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Dantzig-Wolfe Decomposition Algorithm 

Today, we consider the decomposition algorithm and we explain this decomposition 

algorithm using this example. 
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This problem is the linear programming problem, maximization objective with four variables 

and six constraints and all Xj greater than or equal to 0. We can solve this using any of the 

techniques of linear programming that we have learnt till now, but we are going to introduce 

a newer version of simplex or a new technique which is called the decomposition of 

algorithm which is going to be used to solve this problem.  

Let us take a closer look at this set of constraints. There are six constraints, but we observe 

that the first two constraints involve only the first two variables. The next two constraints 

involve the next two variables, X3 and X4, and these two constraints have all the variables. 

One of the things we can do is that, if we relax the problem which means we remove some of 

the constraints by relaxing the problem. If we relax these two constraints and look at only the 

other four, though we realize that this problem can be split into two linear programming 
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problems: one of which will be maximize 6X1 plus 5X2 subject to these two constraints; The 

other will be maximize 3X3 plus 4X4, subject to these two constraints, by removal of certain 

number of constraints from the problem, or by relaxing the problem by removing the 

constraints.  

The given problem can be decomposed into more than one linear programming problem, 

more than one independent linear programming problem. So, we exploit that idea. The first 

thing is that, if we remove these two and solve the resultant linear programming problem and 

if it turns out that the optimum solution to the resultant problem satisfies this, then it is also 

optimum to the original problem. More often that will not happen. We will also have to 

consider these two constraints.  

The method that we will adopt is first, remove these two constraints and treat them as two 

independent problems and then ensure that the solution obtained to those independent 

problems, also in some way or the other meet these constraints so that the optimum solution 

can be obtained.  

Now, before we even proceed further, let us see, why we are doing this?  

If we were to solve this as a linear programming problem, every iteration of the simplex 

method, would involve all the six constraints, so it would involve six basic variables and 

every iteration is to invert a 6 into 6 matrix. But, if on the other hand, we remove these two 

and then decompose the problem into two problems, each having two constraints then in each 

iteration in principle we are inverting a 2 into 2 matrix. We are actually inverting two 2 into 2 

matrices. We also have to have some relationship between these constraints and the other 

one; therefore, there is one more binding constraint that is added.  

Effectively, we will be looking at 2 plus 2 plus 3, original problem has 6, but then we will be 

looking at 2 plus 2 plus 3. We also understand that inverting a 6 into 6 matrix is a little more 

computationally intensive compared to inverting a 2 into 2, another 2 into 2 and another 3 

into 3. So, computing time required to solve this problem becomes lesser, particularly when 

we write computer programs and solve. 

These two constraints which are taken out are called the master problem constraints, so these 

are called master problem constrains. These two are the sub problem constraints which we 

call as I and II. So, this is a sub problem constraint, this is another sub problem constraint and 
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so on. Now, the two sub problems are maximizing 6X1 plus 5X2, subject to this and 

maximize 3X3 plus 4X4 subject to this. 

Actually in every iteration we need to solve this as well as this. Instead, what we will do to 

make our computation simpler, we will simply note down the corner points associated with 

this and the corner point associated with this so that depending on the objective function 

which we will see we will modify slightly depending on the objective function by a simple 

substitution of the corner points. We can get the optimum solution quickly, because we are 

illustrating this on the blackboard, in a classroom environment. 

Ordinarily, every time the sub problem is solved, it should have been solved by the simplex 

algorithm. Let us first identify the corner points associated with this and the corner point 

associated with this because it is a 2 into 2 problem. We can actually solve it by the graphical 

method and try to find out the corner points. 

(Refer Slide Time: 06:15) 

 

So, the first set of corner points. To do that, we have X1 plus X2, so this is X1 plus X2 equal to 

5. 3X1 plus 2X2 equal to 12 will look like this. This is the corner point (4,0), this is the corner 

point (0,0), this is the corner point (0,5) and this will be the corner point (2,3). These are the 

four corner points associated with this. 
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So, we will simply write the four corner points for our reference here; (0,0), (4,0), (0,5) and 

(2,3) are the four corner points associated with this. Now, let us find out the corner point 

associated with the second one. 

