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Lecture 12 

Integer Programming Formulations 

In today's lecture, we will continue our discussion on integer programming formulations. 

(Refer Slide Time: 00:17) 

 

In the last lecture, we formulated the grouping problem as an integer programming problem. 

Today, we will begin with something called the fixed charge problem, which is related to the 

grouping problem but slightly different. Now, the problem is like this. Suppose there are say 

three or four locations where somebody would like to establish a factory or a warehouse or a 

distribution center or something like that; so these (Refer Slide Time: 00:54) will be the central 

nodal points. From this factory or distribution center we have to send items to different places. 

These will be the customer points; this will be there and so on. There is already an established 

connectivity saying, for example, this point is connected to this, this point is connected here, this 

point is connected here, this point is also connected to this, connected to this, connected here 

connected here and so on. 
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We will have certain connectivity associated; you have to make sure that every point is 

connected to at least one of these or more than one of these and so on. For example, we will call 

these (Refer Slide Time: 01:48) as i, these are the i's and these are the j's, so we will say that 

there is a requirement of dj for each of these j's and there is a capacity ai, we will look at that 

little later. There is a transportation cost Cij of transporting it from i to j. There could be an ai, 

which is the capacity restriction also. The most important thing is that, it is not that you have 

these plants located in all these four places, what you want to do is, let us say, you want to locate 

p number of plants, say p could be 2. Let us assume that these are candidate locations for plants 

and these are the demand points and there is transportation from the plants or the factories to the 

demand points. There are four candidate points but we want to locate it only in two places, not 

on all the four. There is the fixed charge fi of locating something in location i, that is also there. 

In order to create a facility I have a fixed expenditure which is called a fixed charge; that is why 

this problem is called fixed charge problem. 

(Refer Slide Time: 03:33) 

 

The variables will look like this; you can have Yi = 1, if location i is chosen and Xij is the 

quantity transported from i to j. So your objective function for this problem will be to minimize 

sigma fi yi plus sigma Cij Xij. You may say for example, if there is an absolute connectivity every 

one of the j's is connected to all the i's and so on, a complete connectivity between i and j then 

you may formulate this problem for a fixed number. For example, you may say sigma Yi equal to 
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p implies that I want my factories to be located exactly in p out of the m possible locations; you 

could have that. At the same time if you do not have this complete connectivity, what you would 

like to do is, to have a minimum number of locations you will ignore this constraint and let the 

problem decide the number of Yi’s that it wants to have. You may have this constraint you may 

not have this constraint depending on the situation. You may also have Xij less than or equal uij, 

which is the link.  For example, this will be uij, which is the capacity connected with the arc i-j. I 

may be able to transport the maximum of uij between i and j.  

(Refer Slide Time: 05:22) 

 

If you do that then it is called a capacitated problem. If you leave out the capacity restriction, 

then it becomes an uncapacitated problem. For example, the standard transportation problem that 

you have formulated is an uncapacitated problem. It does not put any restriction on the limit on 

Xij. All capacity constraints or capacitated problems have constraints which are upper bound to 

that Xij. So you may have a capacitated problem, you may have an uncapacitated problem. If you 

have a capacitated problem then you will get this constraint. If it is uncapacitated, you will not 

limit the Xij, it can be anything. Sigma Xij should be less than or equal to aiYi. If location i is 

chosen, which means Yi equal to 1, only then the ai capacity is available for you to be distributed, 

otherwise it is not. The standard transportation constraint would not have this Yi. It will simply 

be sigma Xij less than or equal to ai, j is equal to 1 to n. Because of the location decision that 

comes along with the transportation decision, you will have sigma aiYi. 
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If you do not have this capacity constraint ai and if you assume that the plant can produce an 

infinite number or whatever is needed, then this will look like sigma Xij is less than or equal to M 

into yi, where big M is large and positive and tends to infinity. When the location is chosen, it 

can produce a maximum big M. If it is not chosen, it can produce only 0, so nothing can come 

