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Dantzig Wolfe Decomposition Algorithm 

Primal Dual Algorithm 

We continue the discussion on the decomposition algorithm. 
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The problem that we are solving is maximize, 6X1 plus 5X2 plus 3X3 plus 4X4 subject 

to these six constraints and Xj greater than or equal to 0. The underlying principle in 

the decomposition algorithm is that, when we relax a certain set of constraints the 

problem gets decomposed into more than one linear programming problem. Now for 

example in this particular problem if we leave out these two constraints, the problem 

is decomposed into two linear programming problems.  

These constraints which we can take out, so that we can decompose belong to what is 

called as the master problem. We also said that if we remove this out, the problem 

becomes two sub problems. We also said in the earlier lecture, that if we add now 

these two constraints into the feasible region represented by this, then the optimum 
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would change but the optimum can be represented as a convex combination of the 

corner points. What we did was, we first noted down all the corner points here and for 

the first set of constraints these four points are the corner points.  

(Refer Slide Time: 01:47) 

 

For the second set here, these four points are the corner points. We do not explicitly 

store all the corner points. Instead we generate the corner points, as they enter into the 

basis by following a column generation procedure.  

(Refer Slide Time: 02:16) 
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We converted this problem into this, where lambdaj, now becomes the variable; Xj is 

a known corner point that is there in the basis. The problem now becomes minimize 

Cj Xj lambdaj, where lambdaj is the variable subject to AXj lambdaj equal to bi, sigma 

lambdaj equal to 1 and lambdaj greater than or equal to 0. 

(Refer Slide Time: 02:37) 

 

We started the problem by looking at the corner point (0, 0, 0, 0), which was the first 

basic variable. We also said, for example here, this is the master constraints. We have 

two master constraints which are here, so there will be two dual variables associated 

with this and there is one constraint which is sigma lambdaj equal to 1. In our example 

the two master constraints were less than or equal to type, so we could start with S1 

and S2 as the basic variables, along with lambda1 equal to (0, 0, 0, 0), which is 

feasible to these four points. We started with lambda1 equal to (0, 0, 0, 0) and started 

the simplex iteration. Then we found out that the basic feasible solution involving S1 

S2 from here and lambda1 was not optimal. So, we solved a sub problem, through 

which we identified that a corner point (2, 3, 4, 2), can enter the basis.  
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Then we performed one iteration of the simplex algorithm to get this solution at the 

end of one iteration, with lambda1 equal to 4 by 11, lambda2 equal to 7 by 11 and Z 

equal to minus 329 by 11. Now, we are solving a minimization problem as far as the 

simplex is concerned and since the given problem is a maximization problem, we are 

getting a minus sign here. So the objective function value is actually 329 by 11 for the 

maximization problem and minus 329 by 11 for the minimization problem. When we 

verified whether this is optimal, by solving another sub problem we found out that the 

corner point (4, 0, 0, 0), enters the basis with a positive value of 76 by 11.  

(Refer Slide Time: 04:48) 
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The sub problem that we solved, essentially tries to find out the maximum value of 

wA minus c into Xj plus alpha, subject to these two sets of constraints and when we 

did that we found that the point (4, 0, 0, 0) enters the basis with a positive value of 76 

by 11.  

(Refer Slide Time: 05:17) 

 

Now we realize that the point Pj equal to (4 0 0 0), enters the basis but then we also 

have to find out Pbarj which is the column corresponding to the entering variable. So 

we get Pbarj equal to B inverse Pj. B inverse is always found here under the starting 

basic variables. This is the B inverse which we are actually updating. So B inverse is 

1 by 11, minus 17 by 11, minus 1 by 11, 0 1 0, 0 0 1. Before we compute this Pbarj 

equal to B inverse Pj, we know that this corner point (4, 0, 0, 0) actually enters but Pj 

which is the entering column is AXj 1, which comes from this expression AXj 1, for 

the corresponding lambdaj. The moment we know that the corner point (4, 0, 0, 0) 

enters that is not the corner point that is Xj; so Xj will be the point (4, 0, 0, 0). There is 

an associated lambdaj that enters for this Xj, and in order to find out Pbarj equal to B 

inverse Pj, we need to find out AXj 1. To find out AXj 1, we first find out AXj. A is 1 