(Refer Slide Time: 07:25) 

 

This will be the X3 axis, this will be X4 axis, X3 plus 2X4 less than or equal to 8. 2X3 plus X4 

less than or equal to 10. This will be the point (5,0), this is the point (0,0), this is the point 

(0,4), this will be the point (4,2). 
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The four corner point associated with this are: (0,0), (5,0), (0,4) and (4,2), so, these are the 

corner points associated with. Now, let us understand one more principle before we apply the 

decomposition algorithm. 

(Refer Slide Time: 08:53) 

 

Now, suppose we have a feasible region like this for a given problem, let us assume that this 

is the feasible region. Now, if we add a constraint into this problem, the first thing that can 

happen is the feasible region can reduce or the feasible region will remain the same. These 

two things can happen. Let us assume that the feasible region reduces, so let us say, the 

feasible region comes somewhere here, because of the additional constraint. If this were the 
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optimum solution before the introduction of the constraint and because of the introduction of 

the constraint this optimum solution becomes infeasible. Once again, it has to be in one of the 

corner points, now the new optimum solution has to be in one of these corner points, in these 

5 corner points now that we have.  

Now, if this were the optimum solution, then this was not a corner point in the first case, 

when the new constraint was not added, because the corner point was here. Now this point, if 

it is the optimum solution can always be represented as a convex combination of this point as 

well as this point because of the convexity property of the feasible region to a linear 

programming problem. Any point on the feasible region can always be represented as a 

convex combination of one or more corner points. If we expand it to higher dimension then it 

becomes convex combination of one or more corner points.  

For example, this point can always be represented as lambda1 into this plus lambda2 into this 

where lambda1 plus lambda2 is equal to 1. Similarly, any point inside, can also be represented 

as a convex combination of the given corner points. As we add more and more constraints in 

the feasible region can reduce and the final optimum solution can even be a point which is 

inside this need not be on the boundary. Since, any point inside the region can be represented 

as a convex combination of corner points, it is enough to look at those corner points and try 

to identify which of the corner points are finally going to be part of that combination, which 

will eventually give the optimum solution. 

What we can do is let us say, we kind of remove this; we get this feasible region, whose 

corner points are known here. By the addition of these two, the optimum solution is going to 

come into some point inside the feasible region, which is bounded by these corner points. But 

please note that these corner points are given as X1, X2, X3 and X4, even though, the solution 

to this each point has its own X1, X2, X3. X4. Fact is by the addition of these two, if the 

optimum shifts and comes to a point inside the region, it still can be represented as a 

combination of these corner points that we are going to have. That is another idea we will use 

in the decomposition algorithm. Now, Let us look some little bit of theory with respect to the 

decomposition and then we proceed to solve this problem.  
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Let us assume that the given problem is actually a minimization problem, minimize CX, our 

example is maximization; we will see later how we modify this. But right now let us look at a 

minimization problem which is of the form minimize CX subject to AX equal to b and X is 

an element of X. What do we mean by that? 

(Refer Slide Tim: 13:31) 

 

What we mean by this is if we take this example, this is the maximization problem, but this 

can be written as a minimization problem by simply saying minimize minus 6X1 minus 5X2 

minus 3X3 minus 4X4. 
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I have not even written X greater than or equal to 0, I also have to explain, what is this x and 

what is this X. So, we could use, let us call this as some small x minimise Cx, Ax equal to b, 

x belongs to X, let us use this notation that way. Now, when we apply this to this the 

minimize Cx is intact, because that is the same as this, minimize minus 6X1 minus 5X2 minus 

3X3 minus 4X4. Now, Ax equal to b or actually the master constraints so these two are the 

ones that are associated with this Ax equal to b. 