out of it. Sigma Xij is greater than or equal to bj because what is needed in destination j should be 

met. All these will work very nicely if there is complete connectivity among the i's and j's 

otherwise what you can do is, you can leave out those Xij’s for which there is no connectivity; 

that is one, or you can set that uij equal to 0 so that the whole thing does not exist, you can do 

that or you can even go back and put another aij, which is like an incidence which models an 

incidence; aij equal to one if there is a link between i and j, you can do that also and suitably 

bring that aij or bij. You should not confuse with a and b. Call it some c; c is also used, so some 

number rij as an incidence between i and j and use it suitably. So, Xij will be enabled only when 

that rij is 1 otherwise it will not be enabled; you can do it that way. Easiest thing to do is put all 

the uij’s to 0, where you do not have the link; that is the easiest thing and so on. 

So Xij greater than or equal to 0. What is bj? bj is the requirement. What is that dj? Where is the 

dj? I should be consistent. I will call this dj. So Yi is equal to 0, 1. This is called a fixed charge 

problem. This is a very important problem in location, allocation, distribution, supply chain and 

in all those areas, particularly when you are looking at decisions at multiple levels, for example, 

you could have factories, you could have distribution centers, you could have warehouses and 

then retailers. The problem will look like, I would want to make say p1 out of M1 factories, p2 out 

of M2 distribution centers, p3 out of M3 warehouses, p4 out of M4; M4 is ultimate customer so you 

will not have that; you will get a series of fixed charge and becomes a fairly complicated 

problem. This is reasonably similar to the grouping problem but it has additional constraints and 

restrictions. 
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 (Refer Slide Time: 10:25) 

 

We will look at some more examples of integer programming formulation. You will also take the 

travelling salesman problem as the next example. 

(Refer Slide Time: 10:47) 

 

To begin with, let us take a travelling salesman problem, where the distance matrix is given. We 

can generalize it to n there is a no problem at all, except that we need to consider the case where 

n is odd and n is even separately. We will right now take five, where n is odd and we will assume 



6 
 

that we have the distance matrix that is given to us. Distance dij is known. We can assume that it 

is symmetric but it is not absolutely necessary that it is symmetric in a travelling salesman 

problem. 

Normally, distance between i and itself, any point and itself is 0. But it is customary to define di,i 

as infinity in all travelling salesman problems. So, we will put a dash here in all these five places, 

indicating infinity. We will see why we do that very soon. In all travelling salesman problem you 

can almost close your eyes and put infinity along the diagonal, you will never have a 0 in the 

diagonal. Let us define Xij equal to 1 if the salesman visits j immediately after i. There is one 

more aspect which we will touch upon. Unless otherwise stated explicitly, it is assumed that the 

travelling salesman distance matrix for any TSP will have to be square because it is distance 

among the certain number of cities. It will be symmetric because it is under the assumption that 

you are modeling Euclidean distances unless otherwise you are bringing some other factor as a 

distance measure in a TSP. 

The third important assumption is it satisfies triangle inequality. Triangle inequality means if you 

take three points i, j, k, dij plus djk is greater than or equal to dik; I think strictly greater than is 

triangle inequality. So you will have this. This comes from the fact that in a triangle sum of two 

sides is always greater than the third. When you have this triangle inequality satisfied, it reflects 

itself in a different form. If you define a TSP, the normal definition of a TSP is a salesman starts 

from city 1 or any city, visits every city once and only once and comes back. This once and only 

once comes in because if your matrix satisfies triangle inequality you can prove that the person 

will visit once and only once. For example, you cannot have a solution where the salesman visits 

a city twice other than the starting city of course. If you assume the city 1 is the starting city, the 

salesman will start from city 1, go back complete the circuit and come back to 1. Every other city 

in a TSP, he or she is expected to visit only once and that comes because of the triangle 

inequality. If you satisfy triangle inequality, any solution where the person visits a city more than 

once will always be inferior to a solution where the person visits once and only once. So, that 

once and only once comes because of the triangle inequality. Distances are positive, distances are 

more Euclidean; therefore they satisfy this. For example, if you have a distance matrix that does 

not satisfy triangle inequality, then it is always advantageous for you to go from i to k and k to j 

instead of i to j. So the person will end up visiting a node more than once. 
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For example, if I want to go from say 1 to 5, if going through 4 is cheaper I will always do that. 

