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Lecture- 8  

Primal Dual Algorithm 

We continue the discussion on the primal dual algorithm.  
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In the last lecture we were solving this problem, minimize 3X1 plus 4X2, subject to 2X1 

plus 3X2 greater than or equal to 8, 5X1 plus 2X2 greater than or equal to 12. The standard 

problem is a minimization problem with all greater than or equal to constraints. We first 

converted the inequalities to equations by adding the surplus variables or negative slack 

variables X3 and X4, to get 2X1 plus 3X2 minus X3 equal to 8. 5X1 plus 2X2 minus X4 

equal to 12. This gives a contribution of 0. Now we write the dual of this problem 

because we have already seen that for a minimization problem with all greater than or 

equal to constraints here. Strictly positive values 0 0 is not basic feasible to the primal, so 

this involved use of artificial variables or the two phase method to solve this. We are now 

going to write the dual of this problem.  
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When we write the dual of this problem including the surplus variables, we get a dual like 

this. Maximize 8y1 plus 12y2 which comes from 8y1 plus 12y2, two dual variables subject 

to 2y1 plus 5y2 is less than or equal to 3; 3y1 plus 2y2 less than or equal to 4; minus y1 less 

than or equal to 0; minus y2 less than or equal to 0 and y1 and y2 unrestricted. When we 

look at a dual like this we quickly realize that 0 0 which is y1 is equal to 0 and y2 equal to 

0 is feasible to the dual. The way the dual is written, if the given problem is a 

minimization problem with all greater than or equal to constraints and strict possible 

coefficients here then we will have a dual where, 0 0 is feasible. We have identified a 

feasible solution to the dual. The next thing we do is to apply complementary slackness 

based on this feasible solution to the dual. If we look at 0 0, this is satisfied as an 

inequality, this is satisfied as an inequality and these two are satisfied as equations. So 

with these two being satisfied as equations, we write the corresponding primal after 

applying complimentary slackness conditions. This corresponds to variable X3, this 

corresponds to variable X4, and so in the primal corresponding to this dual, after we apply 

complimentary slackness, it is equivalent of solving minus X3 equal to 8 minus X4 equal 

to 12 because X3 and X4 are basic that comes out of this. So, minus X3 equal to 8 minus 

X4 equal to 12, we need to find the solution.  
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Right now, the solution for minus X3 equal to 8 and minus X4 equal to 12 is easy, but we 

also know that solving equations can also be done through linear programming. What we 

do is we rewrite this as follows: 

(Refer Slide Time: 03:45) 

 

Minus X3 plus a1 equal to 8 minus X4 plus a2 equal to 12, a1 a2 greater than or equal to 0, 

X3 X4 greater than or equal to 0 and we minimize a1 plus a2. If this system has a solution, 
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also satisfying X3 X4 greater than or equal to 0, then it will automatically force a1, a2 to 0 

and give us a solution with Z equal to 0. If this plus X3 X4 greater than or equal to 0 does 

not have solution then, one of the artificial variables a1 will be in the basis. This will give 

us a Z value as 1 0, which is non zero, which is 1 or 2 depending on the number of a's 

that are in the solution. We solve this problem using the simplex algorithm here. 

(Refer Slide Time: 04:39) 

 

We found out that the solution a1 equal 8, a2 equal to 12 with Z equal to 20 is optimal. 

This gives us a solution a1 equal to 8, a2 equal to 12, Z equal to 20. 



5 
 

(Refer Slide Time: 04:54) 

 

This problem is called the restricted primal; restricted because it is restricted by the 

feasible solution to the dual. We apply complimentary slackness and then we get the 

restricted primal. The basic idea is this. If I have a feasible solution to the dual, I apply 

complementary slackness and then if I solve the restricted primal, then the optimum 

solution to the restricted primal will be feasible to the original primal. Therefore, it will 

be optimal to the primal and dual based on duality relationships. Because, if there is a 

feasible solution to the dual, there is a feasible solution to the primal and they satisfy 

complementary slackness; then they are optimal to the primal and dual respectively. So 

this method will start with the feasible solution to the dual, apply complementary 

slackness, create a restricted primal and if the restricted primal is feasible then, it is 

optimal. Right now the restricted primal is not feasible to this because, this gives a 

solution a1 equal to 8, a2 equal to 12, which is not feasible to this one. 