Now, x belongs to X, it simply means that this X represents the set of corner points of these 

two. In some sense x belongs to X, comes out of this. If we consider this problem, minimize 

Cx, subject to Ax equal to b, x belongs to X, this is the master problem constraints. These are 

the corner points of the sub problems.  

Now, we have also said that, every point is going to be represented as a convex combination 

of the corner points. What we are going to do is this x will be written as some lambdaj Xj, 

where Xj are these corner points. When we write this the problem will now reduce to 

minimize sigma Cj, lambdaj, Xj subject to A lambdaj Xj less than or equal to b, sigma lambdaj 

is equal to 1, because it is represented as a convex combination of the corner points. 
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For example here, when we said that this can be written as lambda1X1 plus lambda2X2, where 

X1 and X2 are corner points, lambda1 plus lambda2 equal to 1. This can also be written as 

lambda1X1 plus lambda2X2 plus lambda3X3, lambda1 plus lambda2 plus lambda3 equal to 1. 

When we start represent it, introduce the lambda and start representing it as the combination 

of the corner points, we need the linking constraint which is sigma lambdaj equal to 1. 

(Refer Slide Time: 16:57) 

 

Since every point inside this region also has to satisfy the master constraints so the point itself 

is lambdaj Xj, so it will satisfy the constraint sigma A lambdaj Xj less than or equal to b or 
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equal to b depending on how the problem is defined. When we say here, it is equal to b, it 

means the inequalities have been converted to equations.  

Here, we simply retain the inequalities as it is, we may say plus a slack variable equal to b or 

plus a surplus variable if it were greater than or equal to constraint; Therefore, the problem 

reduces to something like this. Now, for this problem, we are actually trying to solve the only 

difference being all these Xjs are corner points, which are given here. Any point X, inside this 

region, which actually satisfies this set of constraints, optimizes this objective and has this 

lambda.  

Now, this is the solution to the problem. The problem now becomes one of not solving for the 

Xjs, but solving for the lambdas. The lambdas now become decision variables, because the 

Xjs are known corner points, these are the corner points. So, the lambda has become the 

decision variables for this. Now, this one I have written in a certain form, we may put a 

summation here in which case we can put sigma aij lambdaj Xj is equal to bi. We can either 

write it as individual constraints or keep the whole thing as the vector.  

In principle, what I am trying to explain here is that these Xjs are the corner points, so at any 

point inside, which will be the solution, is now represented as sigma lambdajXj and therefore 

this problem gets, rewritten in this format. I have also explained this equation versus 

inequality.  

When I write an equation here, I assume that the inequalities have been already converted to 

an equation, where the addition of suitable slack variables or surplus variables. When I write 

an inequality here, I assume that we are yet to add, the slack variable or the surplus variable. 

If we want to be consistent with these two, we can even say that, Xj equal to bi, which means, 

that we have added the slack variables and surplus variables associated with this. 
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Now, as I said the focus now shifts on finding out the lambdaj which become the variables or 

which are essentially the weights that are associated with each corner point. 

(Refer Slide Time: 20:15) 

 

Now, we can start solving this problem by doing a few things, if we are able to get a feasible 

solution to the problem, for example, this is the convenient example, where all these 

constraints are less than or equal to constraints. Therefore the point 0, 0, 0, 0 is basic feasible 

for this. Particularly, when we leave out both these, we have four constraints on the point 0, 

0, 0, 0 is basic feasible. We could start with lambda1 equal to 0, 0, 0, 0, which is a corner 

point. So, we can start with lambda1 for this. Now, these two are the master problem 
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constraints and these two constraints are also less than or equal to constraints. The 

corresponding slack variables can be added here. We can add an S1 here and we can add an 

S2 here, so S1 and S2 automatically qualify to be basic variables. 

(Refer Slide Time: 21:09) 

 

So, we can start solving this problem, with the basis, which comprises of S1, S2 and lambda1. 

The first basis we can have for this is as follows. 