For example, from 5 to 7 I am going again and if it turns out that going through 4 is cheaper, I 

will visit 4 twice. But when this condition is satisfied I will never do that. So that is one thing 

which we will assume unless otherwise stated that the matrix is square symmetric and satisfies 

triangle inequality, which implies that the person will visit every city once and only once. Let us 

go back and start formulating. The person has to leave each city once. 

(Refer Slide Time: 15:43)  
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Sigma Xij is equal to 1. From every i, he has to leave, so summed over j equal to 1 for every i; 

person has to enter every city so sigma Xij summed over i equal to 1 for every j. Xij equal to 0 or 

1 and minimize sigma dij into Xij. Let us assume that we have formulated the TSP this way. Is 

this answer correct or is this formulation correct? It is not, simply because this is the formulation 

for the assignment problem. There has to be something more which makes it the TSP, so what is 

that? Suppose we look at this matrix and we just apply this formulation saying that it is a TSP 

formulation and let us also assume that we have not done this and we have used that the distance 

between any point and itself is zero. 

(Refer Slide Time: 17:02) 

 

Now if you apply this formulation, what will you get? You will get all diagonal assignments, X11 

equal to 0, X22 equal to 0, z equal to 0. Why is it not a TSP, because it is not a tour. Now number 

one is if you put 0s here, then your travelling salesman problem for this formulation, which we 

will refine this formulation later we will give you all diagonal assignments. Each of the diagonal 

assignment is a subtour. There are two things in a TSP. If I have a 5 by 5, if I have 1, 2, 3 say 5, 

4, 1 is a tour; it is a feasible solution to the travelling salesman problem. 

For example, this will be reflected by X12 equal to X23 equal to X35 equal to X54 equal to X41 

equals 1. There will be five allocations and this will be the order of allocations, this has a tour. 

Suppose I have X12 equal to X25 equal to X34 equal to X43 equal to X51 equal to 1; let us try to get 
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a tour or a subtour from it, then you get 1 to 2, 2 to 5, 5 to 1, 3, 4, and 3. This is not the solution 

to the TSP, this is the subtour and there are two subtours. A solution to the TSP should not have 

subtours, so what we need to do is, we need to add what are called subtour elimination 

constraints into this and if you are able to do that, then we get the solution or the formulation for 

a travelling salesman problem. So you need to add subtour elimination constraints. For a 

travelling salesman problem of length n or size n, then you can have subtours of length 1, 2, 3 up 

to n minus 1. You need to eliminate all these kinds of subtours. Now, every subtour elimination 

constraint would involve a constraint and you want to minimize constraints in any formulation. 

Now what you do is you put a dash here, which is like a big M, so that you avoid subtours of 

length 1. 

(Refer Slide Time: 19:35) 

 

The moment you start putting infinity here or dash here, then Xii will not become an allocation in 

a TSP. So indirectly you eliminate subtours of length 1 by forcing the diagonals to infinity. That 

is the reason why you put infinity in the diagonals. You have eliminated subtours of length 1.  
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Suppose I have a solution which is like this; X11 equal to 1, X25 equal to X52 equal to 1, X34 equal 

to X43 equal to 1. There are three subtours, 1 to 1 is a subtour, 2 to 5, 5 to 2 is a subtour, 3 to 4, 4 

to 3; there are three subtours. This is the subtour of length 1, this is the subtour of length 2, 

subtour of length 2. There are two links so subtour of length 2. There is only one link so its 

subtour of length 1. Now by forcing the diagonal elements to infinity we have eliminated 

subtours of length 1. 