1 1 1, 2 1 1 3 into Xj is 4 0 0 0. Now this A comes from somewhere here, sigma  AXj  

lambdaj equal to bi, which is from here, 1 1 1 1, 2 1 1 and 3. We first find out AXj to 

get 1 into 4 plus 1 into 0 plus 1 into 0 plus 1 into 0, which is 4 and 8. So now Pj is 

equal to AXj 1, which is 4 8 and 1. 



6 
 

(Refer Slide Time: 08:01)  

 

We have to find out  Pbarj equal to B inverse Pj. So Pj  is 4 8 1, from which Pbarj is 

equal to 4 by 11 plus 0 into 8 plus 0 into 1, which is 4 by 11, minus 17 by 11 into 4 is 

minus 68 by 11 plus 8 plus 0. This is 8 minus 68 by 11, which is 20 by 11 and the last 

one is minus 4 by 11 plus 0 plus 1, which is 1 minus 4 by 11 which is 7 by 11. So, 

now Pbarj is 4 by 11, 20 by 11, 7 by 11. Therefore, another corner point whose 

variable name is lambda3 which is the corner point 4 0 0 0, which is shown here, 

lambda3 which is 4 0 0 0 enters the basis with Zj minus Cj value of 76 by 11, a 

positive value, and the entering column has values 4 by 11, 20 by 11 and 7 by 11.Now 

we perform one simplex iteration, by entering this. 

In order to find the leaving variable we need to find out theta, which is the ratio 

between right hand side value and the entering column. 7 by 11 divided by 4 by 11 is 

7 by 4, 68 by 11 divided by 20 by 11 is 68 by 20, which is 34 by 10 which is 17 by 5 

and this is 4 by 7; 4 by 7 is the smallest of the three. Therefore, this variable leaves 

the basis and this becomes the pivot element.  
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Now we perform the simplex iteration by replacing lambda1 with lambda3. So we get 

lambda2, S2 and lambda3 in the solution. Divide everything by 7 by 11 to get minus 1 

by 7, 0, 11 by 7 and 4 by 7 here; this will become 1. So now we need a 0 here. This 

minus 4 by 11 times 1 will give 0. This (Refer slide time: 11:05) minus 4 by 11, so 1 

by 11 plus 4 by 77 is 11 by 77, which is 1 by 7. This minus 4 by 11 times this is 0. 

This minus 4 by 11 is minus 4 by 7; this minus 4 by 11 into this, so this is 16 by 77, 

this is 33 by 77 which is 3 by 7. This would become a 0. Now, we need another 0 here 

so this minus 20 by 11 times 1 will give 0. So this minus 20 by 11; this is plus 20 by 

77, this is minus 17 into 7 is 119; minus 119 plus 20 is minus 99 by 77, which is 

minus 9 by 7.  
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This is 1; this minus 20 by 11 times this, so this minus 20 by 11 will give minus 20 by 

7. This minus 20 by 11, this is 80 by 77, so this is 68 into 7 minus 80 is 396 by 77, 

which would mean that this is 36 by 7; so we would get 36 by 7 here. We also know 

that we can do the same row operation to get the other one here. So in order to get a 0, 

this minus 76 by 11 times will give 0. So this minus 76 by 11 times so, minus 47 by 

11 plus 76 by 77; so minus 47 into 7 is 329 plus 76 is 253 by 77; 23 by 7; so we 

would get minus 23 by 7. This will become 0; this minus 76 by 11 into 1. So this 

minus 76 by 11 into 1 is minus 76 by 7.  