(Refer Slide Time: 21:18) 
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It is given by S1, S2, lambda1 still have S1, S2, lambda1 and right hand side we will have the 

identity matrix 1 0 0, 0 1 0, 0 0 1, with values bi, bi are 7 and 17. The right hand side values 

are 7 and 17 and for this constraint, the right hand side value is 1, so it is 1. 

(Refer Slide Time: 22:05) 

 

We have also defined lambda1, this is our first starting point, it will be 0, 0, 0, 0, which comes 

out of these two. Now, because we have a basic feasible solution with 0, 0, 0, 0, we can start 

this, otherwise we may have to introduce an artificial variable for this and then begin with the 

artificial variable. Right now, we are going to solve this numerical example and the point 0, 

0, 0, 0 is basic feasible. We simply start with the lambda1 which is 0, 0, 0, 0, which takes 

weight equal to 1. The current basic feasible solution to the problem is actually the solution 0, 

0, 0, 0. 
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We have to find out Cj minus Zj or Zj minus Cj, which will be 0 0 0 and 0 here. Now, this is 

the starting basis as far as this problem is concerned, which means this basic feasible solution 

has one corner point which is the point 0, 0, 0, 0. Right now, this has a solution with Z equal 

to 0, so if we substitute 0, 0, 0, 0 here, we will get the solution Z equal to 0. 

We need to verify whether this solution is optimum. Now in order to verify whether this 

solution is optimum we need to find out whether there is an entering variable. We have not 

written the entire table, we have written only that part of the simplex table which contains the 

basis matrix b, the right hand side and the Zj minus Cj under b which can always give us the 

dual variables. We know by now, that Zj minus Cj the way the notation that we have used, 

particularly in the earlier course on the fundamentals of O.R, where we covered linear 

programming extensively. We also mentioned that if we use Zj minus Cj and if we do not 

have artificial variables, exactly under the identity matrix, the beginning identity matrix we 

can always read the solution to the dual of this problem. This helps us in reading the solution 

of the dual directly. 
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Now, several corner points are possible, in fact, right here, there are four here and there are 

four here, sixteen corner points are possible. Now, we have to check for all the sixteen Cj 

minus Zjs. If they cannot enter, then we have reached the optimal solution. So, one way is to 

generate all the sixteen and then try and find out the Cj minuss Zj associated with all the 

sixteen. 
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For example, we had a much larger problem, it was decomposed into three sub problems and 

let us say, there were five corner points in each, then we are looking at 5 into 5 into 5, 125 

variables. We do not want to store all the corner points and then verify, whether these corner 

points can enter. Instead, what we do is we try and follow the column generation idea that we 

saw in the cutting stock problem. Then check that if there is a corner point that can enter the 

basis, if there is a lambda that can enter the basis, because each corner point is associated 

with the lambda. If there is a lambda that can enter the basis, we now generate that corner 

point and say that this corner point can enter the basis with the certain lambda. We follow the 

column generation idea and we do not explicitly store all the combinations of the corner 

points. 

(Refer Slide Time: 26:36) 

 

How do we generate, an entering corner point or entering lambda. In order to enter, we have 

we need to make sure that Zj minus Cj, so, it is a minimization problem. 
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Zj minus Cj, since it is a minimization problem, a positive Zj minus Cj will enter the basis. We 

have seen for maximization problem, a Positive Cj minus Zj will enter. For a minimization 

problem, a positive Zj minus Cj will enter. Please remember, we have defined this problem as 

the minimization problem. It is only incidental, our numerical illustration is a maximization, 

but this problem is a minimization problem where a positive Zj minus Cj will enter. If there is 

a j, if there is a corner point, whose Zj minus Cj is greater than 0, then such a j can enter. 

Now, what is this Zj. Zj equal to yPj, Zj is always equal to CB b inverse Pj, so that will be 

equal to yPj minus Cj is greater than 0 where y is the associated dual variable. 

(Refer Slide Time: 28:01) 
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Now, in this problem, if we look at this primal, here we have as many constraints as the 

master constraints. In our illustration two constraints, this will give rise to two dual variables. 