We need to get one more dual feasible solution. Now in order to get one more dual 

feasible solution, what we do is, we go back and try to find out the dual of the restricted 

primal and see what happens. When we look at the dual of the restricted primal, the dual 

of the restricted primal will now have two variables, in this case v1 and v2 and that will be 

to maximize 8 v1 plus 12 v2.   
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The primal has two constraints, so the dual will have two variables, which will be v1 and 

v2. So this will be maximize 8 v1 plus v2. Now as far as this is concerned, minus v1, X3 

appears only here, so minus v1, the coefficient is 0. All values are greater than or equal to 

0. So, the maximization problem will have less than or equal to 0; minus v1 less than or 

equal to 0, minus v2 less than or equal to 0 from this. This appears only in the second 

constraint. From this, v1 greater than or equal to 1 and v2 greater than or equal to 1, 

because this variable appears only in the first constraint. v1 objective function coefficient 

is 1, so v1 greater than or equal to 1 and v2 greater than or equal to 1 and v1 v2 

unrestricted because the two primal constraints are equations. 

A solution to this is given by 1, 1. v1 is equal to 1 and v2 is equal to 1 with Z is equal to 

20, or objective function value equal to 20. Please note that, this has an objective function 

value of 20, which is the same as the objective function value of 20 here. So what we do 

is, this we call as some v which is the solution to the dual of the restricted primal. Now 

we have a solution which we call here as y, which was the starting dual solution. 
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So what we will do now is, we want to create one more dual feasible solution and then, 

apply complementary slackness to solve the restricted primal. Let us now define the new 

dual feasible solution as y-dash, which we are going to have and let us call this y-dash as 

y plus theta v, where y is the original 0 0, the existing dual solution, v is the solution of 

the dual of the restricted primal. So v is 1 1 and we need to find out theta. If we need to 

find out theta, then, we get another feasible solution to the dual, which is based on the 

original y, as well as v. What do we want this y dash to have? When we started with y 

equal to 0 0 and wrote its restricted primal and solved it, it turned out to be infeasible. 

Now we want to define a y-dash, which is feasible to the dual, the restricted primal of 

which we will now solve. So we want the restricted primal to be different from this 

because, this is not giving us the solution. 

When will the restricted primal be different? It will be different when the new y-dash 

satisfies at least one more new constraint as an equation, so that the corresponding 

variable will now enter into the basis here. Theta should be such that, at least one of the 

existing constraints which is satisfied as an inequality by y, should now be satisfied as an 

equation by y-dash, so that a new constraint satisfied as an equation here which means, a 

new variable will appear. It may replace an existing thing but, the only nice thing is that 

there will be one candidate, which can come in as a basic variable here, which means 
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theta should be made out of all those constraints which are currently satisfied as 

inequalities, so that, one of those which are currently satisfied as inequalities will also 

become an equation. Second thing is that, in general principles of linear programming, 

this by itself is infeasible which is given by this, but this is a non-optimal solution to this. 

(Refer Slide Time: 11:53) 

 

So non-optimal solution in principle should have a new variable that is entering and we 

relate the entering variable on the primal to the feasibility of the dual, then dual infeasible 

is primal non-optimal. Therefore, right now for all v that we have here, this will satisfy va 

less than or equal to c. So we need a variable Xj into this primal, such that v aj is greater 

than zero. This will satisfy the condition v a less than or equal to 0, so we will look at 

those variables which have v a greater than 0. 
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We would like to look at these constraints which are right, now satisfied as inequality and 

then try and get the best value of theta. The best value of theta that we will have, will be 

given by theta is equal to minimum of minus y aj minus cj divided by v star aj, where v 