(Refer Slide Time: 14:20) 
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This will be minus 329 by 11 minus 76 by 11 into 4 by 7. So it is minus 304 by 77 

minus 329 by 11. This would give 2303 plus 304 is 2607 by 77; 237 by 7, so minus 

237 by 7 is what we get at the end of the iteration. Let us quickly make a few checks 

to ensure that we are doing it right.  

(Refer Slide Time: 15:18) 

 

Sigma lambdaj is equal to 1, so 3 by 7 plus 4 by 7 is 1. The actual basic feasible 

solution to the entire problem at this stage is given by lambda2 into X2 plus lambda3 

into X3, which is 3 by 7 into (2, 3, 4, 2) plus 4 by 7 into lambda3, which is (4, 0, 0, 0), 

which is 6 by 7 plus 16 by 7 is 23 by 7, rest of them are 0. This is 9 by 7, this is 12 by 

7 and this is 6 by 7. This is the corner point that we actually have as basic feasible 

solution to the entire problem. 
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Now the corresponding value of the objective function is, 6X1, 23 fives are 115, 23 six 

are 138. So this is 4 into 4 is16, plus 6 is 22 by 7, 9 by 7, 12by 7 and 6 by 7. 22 into 6 

are 132; 132 plus 45 is 177, 177 plus 36 is 213, 213 plus 24 is 237 by 7, which is what 

we have here. We are now looking at this basic feasible solution, whose objective 

function value is given by this. We have to check whether this basic feasible solution 

is optimal and if this basic feasible solution is not optimal, then there will be another 

entering corner point which is obtained by solving a sub problem which maximizes 

wA minus c into Xj plus alpha. The w and alpha are the dual variables that can be 

found from this solution; so w is 23 by 7, 0 and alpha is minus 76 by 7. 
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The value of w is always the negative of the value that we have here; w is 23 by 7, 0 

so w is minus 23 by 7, 0 and alpha is minus 76 by 7. Because we have values Zj 

minus Cj here, they directly give us the value of the dual associated with the problem. 

So w is minus 23 by 7 0, and alpha is minus 76 by 7. We now find out wA minus c, 

and then Xj. So wA is now minus 23 by 7 0, into Xj is 1. A is 1 1 1 1,  2 1 1 3 which is 

minus 23 by 7, minus 23 by 7, minus 23 by 7 and minus 23 by 7. Now wA minus c is 

equal to minus 23 by 7, minus 23 by 7, minus 23 by 7, minus 23 by 7, minus of minus 

6, minus 5, minus 3 and minus 4.  

(Refer Slide Time: 19:51) 
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c becomes minus 6, minus 5, minus 3, minus 4, because this problem is a 

maximization problem; so when we convert it to a minimization based on which this 

theory is developed, c will become minus 6, minus 5, minus 3 and minus 4. We now 

compute wA minus c; this will be 6 minus 23 by 7, so 42 minus 23, which is 19 by 7. 

This will be 5 minus 23 by 7 which is 12 by 7, third will be 3 minus 23 by 7 which is 

minus 2 by 7 and the last will be 4 minus 23 by 7 which is plus 5 by 7. Now, we have 

to find out and solve the sub problem which maximizes 19 by 7 X1 plus 12 by 7 X2 

minus 2 by 7 X3 plus 5 by 7 X4, subject to the condition these two sets of constraints 

are satisfied and X1, X2, X3, X4 greater than or equal to 0. 

Now that gives us two linear programming problems, where the first problem will be 

to maximize the X1, X2, term, 19 by 7 X1 plus 12 by 7 X2 subject to this set, and the 

second will be to maximize minus 2 by 7 X3 plus 5 by 7 X4 subject to this set. These 

two linear programming problems have to be solved but as already mentioned, since 

this problem is a smaller numerical example, we have now listed all the corner points 

associated with these two constraints. We simply substitute the corner points into it 

and get the solution, though theoretically it is not the best way to solve an LP. 