This is always a single constraint, so this will give rise to one dual variable. We will now, 

instead of calling the dual variable by y which is the customary notation, we would now 

introduce dual variables w and alpha where since there are two constraints here we will have 

w1 and w2 and there is one constraint here we will have alpha. 

(Refer Slide Time: 28:45) 

 

What happens here is this y becomes (w, alpha). What is Pj? Pj is an entering column yPj, CB 

b inverse Pj, so yPj is entering column. 

(Refer Slide Time: 29:09) 
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The entering column right now, any entering column here, will be of the form, aXj, 1 because 

the lambdaj is the variable. So you need to take this variable outside, so the entering column 

will be of the type aXj, 1. 

(Refer Slide Time: 29:23) 

 

You will have w alpha into AXj, 1, minus Cj should be greater than 0 and this is Cj now 

becomes CjXj from here, because lambdaj is the variable. So, Cj becomes Cj Xj greater than 0. 

Let me explain this again. In order for a new variable to enter the basis, because it is 

minimization problem, in general, Zj minus Cj should be greater than 0. In general Zj is 

written as yPj minus Cj greater than equal to 0, where y is the dual variable, Pj is the entering 

column and Cj is the objective function coefficient of the entering variable, now, all these are 

general equations. We are adapting this to the problem on hand. 
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Now, because our problem is structured specifically this way there are as many constraints 

here as in the master problem where we have to introduce dual variable w, this will be w1, w2, 

w is the vector, this is always a single constraint, so introduce an alpha. So y becomes w 

alpha. If there is an entering lambdaj, lambdaj is the variable, Xj is not, so if there is an 

entering lambdaj, then the coefficient will be aXj 1, so we will get aXj 1. 

(Refer Slide Time: 31:01) 

 

Remember that, this is in matrix, this is the single thing so there will be two ws. There will be 

two values coming here, there is 1 alpha, there is just a 1, minus Cj is the objective function 
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coefficient of the entering variable. The entering lambda will have an objective function 

coefficient of CXj or CjXj greater than or equal to 0. 

(Refer Slide Time: 31:29) 

 

Now, this can be expanded to wA minus C into Xj plus alpha greater than 0. We also know 

that this Xj is the corner point corresponding to this and this, because every X is written as 

lambdajXj, where Xj is the corner point. Therefore, because Xj is the corner point, Xj has to 

satisfy this and this, set of constraints. What we want to do now is if there is an Xj, which 

satisfies this and this and has a value wA minus CXj plus alpha greater than 0, then such a 

corner point can enter the basis with an associated lambdaj. 

We do the usual thing of this being strictly greater than, we say that we now want to 

maximize wA minus C into Xj, subject to Xj belongs to some X, where this X is the set of 

corner points. Then, we find out such an Xj and then enter the corresponding lambdaj into the 

solution. For a given objective function this is equivalent to solving the two sub problems. 

With this, bit of theory, let us go back and see whether there is an entering corner point 

whose lambda has to enter the basis. 
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To do that, we go back and now check. We want to find out wA minus C into Xj plus alpha. 

(Refer Slide Time: 33:57) 

 

So, let us write this wA minus c…. Now, from this solution. We also said that this being a 

simplex table and this being the identity matrix, there are no artificial variables and we are 

computing Zj minus Cj, Zj minusminus Cj will automatically give us the values of the dual. 

These two values will be w1 and w2, because they correspond to S1 and S2. S1 and S2 were 

obtained from this and w is the dual variable for this, so w1 and w2 are seen here, alpha is 

seen here, alpha corresponds to this. Alpha corresponds to this lambda1. Alpha is seen here so 

from this right now, the ws are all 0. 
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We want to maximize this right now, the ws are all 0, so, wA minus C Xj, they are all 0, plus 

alpha. Right now, we will have maximize minus CXj. Alpha is also 0. Now, remember the 

original problem is minimize Cx, this problem has to be written as minimize minus 6 minus 5 

minus 3 minus 4. The C vector is minus 6 minus 5 so this is C. Because the given 

maximization problem has to be written as a minimization problem, because the theory this is 

derived for a minimization problem, so the C vector becomes minus 6 minus 5 minus 3 minus 

4. 