(Refer Slide Time: 21:02) 
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Now you need to eliminate subtours of length 2 and that will be like this; Xij plus Xji less than or 

equal to 1 for all i and j. For i equal to 1, j equal to 2, actually you can also put i not equal to j so 

that you can reduce some more constraints. If I look at i2, I am trying to say X12 plus X21 less 

than or equal to 1. What will happen? One of them will have to become 0. If X12 is in the 

solution, X21 will not be in the solution. If both are not in the solution it is still acceptable to you. 

That is why I have put a less than or equal to 1. It may turn out that both 1, 2 or 2, 1 may not be 

in the optimal solution. Therefore you put a less than or equal to 1 or in general for a subtour of 

length k, you put k minus 1. This will take care. The only problem is there are too many 

constraints. There are nC2 or nC2 minus n if you leave out that i not equal to j, and you put nC2-n, 

that many constraints you will have to put. If you add all these nC2, you have now eliminated the 

subtours of length 2. Go back and look at subtours of length 3. When I have to eliminate subtours 

of length 3, then I have to put Xij plus Xjk plus Xki less than or equal to 2, which means I have 

nC3 constraints because i j k can be chosen in nC3 ways. I will have another nC3 set of 

constraints and I will have another nC4 set of constraints.  

The number of constraints becomes exceedingly large, but let us try to do something else. Now, 

let us go and back look at this three constraints again. I have a TSP with five cities. Let us 

assume I have a subtour of length 3. If I have a subtour of length 3, the remaining two cities 

which are not included in my subtour can either form a 2 city subtour or two 1 city subtour. It 

cannot form anything else; therefore, if I eliminate all 1 city subtours and 2 city subtours, I am 

automatically eliminating all 3 city subtours. Is that clear? I will repeat again. If I have a 3 city 

subtour in a 5 city TSP, then the remaining 2 cities can become either a single subtour of length 2 

or 2 subtours of length 1 each, no other possibilities exist. Therefore, if I eliminate all 1 city 

subtours and all 2 city subtours, I automatically eliminate all 3 city subtours, which I have 

already done. I do not have to put this nC3. Similarly, if I have a 4 city subtour there is only one 

remaining and that has to be a 1 city subtour. 

I have already eliminated 1 city subtours, so I do not have to do the nC4. So in general, if I have 

n city travelling salesman, problem where n is odd it is enough if I do till n minus 1 by 2. I do not 

have to do anything beyond. If n is even, I will do up to n by 2. When I have 6-city TSP I have to 

necessarily also eliminate the 3 city subtour, because a 3 can result in another 3. It can also result 

in another 3, so you do it up to n by 2, when n is even and n minus 1 by 2, when n is odd. You 
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will have nC2 plus nC3 plus dash, dash nCn-1/2 constraints if n is odd in addition to this 2n and 

nC1 plus nC2 up to nCn/2, when n is even in addition to these. You will realise that the number of 

constraints itself is exponential, because nCn/2 or n minus 1 by 2 is exponential. Number of 

constraints itself is exponential. Much later in the course when we look at TSP, we will at least 

see that this nC1 up to nCn minus 2, which is an exponential number, can be replaced by a set of 

n constraints or n square constraints. We will see that little formulation much later, but right now 

the understanding is there will be whole set of subtour elimination constraints, which we have to 

make. Much later we will look at that formulation where we will have n square or nC2 or 

whatever number like that. nC2 constraint which is capable of modeling the entire thing, that will 

be a more efficient formulation of the TSP. The understanding here is to add this subtour 

elimination constraint; also the understanding is that we do it systematically, so you can stop up 

to n minus 1 by 2, when n is odd and n by 2 when n is even. We will look at another formulation 

now. We look at job shop scheduling problem. 