We substitute this, so we have 19 by 7 X1 plus 12 by 7 X2. This gives 0; this would 

give 19 into 4, 76 plus 0. This will give us 60. This will give us 19 into 2, 38 plus 12 

into 236 which is 74. Therefore, the point 4, 0 is optimal here, with 76 by 7 as the 

objective function value. Second one is minus 2 by 7 X3 plus 5 by 7 X4; so (0, 0) will 

give 0. This will give a negative value; this will give us a value 20 by 7 and this 

would give as a value minus 8 by 7 plus 10 by 7, so this is optimal. (0, 4) is optimal, 

the objective function value here is 19 into 4 is 76 by 7. The other one is 20 by 7, so 

the total objective function value is 96 by 7. But we also have to consider this alpha. 

wA minus c into Xj is 96 by 7, alpha is minus 76 by 7; so wA minus c into Xj plus 

alpha is 20 by 7, which is positive. Therefore, the corner point (4, 0, 0, 4) enters the 

basis with the contribution of 20 by 7. 

We write the fourth corner point lambda4 is equal to (4, 0, 0, 4), which enters the 

basis. Now we write this here. So the next point that enters the basis is the point; let us 

call this as lambda4, so lambda4 will enter the basis with value here equal to 20 by 7. 

We do not need this one, now this can be removed; so enters with 20 by 7. In order to 
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find out this entering column corresponding to lambda4, we now need to find out first 

Pj equal to AXj 1.  

(Refer Slide Time: 24:24) 

 

AXj will be, A is 1 1 1 1, 2 1 1 3, into Xj is 4 0 0 4, which is 4 into 1 plus 0 plus 0 plus 

4 into 1, which is 8, 4 into 2  is 8, 0, 0, plus 12, is 20. So AXj 1, which is equal to Pj 

will be 8 20 and 1. Now Pbarj equal to B inverse Pj, and B inverse can be obtained 

from here. So B inverse is 1 by 7 minus 9 by 7 minus 1 by 7, 0 1 0 minus 4 by 7 

minus 20 by 7 plus 11 by 7 into 8 20 1, which is given by 8 by 7 minus 4 by 7 is 4 by 

7, minus 72 by 7 plus 20 minus 20 by 7 is 20 minus 92 by 7, which is 48 by 7, 140 

minus 92 is 48 by 7, minus 8 by 7 plus 11 by 7 is 3 by 7. So the entering column is 

now 4 by 7, 48 by 7 and 3 by 7. Now we need to find out theta. Theta is the right hand 

side divided by the entering column, so this variable will enter the basis. 

Now theta is 3 by 7 divided by 4 by 7 which is 3 by 4, 36 by 7 divided by 48 by 7 

which is 36 by 48, which is also 3 by 4, 4 by 7 divided by 3 by 7 is 4 by 3. So the 

minimum theta will leave the basis. Now there is a tie for the leaving variables. So 

when there is a tie for the leaving variables, it gives us a degenerate basic feasible 

solution. At present there is no conclusive rule that we can use, we could actually take 

any one of them to leave the basis and now we will choose to leave lambda2 based on 

the fact that it occurs first. So, we enter the variable lambda4 and the variable lambda2 

leaves the basis. 
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We perform one more simplex iteration with lambda4 replacing lambda2 and we have 

S2 and we have lambda3. Now this is pivot because this is the leading element. So 

divide every element of the pivot row by the pivot to get a 1 here. So 1 by 7 divided 

by 4 by 7 is 1 by 4, 0 minus 1. This is the right hand side value, so you get 3 by 4 and 

we will get a 1 here. Now we need a 0 here so this minus 48 by 7 times this is 0. This 

minus 48 by 7; so this is 48 by 7 into 1 by 4 is 12 by 7. So minus 9 by 7 minus 12 by 

7 is minus 21 by 7 which is minus 3, so you get a minus 3. This minus 48 by 7 times 

will give us a 1. This minus 48 by 7 times this; so minus 20 by 7 plus 48 by 7 is plus 

28 by 7 which is plus 4. 