Maximize minus CXj will now become maximize 6X1 plus 5X2 plus 3X3 plus 4X4, subject to 

X belonging to this. So, this is decomposed into two problems. The first problem being 

maximized 6X1 plus 5X2, subject to this constraint and the second one is to maximise 3X3 

plus 4X4, subject to this constraint. So, we now have to solve two linear programming 

problems.  

One is a 2 into 2 problem, the other is a 2 into 2 problem, to get the solution to this, subject to 

the condition, that Xj belongs to corner point. Because these two are linear programming 

problems and we know the corner points of the feasible region. Ordinarily, this is not the best 

way to solve this; each one has to be solved as an LP as we go through iterates. Because we 

are solving a much smaller problem and each of the sub problems has only two constraints 

and it is a 2 into 2, we have simply stored the corner points, just to make the ease of 

computation possible for us. 
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In practice when we are actually solving a very large LP, we will not a priori compute all the 

corner points and keep it. At every stage, we will be solving a linear programming problem 

within the decomposition. Let me again repeat, only to make the computation simple, I have 

just written down all the corner points.  

Since we know all the corner points, we can go back and find out what is the best value. So 

(0, 0) will give 0. (4, 0) will give 24. (0, 5) will give 25 (2, 3) will give 27, 6 into 2 is 12 plus 

5 into 3 is 15. This gives the optimum solution (2, 3). Second one is 3X3 plus 4X4, so 3X3 is 

15, here it is 16, now 4 into 3 is 12, plus 2 into 4 is 8, is 20. So, (4, 2) is optimal, this is 27, 

this is 20, so Z equal to 47. So value of Z is equal to 47 and the corner point (2, 3, 4, 2) enters 

the basis. So, the first corner point that will enter the basis is lambda2 which is (2, 3, 4, 2). 

(Refer Slide Time: 38:44) 

 

We now know the entering corner point which is 2, 3, 4, 2, but we have to find out the 

leaving variable. 
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In order to find out the leaving variable, we need to find out Pbarj. So, Pbarj is equal to b 

inverse Pj and this is always b inverse, so Pbarj equal to b inverse Pj. Right now, b inverse is 

I, so Pbarj equal to Pj. What is Pj? Any entering Pj is AXj, 1. So, this is Pj, this is equal to AXj 

1. Now we have to compute AXj and 1. 

(Refer Slide Time: 39:54) 

 

AXj is equal to, A comes from the master problems, please note this is the master constraint; 

this is the AXj equal to b. So A is 1 1 1 1, 2 1 1 3, 1 1 1 1, 2 1 1 3 into Xj is 2 3 4 2 so this 

gives us 2 plus 3 is 5 plus 4 is 9 plus 2 is 11, 4 plus 3 is 7 plus 4 is 11 plus 6 is 17. So AXj 1 is 

11 17 1. 
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We have found out the entering column, which is Pbarj, so we just write the entering column 

here. This is our lambda2, which is 11 17 and 1 with value equal to 47. The positive Zj minus 

Cj will enter the basis, so this lambda1 with lambda2 with 11 17 and 1 enters the basis. Now, 

we have to find out the leaving variable and to find the leaving variable, we will compute a 

theta. Note that, theta is right hand side divided by the entering column. So, it is 7 divided by 

11, 17 divided by 17 and 1 divided by 1, so minimum theta leaves the basis. Therefore this 

will leave the basis and this is your pivot element. 

We need to perform one simplex iteration. So we will go back here, to continue with the 

simplex iteration. Now, the variable S1 is replaced by the variable lambda2, so you have 

lambda2 S2 and lambda 1 with Zj minus minus Cj. Now, divide every element of the pivot by 

the pivot element, so we need 1 0 0 here, so divide by the pivot element, you get 1 by 11 0 0, 

7 by 11, 1. 