star aj is greater than or equal to 0. There is also a little more theory involved in trying to 

get this. But without getting in too much of theory, I have tried to explain this; this comes 

out of two things. One is we will consider only those j's which are satisfied as an 

inequality. They are not satisfied as an equation because, we want eventually one of them 

to be satisfied as an equation. So we will not look at those that are right now satisfied as 

an equation. The second thing that I mentioned, is we want v-star aj greater than 0 

because this will satisfy the condition v-star aj less than or equal to 0. So we want a new 

variable that enters, which will have a v-star aj greater than 0, which is in principle an 

infeasible dual of the moment, which will be non-optimal primal and such a variable will 

enter. 

If we go back and check this, this comes because, if you look at this dual, this dual is of 

the form yaj less than or equal to cj. For example, aj’s are the corresponding columns, cj’s 

are the objective functions and y is the dual variable. So a dual constraint is typically of 

the form yaj less than or equal to cj. Now what we have written is, we want y-star is equal 

to y plus theta v. So if there is a dual feasible solution y-star or y-dash then, y-dash aj 
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should be less than or equal to cj. Now y-dash is written as y plus theta v, so y plus theta 

v into aj is less than or equal to cj. Now yaj plus theta vaj is less than or equal to cj. We 

want it finally to be an equation, so that one of these, as we said, will become an equation 

so for something. For one of them to become an equation, let us quickly change this 

inequality to an equation. Therefore, theta will be of the form minus yaj minus cj by v-star 

aj which is the same as cj minus yaj by v star aj. Basically, this comes from this derivation 

that, that value which is the minimum will force one of these two to be an equation and 

the other would still be feasible. Keeping that in mind, we write this expression for theta. 

With the present solution, let us try and find out what we do. We first have to find out v-

star aj for these two. 

(Refer Slide Time: 17:05) 

 

v-star aj from here, this is aj which is the same as this. Now v-star is 1,1. So the value 

here is 2 plus 5 equal to7, 3 plus 2 equal to 5; so for both of them v-star aj is positive.  
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So theta will be equal to minimum of minus yaj minus cj, so y is 0 0, that we have here. 

So all y ajs are 0, so minus of minus cj is plus cj. So c1 is 3 by v-star aj, which we just now 

found out, v-star is 1,1, aj is 2 5, so v-star aj is 7. So, minimum over 3 by 7, for the second 

one here, this corresponds to the second coefficient. So cj is 4 by v-star aj corresponding 

to this, v-star is 1,1, aj is 3,2, so v-star aj is 5. So theta will be minimum over 3 by 7, 4 by 

5; v-star aj greater than 0. So theta is equal to 3 by 7. When theta is equal to 3 by 7, y-

dash is equal to y plus theta v will be 0 0 plus 3 by 7 into 1,1 which is 3 by 7, 3 by 7. 

Now we have a new solution y1, so we are going to say y is equal to 0 0, is what we 

started. 
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y1 is y plus theta v, which is 3 by 7, 3 by 7. Now if we look at 3 by 7, 3 by 7 and start 

substituting here, this is 2 into 3 by 7 plus 5 into 3 by 7 which is 7 into 3 by 7, which is 3. 

(Refer Slide Time: 19:30) 

 

So this is satisfied as an equation. Now this one is satisfied as an equation; 3 into 3 by 7 

is 9 by 7, plus 6 by 7 is 15 by 7 which is satisfied as an inequality. y1 greater than or 

equal to 0, satisfied as an inequality, y2 greater than or equal to 0 satisfied as an 
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inequality. This is the only one that is satisfied as an equation. So this will force variable 

X1 into the basis. The basis is different so we have to write the restricted primal. X1 alone 

is in the basis.  