(Refer Slide Time: 26:54) 

 

Let us say there are three jobs; there are three machines. You call the jobs A, B and C, you call 

the three machines M1, M2 and M3. 
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 (Refer Slide Time: 27:04) 

 

Now let us say job A will have M1, M2 and M3. This will be the route. Job B will have M2 and 

M1 and say job C will have M3 and then M2. The associated processing time will be Pij, where i 

equal to 1 to 3 represents job, j equal to 1 to 3 represents machine. For example, this will need 

P11, P12, P13, P22, P21 and so on. This is called the job shop because the order of visit is different 

for different jobs. If for example, we say that all the jobs will first visit M1 and then M2 and then 

M3, then it becomes something called a flow shop, where all the jobs have the same order of 

visit. If the route or order of visit depends or is different for different jobs then it comes under a 

general job shop scheduling problem. All the jobs are available at time equal to 0. When we start 

processing, each job will be completing at a certain time. For example, let us say all these three 

will be over if they are over by certain time, say A1 and this is A2 and this is A3 or you call it 

some capital C1, capital C2, capital C3. 

What I want to minimise is called the makespan, which is the time at which all the jobs are over. 

It is something like all the three jobs are to be done for the same customer. When all the three 

jobs are finished I can pack them and send it to the customer. So I want to send it to the customer 

at the earliest and this is what I want to minimise. I want to find out how I schedule these jobs in 

the system such that I minimize this. C is the time at which this is over. C is the time at which 

this is over; this is not given to you  C1, C2, C3 are not known. C1, C2, C3 will have to be found. 
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The objective is to try and minimize the make span, which is the time at which all the jobs are 

ready and over. That is the objective. Now, let us formulate this problem. 

(Refer Slide Time: 30:23) 

 

Let tij be the starting time of job i on machine j. For example I take job A. For this certain things 

are very clear. t12 from 1 it goes to 2, so t12 is the start time of job A on machine 2. t12 has to be 

greater than or equal to t11 plus p11 because job A first visits machine 1 and only then it has to 

visit machine 2, which means it should have completed its work in machine 1. If tij is the start 

time on machine 1 for job 1, then t11 plus p11 is the time it is over and it can go to machine 2 only 

after this is over; this is very straight forward constraint. Similarly t13 is greater than or equal to 

t12 plus p12, which is again a very straight forward constraint. As far as this job is concerned t21 is 

greater than or equal to t22 plus p22. That is the only thing I have and as far as this is concerned, 

t32 is greater than or equal to t33 plus p33.  

For example, I can finish my stuff with M1. Any machine can process only one job at a time that 

is an assumption. So, I may have to wait to get this M2. My start time t12 need not be 

immediately after this is over. This could be over, it could be waiting for machine 2 and machine 

2 may be busy doing something else, it waits and once the machine 2 is free, it can go, which 

means t12 is greater than or equal to t11 plus p11. These are simple constraints which are easy to 

model. The difficulty comes here; if I take machine M1 then machine M1 now has job A and job 
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B going into machine M1. I do not know which one is going to go first. I have to decide such 

that it is advantageous to me. What I will do is, if I take a machine M1, either job A can go first 

and then job B can go or job B will go first and then job A can go. You get into an either or 

situation. If you take M1, if job A goes first and then job B goes, then it means that t21 job B 

going into machine 1, will have to be greater or equal to t11 plus p11 or t11 is greater than or equal 

to t21 plus p21. 

You have an either or constraint that comes in which we have not modeled yet in our linear 

programme. We always know how to model the rigid constraints but not an either or constraint. 

Similarly, if you take M3 it is either A and C. This is for M1. For M3 you will get a similar 

either or constraint which will be like this. M3 has A and C, so you will have either t13 is greater 

than or equal to t33 plus p33 or t33 is greater than or equal to t13 plus p13. You take M3, A and C; 

so jobs 1 and 3. Starting time of job 1 on machine 3 should be after the completion time of job 3 

on machine 3, which is t13 is greater than or equal to t33 plus p33 or the other way. Only one of 

them is valid. Only when both are valid you can do the addition, etc. Only one of them is 

eventually valid. We will see how we model that.  