Now we need a 0 here, so this minus 17 times 1 will give me 0. So 0 minus 17 into 1 by 11, is 

minus 17 by 11 1 0. This minus 17 times this, 17 into 7 is 119. So, 17 minus 119 by 11, 17 

into 11 is 187.  
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17 minus 17 into 7 by 11, this is 187 minus 119 by 11 which is 68 by 11. 

(Refer Slide Time: 44:10) 

 

We get 68 by 11 here. This will become 0 and we need another 0 here, so, this minus this will 

give us 0. So, minus 1 by 11 0 1, 1 minus 7 by 11 is 4 by 11 and a 0 here. We also know that, 

we can do the same kind of row operation to try and get a new Zj minus Cj, what we need is a 

0 here. This minus 47 times 1 is 0, so this minus 47 times, is minus 47 by 11 0 0. This minus 

47 times, so 47 into 7, is 329. We get minus 329 by 11. This is the solution. 
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Now, what is this basic feasible solution tell us, right now from 0 0 0 0, this has moved to a 

new point, which is given by lambda1 is equal to 4 by 11, lambda2 is equal to 7 by 11, which, 

the present point that we are looking at is 4 by 11 into (0, 0, 0, 0) plus 7 by 11 into lambda2, 

which is (2, 3, 4, 2). This is all 0, so the point is 14 by 11, 21 by 11, 28 by 11 and 14 by 11. 

This is the point we are right now looking at. What is the value of the objective of a function? 

6X1, 14 into 6 is 84, 5X2, 155 plus 84 is 189, 28 into 3 is another 84, so, 189 plus 4, is 193, 

273 plus 56 is 329. So we get 329 by 11, which is the value of the objective function, right 

now. 

From here we have moved on to one iteration and which means from the corner point (0, 0, 0, 

0), we have now moved to a corner point 14 by 11, 21 by 11, 28 by 11, 14 by 11, if we look 

at the entire problem. But we have not look at the entire problem at a time, we have arrived 

this corner point in a slightly different way, by getting this as a convex combination of two 

corner points (0, 0, 0, 0) and (2, 3, 4, 2), with weights 4 by 11 and 7 by 11. 
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When we reached here, we have actually generated an entering column by solving a sub 

problem. The sub problem turned out to be solving two independent linear programming 

problems in this case. We will not store all the corner points now. We need to check whether 

this corner point is optimum, in order to do that, we need to check whether any other lambda 

can enter the basis. For any lambda to enter the basis, we again need to find out maximize 

wA minus cXj plus alpha. Subject to these two sets of corner points or subject to the Xj 

satisfying this and this, both means the same. We now go back and try to solve these two sub 

problems. From this, we know that w is minus 47 by 11, 0. So, w is minus 47 by 11. 

(Refer Slide Time: 48:24) 
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Then minus 47 by 11, 0 into A is 1 1 1 1, 2 1 1 3, so we are first finding out wA, this is 

(minus 47 by 11, minus 47 by 11, minus 47 by 11, minus 47 by 11), this is wA because 0 into 

2 1 1 3 is 0. Now, wA minus C equal to minus 47 by 11, minus 47 by 11, minus 47 by 11, 47 

by 11, minus c is (minus 6, minus 5, minus 3, minus 4) plus alpha and alpha is right now at 0. 

We go back and simplify this. So, this is 6 minus 47 by 11, this is 19 by 11, 66 minus 47 is 

19. Now this is 5 minus 47 by 11, which is 8 by 11. This is 3 minus 47 by 11, which is minus 

14 by 11 and 4 minus 47 by 11 is minus 3 by 11. We now have to solve a problem which 

maximizes 19 by 11 X1 plus 8 by 11 X2 minus 14 by 11 X3 minus 3 by 11 X4, subject to these 

two constraints. The sub problem that we generate now is decomposed into two linear 

programming problems, which again have to be solved separately by using the simplex 

algorithm. But as explained earlier, since these are all small sized problems, we have stored 

the corner points and by substituting the corner points into this, we can find out the objective 

function value and the optimum solution. 