This minus 48 by 7is 36 by 7; so you will get a 0 here, because 3 by 4 into 48 by 7 is 

36 by 7. 36 by 7 minus 36 by 7 is 0, which is understandable because we had a tie 

here and which resulted in a degenerate basic feasible solution. So automatically the 

next one will have value equal to 0. Now this would also be 0. We need another 0 

here, so this minus 3 by 7 times 1 would give us a 0. So this minus 3 by 7, so minus 1 

by 7 minus 3 by 28 is minus 7 by 28 which is minus 1 by 4. So this minus 3 by 7 

would give us 0. This minus 3 by 7 is 11 by 7 plus 3 by 7 which is 14 by 7, which is 

2. This minus 3 by 7 is 4 by 7 minus 3 by 28; this into 3 by 7 is 9 by 28. So 4 by 7 

minus 9 by 28, 16 minus 9 is 7 by 28 which is 1 by 4. Now this will be 0. We also 

know that we can get this by a similar row operation. So this minus 20 by 7 times this, 

would give us a 0 here. This minus 20 by 7 minus 23 by 7 minus 5 by 7 is minus 28 
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by 7, which is minus 4, this minus 20 by 7, is 0. This minus 20 by 7 is minus 76 by 7 

plus 20 by 7 minus 56 by 7, which is minus 8. This minus 20 by 7 minus 237 by 7 

minus 60  by 28, which is minus 15 by 7. So this is minus 252 by 7. So minus 252 by 

7 is, 7 threes are 21, 7 six are 42, minus 36. So we get a solution with minus 36 that 

comes here. The basic feasible solution here has lambda3 equal to 1 by 4. lambda4 is 

equal to 3 by 4. So lambda3 plus lambda4 is equal to 1, which satisfies sigma lambdaj 

equal to 1 and then it has a solution with 36. 

(Refer Slide Time: 32:35) 

 

So the solution that we actually are looking at from here is lambda3 X3 plus lambda4 

X4 which is 1 by 4 into X3 (4 0 0 0 ) plus 3 by 4 into X4 (4 0 0 4) which is 1 by 4 into 

4 plus 3 by 4 into 4 is 4. You get 0, you get 0, and you get 1 by 4 into 0 plus 3 by 4 

into 4, which is (4 0 0 3). This is the basic feasible solution to the original problem 

represented by this solution. Now the Z value associated with this is 4 into 6 is 24, 

plus 3 into 4 is 12 which is 36. We have to find out whether this is optimal. So, in 

order to find out that this is optimal, we need to check if there is any other entering 

column or entering corner point that we have.  
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In order to do that, we again need to find out the maximum value of wA minus c into 

Xj plus alpha, where w and alpha are the dual variables that can be obtained from 

here. So w is (- 4 0) and alpha is equal to minus 8. We first have to find out wA minus 

c into Xj, so wA is equal to (- 4 0) into A is 1 1 1 1, 2 1 1 3. We know that A is the 

constraint coefficient corresponding to the master problem constraints, which can be 

got from here and therefore w into A is now minus 4 into 1 plus 0 into 2, which is 

minus 4, minus 4 into 1 plus 0 into 1, which is minus 4, minus 4 and minus 4. Now 

wA minus c will be (- 4 - 4 - 4 – 4), minus, (- 6 - 5 - 3 – 4); again the (- 6 - 5 - 3 - 4 )   

comes from here. The original problem is a maximization problem, so when we 

convert it into a minimization problem, the coefficients take a negative sign. So c is (- 

6 - 5 - 3 – 4), this will give us (2 1 - 1 0). We need to solve a problem that maximizes 

2X1 plus X2 minus X3 plus 0X4, subject to these two sets of constraints and Xj greater 

than or equal to 0.  