If you take machine 2, you get into a much more different situation because M2 is handling all 

the three jobs. You have to write three sets of either or. For example, if you take the pair AB, 

then either A is ahead of B or B is ahead of A. If you take the pair BC, then B is ahead of C or C 

is ahead of A. If you take the pair AC, either A is ahead of C or C is ahead of A. You will have 

three pairs of either or constraints. Since we are doing it first time, we will write down all the 

three pairs. For AB you will have t12 is greater than or equal to t22 plus p22 or t22 is greater than or 

equal to t12 plus p12, this is for AB. Now for BC, t22 is greater than or equal to t32 plus p32 and t32 

is greater than or equal to t22 plus p22, this is one pair. For 1 3 you will have t12 is greater than or 

equal to t32 plus p32 or t32 is greater than or equal to t12 plus p12, you have another set. 

In general, if all the jobs go through all the machines, then you will have Mn pairs of constraints. 

How do you model this? This is where the integer programming comes in. We just look at one of 

these; we can similarly model the rest of them. If you take one pair, what you first have to do is 

to write this in this form. 
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If you take the first constraint this is written as t11 plus p11 minus t21 less than or equal to 0, t21 

plus p21 minus t11 less than or equal to 0. The first thing you have to do is to write them as less 

than or equal to 0. Then you write this as t11 plus p11 minus t21 less than or equal to M into delta1 

and t21 plus p21 minus t11 is less than or equal to M into 1 minus delta1. Initially let us call it only 

delta. Let us not give any subscript to that delta. Later we will do that. This will become M delta 

and M into 1 minus delta, where M is the well known M; large, positive and tends to infinity, the 

big M and delta is the 0, 1 variable. Now what will happen? If this constraint is binding, that is, if 

it is advantageous for you to start 2 after you complete 1 in your final solution, if this constraint 

is binding, then this is the one that is binding; this is the one that is binding, so your delta will 

take a value 0. If this is binding, delta will take the value 0 implies this is redundant 1 minus 

delta is 1. It is a redundant constraint, less than or equal to M is the redundant constraint. 

On the other hand if the other one is advantageous to you, then delta will take the value 1 to 

make this binding and make this redundant. For every pair you will introduce the delta. Every 

either or situation will have two constraints and a delta which is a 0, 1 variable. You will have to 

introduce as many deltas as the number of pairs that you have. To give an identity to this delta 

you can call this delta, say delta121 because this represents jobs 1 and 2 on machine 1. For 

example, this constraint was written for machine 1 for jobs 1 and 2. You can call this as delta121, 

this will be delta121, delta121 as the 0, 1 variable. Similarly, you can name every one of these 
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deltas. This will become in this case 1 3 3 and this will have the 1 2 2, 2 3 2, 1 3 2. For every pair 

you will have a delta. 

(Refer Slide Time: 41:18) 

 

Suppose for some reason or other if I put a limit on the completion time of each one. I say that 

job A has to be over by a certain due date, which is called da. Each has a due date or something 

like that and that is a very simple constraint. Completion time of job A is nothing but t13 plus p13 

should be less than or equal to d1. Now I have to minimize the make span, so I have the three 

completion time.  
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For this the completion time will be t13 plus p13. This will be t21 plus p21. This will be t32 plus p32. 

These are the completion times of the three jobs A, B and C, respectively. What do I want to do? 

I want to minimize the make span, which means I am minimizing the maximum of the 3 

numbers. So I end up writing minimize some v and v is the maximum of all of them. So what 

will happen? v is greater than or equal to t13 plus p13, v is greater than or equal to t21 plus p21, v is 

greater than or equal to t32 plus p32. You do not have to necessarily restrict the t’s to integers or 

p’s to integer; depends on the whole thing. It is likely that if the processing times are integers, 

then all the t’s will also be integers. Right now you do not have to worry about any of them. You 

will just say tij, v greater than or equal to 0, deltaijk equal to 0, 1. This is the formulation for the 

job shop scheduling problem.  