When we look at 19X1 plus 8X2 and minus 14X3 and minus 3 11X4, it is fairly obvious that 

(0, 0) is an optimum solution to this. You are maximizing minus 14 by 11 X3 minus 3 by 11 

X4, which is minimizing that, therefore (0 0) is optimum here. For this is concerned, we look 

at 19X1 plus 8X2 to begin with. This would give us 0, this is 19 into 4 which is 76, this is 8 

into 5 is 40, this is 19 into 2 is 38. So, 38 plus 24 is 62. The point (4, 0) is optimal here. This 

has 76 by 11, this is 0, so with Z equal to 76 by 11 we had. So the point 4 0 0 0 enters the 

basis with Z equal to 76 by 11. What we do now here, is we enter this point 4 0 0 0 into the 

basis, but before we enter that, we have to find out Pbarj and then we need to enter. 
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(Refer Slide Time: 52:51) 

 

Pbarj equal to B inverse Pj and in order to find out Pj we need to do AXj 1, so Pj will be, so 

first we do AXj, so AXj is 1 1 1 1, 2 1 1 3 into 4 0 0 0. 1 into 4, plus 1 into 0, plus 1 into 0, 

plus 1 into 0, is 4. 2 into 4 is 8, so we get 4 8. Now, AXj 1 which is Pj is 4 8 1. Now Pbarj 

equal to B inverse Pj. 

(Refer Slide Time: 53:53) 

 

Pbarj is equal to B inverse Pj. This is B inverse, can always be read from this, 1 by 11 minus 

17 by 11 minus 1 by 11, 0 1 0, 0 0 1 into 4 8 1. This would give us 4 by 11, minus 68 by 11 

plus 8 which is 20 by 11, 88 minus 68 is 20 by 11. This is minus 4 by 11 plus 4, which is 40 

by 11. 
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So, minus 4 by 11 plus 0 plus 1 equal to plus 7 by 11. You get plus 7 by 11. Now, the corner 

points 4 0 0 0, which will take value lambda3, will enter the basis with the entering column 4 

by 11, 20 by 11, 7 by 11 and with Zj minus Cj value of 76 by 11. Let us enter that, so what we 

do now is the kind of keep this column as some kind of dynamic column, because what we 

got from here is already available here, I will erase this as well and I will notionally say ,that 

another lambda3 is entering the basis here. 

(Refer Slide Time: 55:44) 

 

Lambda3 is entering the basis, with values 4 by 11, 20 by 11, 7 by 11 and with a positive Zj 

minus Cj value of 76 by 11. Now, we know that variable lambda3 are corner point 4 0 0 0, 

enters the basis using a variable lambda3. We now need to the find out the leaving variable, 

where the leaving variable could any of these three, which is found out by the minimum theta 

role. Minimum theta is right hand side divided by the entering column, so 7 by 11 divided by 

4 by 11 is 7 by 4. 68 by 11 divided by 20 by 11 is 68 by 20, which is 34 by 10, which is 17 by 

5 and this is 4 by 7.  

Now, clearly 4 by 7 is the minimum of the three, because this is more than 1, this is more 

than 3 and this is less than 1 so this variable leaves the basis. When this variable leaves the 

basis, we need to perform one, more simplex iteration, where we replace lambda1 with 

lambda3 and continue with the simplex algorithm. But before we continue with the simplex 

algorithm let us again take a very quick recap of what actually has happened. 
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What we did was, in this we started with this large linear programming problem and we 

realised that by leaving out a certain sets of constraints, the problem is decomposable into 

smaller size problems. Those constraints that go out constitute what is called the master 

problem and the other constitutes the sub problem. We also exploited the convex combination 

property and then we re-wrote the formulation. 

(Refer Slide Time: 58:10 min) 

 

Now based on this formulation, we had been carrying out the simplex algorithm and we have 

come up to the variable lambda3. We will continue the discussion in the next session. 