This problem can be decomposed into two linear programming problems, one that 

maximizes 2X1 plus X2, subject to this and the other that maximizes minus X3 plus 

0X4 subject to this. Two separate LP problems have to be solved. But again, as 

explained earlier, since it is a smaller sized problem, we have written down all the 

corner points here. So by a simple substitution of the corner points, we can get the 

optimum, though it is not the best way to solve the LP problem. We substitute here; 

for  2X1 plus X2, for (0, 0) the value is 0, for (4, 0) the value is 8, for (0, 5) the value is 
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5 and for (2, 3) the value is 7, so (4, 0) is optimal, so (4,0 )with Z equal to 8. For the 

second one that maximizes minus X3 plus 0X4, (0, 0) is 0, (5, 0) is minus 5, (0,4) is 0, 

and (4,2) is minus 4. Therefore the value will be (0, 0) with 0 will be the optimum. So 

this is (0, 0) with Z equal to 0. The best solution at this point is the corner point (4, 0, 

0, 0) with Z is equal to 8 plus 0 which is 8. But then we have to go back and look at 

this. We have solved only this part and said there is a corner point 4 0 0 0 with Z 

equal to 8, but alpha is another minus 8. Therefore, when we include this alpha into 

the objective function, the Z value actually is 8 minus 8, which is 0. 

We do not have the corner point with a positive value of wA minus c into Xj plus 

alpha. The best we can get is 0 and also that corner point (4 0 0 0) is already in our 

solution as lambda3, which is here. We do not have entering corner point, therefore 

the algorithm will terminate saying that the current solution is optimal.  

(Refer Slide Time: 38:35) 

 

We have already found that the solution which is given by lambda3 equal to 1 by 4, 

lambda4 equal to 3 by 4, gives us on substitution and simplification the corner point (4 

0 0 3), which means X1 equal to 4, X4 equal to 3 with Z equal to 36 as the optimum 

solution to the given linear programming problem. This is how the decomposition 

algorithm actually works, so very quickly let us go back and summarize what we have 

done. 
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Even though the procedure that we have followed looks a little laborious, involves a 

lot of iterations, but for a larger sized linear programming problems this one is far 

superior in terms of computation time, far superior compared to treating it as one set 

of six constraints and solving it as a linear programming problem. This decomposition 

that we have seen is called the Dantzig Wolfe decomposition principle or it is called 

the Dantzig Wolfe decomposition algorithm, where if the problem can be decomposed 

into smaller sized linear programming problems by leaving out a set of constraints, we 

exploit that property and solve smaller sized linear programming problems. We 

identify the master constraints, and then we also add a linking constraint which is 

sigma lambdaj equal to 1 and it also borrows the principle that because of the 

convexity property of the feasible region of a LP, any point inside the feasible region 

can be represented as a convex combination of corner points.  

(Refer Slide Time: 40:29) 

 

If we leave this out and get a set of corner points after we put this in, the optimum 

solution can be a point that is inside or on the feasible region given by this. So if it is 

inside it can be represented as a convex combination of corner points which we 

exploit. At every iteration of the simplex, where we store only the B inverse, we solve 

a sub problem which tries to maximize wA minus c into Xj plus alpha. If there is a 

corner point that can enter the basis, then such a corner point will have a positive 

value of wA minus c into Xj plus alpha, which means it essentially has a positive 

value of Zj minus Cj for a minimization problem. Through a process of column 
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generation and decomposition into sub problems, we are able to solve a larger 

decomposable linear programming problem very efficiently, using the Dantzig Wolfe 

decomposition principle or the Dantzig Wolfe decomposition algorithm.  

What we do next is we will look at one more approach to solve linear programming 

problems, which is called the Primal-Dual algorithm. We look at the primal-dual 

algorithm through a numerical example which is as follows. 

(Refer Slide Time: 42:10) 

 

2X1 plus 3X2 is greater than or equal to 8 and 5X1 plus 2X2 greater than or equal to 

12; X1, X2 greater than or equal to 0. We have this linear programming problem which 

is given by this one. We have already seen how to solve this linear programming 

problem by the simplex algorithm. Now what we are going to do is, we are going to 

introduce another technique, which is somewhat related to the simplex algorithm. It 

borrows ideas from linear programming theory and then we are going to solve this 

problem. At the end of it we will see how efficient this method is. 