(Refer Slide Time: 20:32) 

 

So we are trying to solve here 2X1 is equal to 8; 5X1 is equal to 12 is what we are trying 

to solve now. Once again this is made into a linear programming problem with X1 greater 

than or equal to 0. This will become 2X1 plus a1 is equal to 8; 5X1 plus a2 is equal to 12. 

a1 a2 greater than or equal to 0 and minimize a1 plus a2. Now we actually solve this linear 

programming problem; it is like the 2 phase method. We are essentially solving only this 

set of equations 2X1 equal to 8, 5X1 equal to 12, but we are actually solving it as a LP by 

adding two variables, which may be like artificial variables, with the plus 1 coefficients 

and it is like a two phase method to solve this LP. We go back and solve this; we have X1 

a1 a2. 
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a1 a2 will be the basic variables, so 2X1 plus a1 0 8; 5X1 0 1 12. These have objective 

coefficients of 1; it is a minimization problem. These also have objective function 

coefficient of 1, so cj minus zj; 0. So 1 into 2 plus 1 into 5 is 7, so 0 minus 7 is minus 7, 

you get 0 here, you get 0 here, so you get 20 here. It is a minimization problem with the 

negative cj minus zj, the variable will enter the basis. So, variable X1 will enter the basis. 

Theta is computed as 8 by 2 is 4, 12 by 5; 12 by 5 is smaller than 4. So the variable a2 

leaves the basis. This is the pivot element. 

We do one more iteration with a1 and X1 coming here. cj minus zj, this is 0, this is 1 

divided by the pivot element; 1 0, 1 by 5, 12 by 5; this minus 2 times this, 0 1 minus 2 by 

5, 8 minus 24 by 5 is 16 by 5. So objective function value is 16 by 5 0 0 minus 2 by 5, 0; 

1 minus of minus 2 by 5 is 7 by 5. This is cj minus zj, so no entering variable; algorithm 

terminates with the optimum solution X1 is equal to 12 by 5.  
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The solution here is, X1 is equal to 12 by 5, a1 is equal to 16 by 5 and z is equal to 16 by 

5. Now the restricted primal has an optimum solution with an artificial variable still in the 

basis. Therefore, the solution to the restricted primal is not feasible to this. So we need to 

do one more iteration here because it is not feasible to this. We will now go back and try 

to find out the dual of the restricted primal as we did. This restricted primal will have two 

dual variables v1 and v2. The dual of the restricted primal will now have maximize 8v1 

plus 12v2, which is the same here. 
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8v1 plus 12v2, this one is 2v1 plus 5v2; this constraint is 2v1 plus 5v2 is less than or equal 

to 0. So 2v1 plus 5v2 corresponding to this is less than or equal to 0, corresponding to this 

is v1 is less than or equal to 1 and corresponding to this, v2 is less than or equal to 1; v1 v2 

unrestricted in sign. So 2v1 plus 5v2 less than or equal to 0, v1 less than or equal to 1, v2 

less than or equal to 1, so we have to solve this to try and get the optimum solution to 

this. We can either solve this by the simplex or we can solve this by the graphical method 

because we have only two variables that are there, so we will quickly try and solve it 

using the graphical method. 
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Note that, v1 v2 is unrestricted in sign. So just solving it by the graphical method will give 

us v1 less than or equal to 1. This is same; this is v1, this is v2. v1 less than or equal to 1 is 

here. v2 less than or equal to 1 is here, 2v1 plus 5v2 less than or equal to 0; this is one 

point; 0,0 is one point; the other point could be if v2 is equal to 1, then v1 is equal to 

minus 5 by 2. 

v2 is equal to 1, which is here, v1 is equal to minus 5 by 2, this is 2, 2 and 1 by 2. So this 

is another point; so the third line will look like this. This is 2v1 plus 5v2 less than or equal 

to 0. So this is the feasible region, this is the region corresponding to this one, this is the 

region corresponding to this, this is the region corresponding to this. This will be the 

entire region that we will have.  
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So the objective function maximize 8 v1 plus 12 v2 suppose we take 8v1 plus 12v2 equal 

to 24, then we have 3,0 and 0,2 that come here. 

