 

was infeasible but if it is customary that you branch on a variable that has the largest 

fractional component. 

Now, what is the node selection? Strategy node selection strategy we actually did not have 

any node selection strategy in this example. The reason being we started with a first node 

which was a linear programming solution and then you branched. One of the branches 

became infeasible and only one branch you could proceed further. This was the only node 

available for selection from here also we branched and right here we got the optimum. So, we 

did not have any node selection to do. By default we were having only one node in this 

example. 
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There can be situations where we may have more than one active node. In fact, in almost all 

situations there will be a lot of active nodes and you may have to choose one out of the 

existing active nodes to branch further. An active node is one, which has not yet been 

fathomed and it has a fractional value for at least one of the integer variables. That’s called an 

active node. 

Normally, you branch on that node that has the largest value of the upper bound. LP optimum 

indicating the upper bound that node among the active nodes that has the largest value of Z 

LP is there space between z n LP. The LP optimum is usually the node that is selected for 

branching. Again it is a greedy approach; for example, when I say here 6.0 and something if I 

choose a node with there is a node with an upper bound of 6.0 and something there is a node 

with an upper bound of 5.0 something. Let us say, if it turns out that the LP optimum is 4 that 

it is it is pretty much possible that move proceeding from the node with 5.0 and something 

may give it may reach the optimum faster. 

We always end up being optimistic saying if there is a node with an LP value of 6; it gives us 

an outside chance of getting an IP value of 6, whereas, proceeding from a node with an LP 

value of 5.0 and something can only give us at the maximum an integer programming 

solution with Z equal to 5 so, we do not do that. Eventually all nodes have to be evaluated. 

There is nothing like saying that I won’t do this I will only ah branch on one node. 

By and large all these three things have to be done very meticulously and it is also well 

known, that depending on the choice of these three both the memory requirement as well as 

the time requirement of the IP problems are defined. Why does the memory requirement 

come in here? We do not in the earlier 0, 1 implicit enumeration algorithm the variable to 

branch could take only two values. Backtracking was a very convenient way of moving from 

one node to another in a branch and bound tree a variable that takes a value 1 can only take a 

value 0 here that cannot happen. For example X2 may be between 2 and 3 so, you branch on 

X2 with 2 and 3 somewhere later when you move down X2 would take a value between 1 and 

2 and you might do some branching. You do not have that a variable appearing only once in 

the branching with the 0, 1 and so on. So, here you have to store all the active nodes. Storage 

becomes an issue in this kind of a branch and bound storage was not an issue in the implicit 

enumeration algorithm. 
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Normally, if right at the time of storing you start in the decreasing order of LP optimum and 

then store at the right place so, that your node selection becomes easy you always branch on 

the first active node the node that has the largest LP optimum. 

So, these are the various issues associated with a branch and bound algorithm for integer 

programming. The three strategies branching bounding and node selection as well as the 

branch every time we branch from this we actually eliminate a certain area from the feasible 

region which is bounded by two horizontal lines or two vertical lines. If we have this is for an 

all integer problem where all the variables are integers if we have a mixed integer 

programming problem, where some of the variables are continuous and some other variables 

are integers this becomes a little easier. 

Out of all the variables set there are only going to be fewer variables that have to be integer 

value. In some sense with fewer nodes we should be able to terminate at the optimum you do 

not have to branch on the variables that have greater than or equal to. You need to branch 

only on those variables that have integer restrictions and at that point do not have integer 

values. So, this is how the general branch and bound algorithm works with the three things 

branching bounding and node selection. Now we look at another way, to solve integer 

programming problems yeah in fact before that we need to look at one more aspect which is 

this. 

(Refer Slide Time: 38:05) 
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If you take this branch and bound tree, for example we should remember that when we 

created an additional node from here, with the addition of a constraint X2 less than or equal to 

2. One need not solve the linear programming problem all over again one could use 

sensitivity analysis as an additional constraint and do it or one could simply do an upper 

bounded simplex from the existing LP optimum one can easily do that. 

You have two constraints you have because all these constraints are only bounds you have 

two constraints you will continue to have two constraints. Even if you do sensitivity analysis, 

you will be introducing a third constraint explicitly whereas, when you straight away plug in 

an upper bounded simplex from the existing optimum basis you still retain the two constraint 

thing where the bound goes out of the problem. 