What is d1? d1 is called the due date for each job. Due date is something like a due time before 

which you have to complete the job. So if something like a d1 is given to you, then you will add 

constraints saying completion time of the job 1 should be before the d1. Completion time of the 

job 1 is start time on machine 3 plus processing time on machine 3. So this will be a due date 

related constraint.  
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If I do not want to minimize this make span, instead I say that I give you a due date for each one 

of them, d1, d2 and d3. I am not going to force you to say that you have to complete before d1or d2 

or d3. I am going to say I want you to minimise the total delay. That is a very reasonable 

objective. In that case you assume that these three jobs actually go to three different customers 

and each job has a certain due date given by the customer. Ideally you would like to meet that 

due date. If you are not able to meet the due date, you would at least like to minimise the total 

delay that is there, from your point of view. This constraint will not be there. You are not going 

to be forced to complete within the due date. Then you need to look at one thing. We have these 

three different completion times and you have associated due times with each one. We call them 

d1, d2 and d3. We have already written here. Now the delay in scheduling sequencing 

terminology is called by different terms. If this completion time is before the due date then this 

job is called early, it is completed early. If this is after the due date then the job is called tardy. 

So a job can either be early or tardy. 

The term late is a very generic term. Lateness is the difference between the due date and the 

completion time. If the lateness is negative it means the job is completed early. If the lateness is 

positive, then the job is behind and then it is called tardy. Now what do you want to minimize? 

Right now you do not want to minimise the earliness. You are interested only in minimizing the 

tardiness.  So what you have to do is you have to define tardiness for each one of these. What 
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will be your tardiness? Tardiness will be say d1 minus t13 plus p13 or minus d1; this will be your 

tardiness. This is the completion; this is the due date and if this difference is positive, then it is 

tardiness. If this difference is negative then tardiness is 0. 

The actual tardiness is maximum of 0, t13 plus p13 minus d1, this is the tardiness. If the job is 

early, this is negative and then your tardiness is 0. What you have to do now, is you have to 

define u1 greater than or equal to 0, u1 greater than or equal t13 plus p13 minus d1. u1 greater than 

or equal to 0 is anyway a non negativity constraint. You do not have to explicitly state this into 

the formulation as a constraint. You will just define this and similarly u2 is greater than or equal 

to t21 plus p21 minus d2, your u3 will be greater than or equal to t32 plus p32 minus d3. You will 

also have u1 greater than or equal to 0, u2 greater than or equal to 0, u3 greater than or equal to 0. 

 (Refer Slide Time: 48:36) 

 

Now your objective function will be to minimize u1 plus u2 plus u3. You will get this. So 

depending on the objective function formulation becomes different. If you want to minimize not 

only the sum of tardiness, but you also want to minimize the sum of earliness as well as tardiness 

then you will end up doing minimize sigma modulus say some tij plus pij minus di. There are 

certain situations where even earliness is not desirable. What will happen is, if you finish the job 

early you would like to send it to your customer. Customer may not want to receive it, he will 

say that I have put my schedule in such a way that this item is going to go to production only 
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tomorrow. It is enough if you send me tomorrow or tomorrow morning; do not send it today 

morning or two days earlier. I do not want to hold that inventory in my possession. Those are 

issues related with operations; there are situations. Tardiness is much more undesirable than 

earliness but there are problems where this is important. We are only interested in modeling, so 

you will get something like this. Difficulty again will be you have to write this explicitly, 

because this can be positive or negative and then you have to handle it accordingly. Modulus is 

not directly a linear thing, so again you have to convert this modulus into another linear thing. 

These are the issues. The understanding, particularly from the job scheduling is this “either 

or”and that is the most important thing. The “either or” constraint will keep repeating again and 

again in every integer programming formulation, particularly when you are looking at processes 

and manufacturing related issues where a job or a processor can handle only one job at a time. 

The moment it can handle multiple jobs you do not have to worry so much, but then if it can 

handle a maximum of k jobs then you have to put another constraint y1 plus y2 plus yn less than 

or equal to k and y will be 0, 1. All these are issues in formulating examples. There are still one 

or two more examples that we will look at in the next lecture. 