(Refer Slide Time: 29:01) 

 

Now this is 1 2 3,0 0,2; so the objective function line is like this. As it moves here, the 

last point that it will actually touch is v1 is equal to 1 and v2 is equal to minus 2 by 5, so 
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this will be the point. This is 0 0, this is v1 equal to 1; so as it moves, this is the last point 

which will come here, so v1 is equal to 1, v2 is equal to minus 2 by 5.  

(Refer Slide Time: 29:41) 

 

The optimum solution is v1 is equal to 1, v2 is minus 2 by 5. Now note that the objective 

function value here, this is minus 24 by 5 plus 8, which is plus 16 by 5 which is exactly 

what we got here as plus 16 by 5. We now have a new v which is given by 1 and minus 2 

by 5. Now we need to find out again a new value. First we need to find out theta and then 

we also need to find out new y-dash is equal to y plus theta v.  
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From this we know that this is the one that is satisfied as an equation. So all these three 

now become potential candidates to evaluate theta. We also need to find out for which of 

them v-star a is greater than 0. We need to find out v-star, so first let us find out the 

second one; 3,2. 

(Refer Slide Time: 30:56) 

 

v-star a is 3 into 1 minus 4 by 5; 3 minus 4 by 5 is 11 by 5, so v-star a is greater than 0. 
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So we will write minimum of, for the variable X2 yaj minus cj; y is 3 by 7, 3 by 7. So yaj 

is 9 by 7 plus 6 by 7 which is 15 by 7. yaj is 15 by 7 minus cj minus 4, negative of that, so 

4 minus 15 by 7 is 35 by 7, so 35 by 7 divided by yaj minus cj. 

(Refer Slide Time: 32:01) 

 

y1 is 3 by 7, 3 by 7; so, 3 by 7 into 2 is 9 by 7 plus 6 by 7 is 15 by 7, so 4 minus 15 by 7 is 

13 by 7.  
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This is 13 by 7 divided by v-star aj, which we just now calculated as 3 into 1, 3 minus 4 

by 5, which is 11 by 5, so 13 by 7 divided by 11 by 5. Now for the third one here, which 

is variable X3, so this is variable X3 minus 1 0 into 1 minus 2 by 5, so v-star aj is 

negative, minus 1 0 into 1 minus 2 by 5 is negative. 

Now for the fourth one, 0 minus 1 into 1 minus 2 by 5 is positive, so you get 2 by 5 here. 

This is minus 3 by 7, so we get c minus yaj; 0 minus, minus 3 by 7 is plus 3 by 7 divided 

by 0 minus 1, 1 minus 2 by 5 so plus 2 by 5; so 3 by 7 divided by 2 by 5. So this is 

minimum of 65 by 77, 13 by 7 into 5 by 11. So 65 by 77 and 3 by 7 into 5 by 2, which is 

15 by 14. You get 65 by 77 as the value. So now y-dash is equal to y plus theta v, so y is 

3 by 7, 3 by 7; so 3 by 7, 3 by 7 plus 65 by 77 into v, which is 1 and minus 2 by 5. This is 

3 by 7 plus 65 by 77. This is 33; 65 plus 33 is 88, 88 by 77 is 8 by 7, this is 3 by 7, 65 

into minus 2 by 77 into 5. This will go 13 times minus 26 by 77. This is 33 by 77, so 7 by 

77, which is 1 by 11. This is 65 into minus 2 by 5 minus 26 by 77 plus 33 by 77, 7 by 77, 

which is 1 by 11. Let us look at this, this is 33 plus 65, this is 11 times, so 33 plus 65 is 