Typically the problem size the number of nodes may increase significantly but the problem 

size is always a two constraint. There could be some other issues when you start doing it but 

certainly the problem the constraint set does not become large because of the addition of 

these and each one is only a kind of a bound. 

In spite of that the problem is a worst case hard or enumerative kind of an algorithm because 

you do not know how many nodes you will evaluate before you terminate. Let us look at 

another way to solve integer programming problem. 

(Refer Slide Time: 40:12) 

 

As usual we solve this first by the simplex algorithm to get an LP optimum so, let us 

construct the simplex table and then solve it first using a simplex algorithm. You will have X1 
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X2 X3 X4 we start with X3 and X4 here so, you have X3 X4 here. There are 1 1 0 0 0 0 7 minus 

5 1 0 7 minus 12 15 0, 7 1 1 0 0 0. You could enter on X1 you could enter on X2 so, let us go 

back and enter on we enter X1 here. 

Find there’s only one leaving variable so, this is a leaving variable because of this negative 

there is only one leaving variable so, I have X1 X4. So, I have 1 and 0 1 minus 5 by 7, 1 by 7, 

0, 1. This plus 12 times this so, 0 15 minus 60 by 7 is 45 by 7, this plus 12 times this is 12 by 

7,1, 7 plus 12 into 1 is 19 so we get a 1 here. This becomes 0 this becomes 0 1 plus 5 by 7 is 

12 by 7 and this is minus 1 by 7. 

X2 enters again there is only one leaving variable here this here. I have X1-1 X2-1 this is the 

pivot element 45 by 7 is the pivot. So, multiply or divide by the pivot to get 0, 1, 12 by 45, 7 

by 45, 19 into 7 is 63 133 by 45 here. 

This plus 5 by 7 times this 1 0, 1 by 7 plus 5 by 7 into 12 by 45, 12 by 45 is 4 by 15 so, you 

get 1 by 7 plus 12 by 7 into this 12 by 35 so 1 by 7 plus 12 by is 17 by 35 and we get 

something else here; minus 5 by 7 1 by 7 0 12 by 7 so this should become 12 by 45 which is 

4 by 15 is written down here, this is 4 by 15 and you have a 7 by 45 here. 

This is 1 by 7 plus 5 by 7 into this so, 20 by 105 which is 4 by 21 4 by 21 so, 1 by 7 plus 4 by 

21 is 1 by 3 so, 1 by 3 this plus 5 by 7 into this which gives me 5 by 45 which is 1 by 9. This 

plus 5 by 7 into this so, 1 plus 5 by 7 into 133 by 45 so that is 28 by 9 which we know 

anyway so, 28 by 9. 

The Z value is 28 by 9 plus 133 by 45 273 by 45 and you get 0 0 minus 9 by 15 minus 4 by 

15 so, this is the LP optimum that we have. Now, we realize that both X1 and X2 are not 

integer valued we can choose any one of them and proceed further. 

We just now saw that it is customary to take that variable which has the maximum fractional 

portion for subsequent addition or move in the algorithm so we take this and now we write 

this in the form of an equation. 

(Refer Slide Time: 45:45) 
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This becomes X2 plus 4 by 15X3 plus 7 by 45X4 equal to 133 by 45. Now, because this is a 

simplex iteration and it represents LP optimum this will have to be nonnegative even if it is a 

dual simplex iteration, it does not matter because this represents an LP optimum so this has to 

be non negative. What we do is we rewrite this in such a way that I do not have a fraction for 

X2 so I just write X2 the fraction the coefficient of X3 turns out to be a fraction less than one 

right 4 by 15 so I just write is as 4 by 15X3. 

For example, if this coefficient had been 19 by 15 I will write it as plus 1 X3 plus 4 by 15. I 

will always write it as an integer plus a positive fraction which means if it were minus 4 by 

15. I would have written it as minus 1 plus 11 by 15. I should always write it as an integer 

plus a positive fraction. This becomes 7 by 45X4 becomes 2 plus 43 by45. Right-hand side is 

also written as an integer plus a positive fraction. We use this and try to create a cut which we 

will see in the next class 