The first thing that we observe is that this problem is a standard minimization problem 

with two constraints. Both the constraints are at the greater than or equal to type. 

Now, first let us write the dual to this problem by also considering these two explicitly 

as constraints. We will write this as X1 greater than or equal to 0 and X2 greater than 

or equal to 0.  
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Let us write it this way, and let us also treat these two as some kind of constraints to 

begin with. What we will do is we will now introduce dual variables. We will 

introduce dual variables y1 and y2 into this. We consider this with X1 X2 greater than 

or equal to 0. So, as always, what we do is we convert these inequalities into 

equations by adding slack variables. So we get minus X3 equal to 8, minus X4 equal to 

12. 

(Refer Slide Time: 44:33) 
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Now let us write the dual associated with this problem. We introduce two dual 

variables which we call as y1 and y2. The dual will be a maximization problem, so 

maximize  8y1 plus 12y2, subject to the condition 2y1 plus 5y2 from here, 2y1 plus 5y2 

is less than or equal to 3. 3 y1 plus 2y2 is less than or equal to 4 from here. This is y1; 

minus y1 less than or equal to 0, and minus y2 less than or equal to 0. 4531This is 0X3 

plus 0X4. You will have minus y1 less than or equal to 0 and minus y2 less than or 

equal to 0 and we will have y1, y2 unrestricted in sign. 

(Refer Slide Time: 45:57) 

 

y1, y2 unrestricted in sign because, the two primal constraints are equations and 

therefore, the two dual variables will become unrestricted in sign. Now if we look at 

this dual, there is one thing that we can do, is to say that the solution (0, 0) is feasible 

to the dual. So the solution (0, 0) is feasible to the dual and it will always be so. 

Because, it satisfies this condition, it satisfies this condition, it satisfies this, it satisfies 

this and gives a solution 0, so (0,0) is feasible to the dual. If the primal is a 

minimization problem, with all greater than or equal to constraints then we will 

certainly add minus X3 and minus X4 and therefore we will have a constraint of the 

type minus y1 less than or equal to 0, minus y2 less than or equal to 0. 

Once again, if all these coefficients are strictly positive, then these right hand sides 

will be strictly positive or greater than or equal to 0. Therefore, the solution (0,0) will 

always be feasible to the dual, if the primal is a minimization problem with objective 
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function coefficients greater than or equal to 0 and both the constraints greater than or 

equal to type which is what this standard problem is.  

(Refer Slide Time: 47:37) 

 

We can always say that (0, 0) is feasible to the dual. Now let us also find out more 

than this being feasible to the dual, which are the constraints it satisfies as an equation 

and which are the constraints it satisfies as an inequality. If we look at this, these two 

are the constraints it satisfies as an equation, because y1 is equal to 0, y2 equal to 0 is 

satisfied as an equation. Now y1 equal to 0, y2 equal to 0 gives us 0 less than or equal 

to 3, which is satisfied as inequality. Similarly, 0 less than or equal to 4 is also 

satisfied as an inequality. Now we go back and say that we have a feasible solution to 

the dual and we apply complementary slackness and go back to the corresponding 

primal. Let us see what happens when we apply complementary slackness and look at 

the corresponding primal. Now what happens to that?  
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This is satisfied as an equation therefore, X3 is in the basis. This is satisfied as an 

equation, so X4 is in the basis. These two are satisfied as inequalities, so X1 and X2 are 

non basic. If we apply complementary slackness to this solution, then we end up 

actually getting to solve minus X3 is equal to 8, minus X4 is equal to 12. This is what 

we actually solve when we apply complementary slackness to this. Because when we 

apply complementary slackness, it tells us that X3 and X4 are basic variables, X1 and 

X2 are non basic variables. It is enough to solve for this. 