98 by 77. So 98 by 77 is 7 into 14 is 98. 14 by 11, 1 by 11; so the value is 14 by 11 and 1 

by 11. So that is your y-dash.  
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So we call that as y2 equal to 14 by 11, 1 by 11. Now, we go back and check from this.  
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14 by 11; this is 28 by 11 plus 5 by 11, is 33 by 11, which is equal to 3; so satisfied as an 

equation. 42 by 11 plus 2 by 11 is 44 by 11; so satisfied as an equation, these are satisfied 

as inequalities. Now we go back here and write the restricted primal. Now corresponding 

to these two X1 and X2 will be the basic variables.  
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We should solve for 2X1 plus 3X2 is equal to 8 and 5X1 plus 2X2 is equal to 12. So in the 

same way, we add two more variables plus a1 equal to 8, plus a2 equal to 8 and then we 

minimize a1 plus a2 and say that a1 a2 X1 X2 greater than or equal to 0. One way is to 

solve it directly, the other is to go to the linear programming and do it. Since we have 

consistently been using the linear programming approach, we will do it using the same 

approach. 

(Refer Slide Time: 38:09) 
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We start with a1 and a2 as the basic variables. So 2X1 plus 3X2 plus a1 is equal to 8, 5X1 

plus 2X2 plus a2 is equal to 12. We have 1 and 1 here, so we have cj minus zj. This is 2 

plus 5 7, so minus 7 minus 5 0 0 and 20. So minimization problem, so negative cj minus 

zj will enter, so 8 divided by 2 is 4, 12 by 5. So 12 by 5 leaves the basis, this is your 

pivot; your a1 X1 coming in. Now this is 1 and this is 0 1 2 by 5, 0 1 by 5, 12 by 5. This 

minus 2 times this is 0; 3 minus 4 by 5 is 11 by 5, 1 minus 2 by 5, 8 minus 24 by 5 is 16 

by 5. Now this is again cj minus zj, this is 0; this is minus 22 by 5. This goes, so you get 

minus 22 by 5. This is 0, this is 1 plus 2 by 5 is 7 by 5 and 16 by 5. 

Once again minimization problem, so negative cj minus zj will enter. So this enters, so 16 

by 5 divided by 11 by 5 is 16 by 11; 12 by 5 divided by 2 by 5 is 6, 16 by 11 leaves the 

basis. This is your new pivot. So you will have X2 and X1 with 0 0 here, cj minus zj 

divided by a pivot element 0 1 5 by 11 minus 2 by 11, 16 by 11. This minus 2 by 5 times 

1 is 0 so 0 0 0, minus 2 by 5 into 5 by 11 is minus 2 by 11. So this plus 2 by 5 into 2 by 

11, this plus 4 by 55, 15 by 55 which is 3 by 11. This minus 2 by 5 into this, so this is 12 

by 5 minus 32 by 55, this is 12 into 11 is 132 minus 32 is 100 by 55, which is 20 by 11. 

So this will be 0 0, these all 0, so you get 1, you get 1, you get 0. So the restricted primal 

now has a solution which is X1 equal to 20 by 11. 

(Refer Slide Time: 41:57) 
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X2 equal to 16 by 11, with Z is equal to 0. So we can just quickly check 40 plus 48 is 88 

by 11, which is 8, 100 plus 32, 132 by 11, which is 12. Now the restricted primal has an 

optimal solution with equal to 0. so the moment it has an optimal solution with z equal to 

0, it means the artificial variables are not there in the solution, which means, you have a 

solution based only on X1 and X2. Therefore, this solution is feasible to this. Right? 

Which is, 2 into 20 by 11 plus 3 into 16 by 11 is equal to 8 and so on. We get a feasible 

solution to this, so right now we have a feasible solution to the dual complementary 

slackness is satisfied. 

The corresponding restricted primal gives the solution that is feasible to the primal. 

Therefore, this solution is optimal to primal and dual respectively. The solution 20 by 11, 

16 by 11, with z is equal to 3X1 plus 4X2; 3 into 20 by 11 plus 4 into 16 by 11. This is 20 

plus 60, 60 plus 64 is 124 by 11. That is 3X1 plus 4X2, so from here we get 14 into 8 is 

112 plus 12, 124 by 11. So the solution 20 by 11, 16 by 11, z equal to 124 by 11 which is 

what we got here 16 by 11, 20 by 11 plus from the dual side 14 by 11 into 8 plus 12 into 

1 by 11 gives the solution. This is how the primal dual algorithm works by giving us this 

optimal solution. So the underlying principle is that, for a certain type of problem, which 

is like this minimize, write the dual, work with the feasible solution to the dual, try to get 

a feasible solution to the primal and if it is feasible then it is optimal. Otherwise, try and 

get a new feasible solution to the dual, such that there is at least one new candidate in the 

restricted primal. That is the fundamental principle that there is at least one new 

candidate in the restricted primal. 

Once we start getting a new candidate in the restricted primal, the solution to the 

restricted primal becomes better. This theta also will ensure that the dual feasibility is 

maintained. At the same time, a new inequality which is right now satisfied as an 

inequality will be satisfied as an equation. So in this process I am alternately updating 

this dual variables and then writing the restricted primal and solving it till the restricted 

primal has z equal to 0, which means, it does not have artificial variables is the essence of 

the primal dual algorithm. So this is how the primal dual algorithm works and many a 

time we will be tempted to say that this algorithm is somewhat similar to the two phase 

method. 
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Now instead of doing this, we could have straight away started with this problem, apply 

the two phase simplex algorithm by simply adding two artificial variables a1 a2, giving 

them objective function values of 1 and in the first phase eliminating them and then 

proceeding to do that. Computationally, it is the same as the two phase method but it 

brings a very important idea, that by making the dual different and by bringing a new 

candidate in the restricted primal, we can get to the optimal. In fact, the primal dual 

algorithm is used extensively. The Hungarian method that we saw for the assignment is a 

direct application of the primal dual algorithm.  

Now let us take a very small example of an assignment problem and try to show how the 

Hungarian algorithm is actually a primal dual algorithm; we will do that with a very 

small example here.  
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Let us look at a small 4 by 4 assignment problem. Now let us do the row subtractions and 

simply write u1 equal to 2, with 0 2 4 and 6, u2 equal to 1 0 6 4 4, u3 equal to 2 0 1 2 3 

and u4 equal to 6 0 2 1 2. Let us do the column subtractions to get 0 0 0 0, 1 5 0 1, 3 3 1 0, 

4 2 1 0. Now we have u1 equal to 2, u2 equal 1, u3 equal to 2, u4 equal to 6, v1 equal to 0, 

v2 equal to 1, v3 equal to 1, v4 equal to 2. Let us quickly make the assignment in this. 

Now we realize that we can make an assignment here. This goes, this goes, this goes; 



28 
 

now we can make an assignment here and we could make an assignment in any one of 

them and say this goes. We have not been able to make four assignments, so what we do 

is we do the line drawing procedure and tick an unassigned row, if there is a 0 tick that 

column, there is an assignment tick that row, draw lines through unticked rows and ticked 

columns and then change this, such that, if there are two lines, find the minimum theta, 

which is 1. If there are two lines add theta, if there is one line retain it and if there is no 

lines subtract theta. So we get 0 0 2 3, 0 4 2 1, 1 0 1 1, 1 1 0 0. We know that whether we 

use this matrix or whether we use this matrix, the solution is the same; the reason the 

solution is the same comes from this. 

When we created this, we have written c-dashij equal to cij minus ui plus vj . By doing the 

row column subtraction, we have done this and we have ensured that c-dashij is greater 

than or equal to 0. Therefore this is dual feasible to the assignment problem because 

assignment problem constraint is of the form ui plus vj less than or equal to cij. If we 

ensure that c-dashij cij minus ui plus vj is greater than or equal to 0, it means the dual is 

satisfying. Now we satisfy complementary slackness only by assigning in 0 positions, we 

do not make an assignment on any other position. 

We satisfy complementary slackness and if we get a primal feasible solution, then it is 

optimal. Right now, we do not have a primal feasible solution because we do not have 

four allocations. Now what we do next? By doing this, we actually readjust the ui’s and 

the vj’s. They are now adjusted again; this has a different u1, u2, u3, u4. In fact, here there 

is a line that goes, so v becomes minus theta. So this is, minus 1 1 1 and 2. Here when 

there is no line, the theta actually reduces. So u1 is equal to 1, u2 is equal to 0. The theta 

gets adjusted here, so when there is a line theta remains the same. 