We have already seen in the fundamentals of OR course, that a system of equations, 

though this is a very trivial solution, with X3 equal to minus 8 and X4 equal to minus 

12, in general a system of equations can be solved as a linear programming problem 

by simply adding two artificial variables here, plus a1 plus a2 and by minimizing a1 

plus a2, and saying a1, a2 greater than or equal to 0. 
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Now this is one way to solve for minus X3 equal to 8, minus X4 equal to 12 and X3, X4 

greater than or equal to 0. Now, this is converted into a linear programming problem, 

which will solve for minimizing a1 plus a2 subject to minus X3 plus a1 equal to 8, 

minus X4 plus a2 equal to 12, a1, a2 greater than or equal to 0 and  X3, X4 greater than 

or equal to 0. This is a linear programming problem and this can be solved by what is 

called a 2 phase method. What we do here is very similar to, what is called the 2 

phase method. If you remember correctly, when we introduced the 2 phase method, 

what we will do is, we actually solve for two phases. Since these are artificial 

variables, we will not put a minus big M, which is called the big M method. 

In a 2 phase method, the artificial variables will have coefficients 1, the rest of the 

variables will have objective function coefficient 0, and we solve this problem. If we 

get Z equal to 0 then the system has a solution. If it gets a positive value of Z, it 

means there is one artificial variable that is lying in the basis. At the end of the first 

phase, we would want all the artificial variables to leave, which will be given by a 

solution Z equal to 0. When we solve this as a linear programming problem, we can 

actually solve using the simplex, and let us just do that for a movement to try and see 

how we solve this using the 2 phase method of simplex. 
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Minus X3, minus X4, a1, a2; it is a minimization problem, so 1 and 1. We have a1 and 

a2 as the variables. We have minus X3 plus X4 plus a1 is equal to 8; minus X4 plus a2 

equal to 12. This value is 1,1, this is 0, 0. So 1 into minus 1 plus 1 into 0 is minus 1, 

so 0 minus 1 is plus 1; plus 1 0 0 dash because these variables are here or you could 

also put a value 20; 1 into 8 plus 1 into 12 is 20.  This value is Cj minus Zj, it is a 

minimization problem, so negative Cj minus Zj will enter and positive Cj and Zj will 

not enter. So there is no negative Cj minus Zj, so the algorithm terminates with the 

optimum solution a1 equal to 8, a2 equal to 12 and Z equal to 20. This terminates with 

the solution a1 is equal to 8, a2 equal to 12 and Z is equal to 20.  
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So now we have a1 equal to 8, a2 equal to 12 and Z equal to 20. What we have 

actually done is the following. We wrote the dual, we picked a feasible solution to the 

dual. Incidentally we picked a solution; the dual has two variables here, so we picked 

a solution for y1 and y2. Now the dual had two variables here, because the primal had 

two constraints here. We picked a value for y1, y2, which is dual feasible and then we 

apply complementary slackness to see whether the corresponding primal is feasible. 

In this particular instance the corresponding primal was not feasible, because the 

artificial variables are lying in the basis. If the corresponding primal were feasible, 

then the dual feasible solution is optimal by the duality theorems, because we could 

go back and say that there is a feasible solution to the dual, there is feasible solution to 

the primal which satisfies complementary slackness and therefore, it will be optimal 

to the primal and dual respectively. We would also say in the case that, the objective 

function values would also be equal. So the basic idea is to have a feasible solution to 

the dual, apply complementary slackness and then try to find out the corresponding 

solution to the primal. The corresponding solution comes because the dual has two 

variables. The dual originally had two variables because the primal has two 

constraints. Now the feasible solution has values for y1, y2 greater than or equal to 0. 
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When we apply complementary slackness to this, this will result in two variables here 

becoming basic when we do this. So two variables will become basic or less than two 

variables will become basic. Therefore we can solve the problem after we obtain the 

complementary slackness conditions to check whether we have a feasible solution. 

Now we have found that this is not so. What we have to do now is to go back and find 

out another dual feasible solution from this preferably and then apply the same 

complementary slackness and see whether a primal is feasible. So we repeat such a 

process. What we do next we will see in the next lecture. 