So u4 is equal to 6, this is equal to 2. When there is no line, theta becomes plus 3 and 2. 

For example, this 0 was 6 minus 6 plus 0 0, 6 minus 5 is 1, so we still again have c-dashij 

equal to cij minus ui plus vj. Now what we have done is, we have a new set of dual 

variables. But in the process, what we have done is we have included at least one new 

assignable 0. If you see carefully, this is one new assignable 0, which means, this can 
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bring one more variable into the primal basis. That is, exactly what we did here. We 

started with the dual solution and then after one iteration we computed the theta.  

(Refer Slide Time: 52:55) 

 

Then we make sure that by moving from y to y1, at least one constraint which was 

originally satisfied as an inequality is now satisfied as an equation. So here satisfying as 

an equation is reflected by 0. 

(Refer Slide Time: 53:10) 
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At least one new constraint is satisfied as an equation and the restricted primal works, 

with one more additional basic variable. So in that process, we get the optimum. In a very 

similar manner till we get the optimum we keep making these ticks and subtractions, till 

we finally get a feasible solution to the primal, which will give us optimal. Here also, the 

moment we get the feasible solution to the primal, we get to the optimal. So the 

Hungarian algorithm is a direct application of the primal dual algorithm. 

Once again the primal dual algorithm starts with a minimization problem with greater 

than or equal to, writes a dual so that it is easy to find a feasible solution to the dual then 

computes the restricted primal. If the restricted primal is feasible then, it is optimal. 

Otherwise the y becomes y1 by carefully ensuring that there is at least one new dual 

constraint, which is now satisfied as an equation.  

(Refer Slide Time: 54:20) 

 

That is done by using this expression for theta such that dual feasibility is maintained and 

one new basic variable enters. With that once again the restricted primal is computed and 

this process is repeated back and forth till the restricted primal is feasible. The moment 

the restricted primal is feasible, it is optimal and we have also seen now that the 

Hungarian algorithm is the direct application of the primal dual method. 
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(Refer Slide Time: 54:46) 

 

So far in the course, we have seen several aspects of linear programming. We started with 

the revised simplex algorithm which essentially tries to quicken the simplex and time 

taken per iteration. Then we saw how simplex is modified to handle bounded variables, 

by treating them separately and not by treating them as explicit constraints. Then we 

looked at the idea of column generation through the cutting-stock problem, where it is not 

necessary to store all the columns explicitly. Columns can be generated by solving sub 

problems and we saw an application to the one dimension cutting-stock problem.  

Then, we moved to the Danzig Wolfe decomposition algorithm, where if the problem has 

a certain structure whereby removing certain constraints, we can decompose it into 

smaller sized LPs. Then we exploited the fact that, it is easier to solve a certain number of 

smaller LPs compared to solving one large LP, because the computational effort is cubic 

with respect to the number of constraints that we have. So the decomposition algorithm 

taught us a way by which we can split a bigger problem into smaller problems and by 

solving a series of smaller problems and also by using the column generation idea we 

generate entering columns into the basis. Then we have seen the primal dual algorithm, 

where by intelligently working with the dual and by modifying the dual solutions at each 

stage and by solving restricted primal which is a much smaller sized problem, one can go 

back and get the optimum solution to the linear programming. 
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So far, we have seen several aspects of simplex algorithm and algorithms related and 

associated with simplex. We have largely looked at it from the point of view of making it 

faster, by storing less and by generating entering columns as and when they have to be 

generated. So much we have seen about how to make the simplex better and handle 

enough variety. The next thing, we may have to look at is do linear programming or OR 

problems have only one objective, or can we have situations where these problems can 

have more than one objective or goal. From this, we move to a topic called goal 

programming, whose basics we will see in the next lecture. 


