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Advanced Operation Research 

Prof. G. Srinivasan 

Dept of Management Studies 

Indian Institute of Technology, Madras 

Lecture - 4 

One Dimensional Cutting Stock Problem 

We continue the discussion on the cutting stock problem. The problem is to cut 511 of 

9-inch sheets, 301 of 8-inch, 263 of 7-inch and 383 of 6-inches, out of given 20-inch 

sheets. 

(Refer Slide Time: 00:23) 

 

We have already seen that the problem reduces to one of minimising the number of 

sheets that we would require to cut 511 9-inch sheets and so on. The problem is if we 

define Xj equal to number of sheets cut using pattern j, the problem will be to 

minimise sigma Xj, which minimises the number of sheets that we cut subject to the 

condition sigma aij Xj is equal to bi and Xj greater than or equal to 0. 
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In the last lecture we saw that if we consider the patterns where the waste can even 

exceed the minimum size required, which is 6, then the constraint becomes an 

equation. This is the problem that we wish to solve, if this problem were a linear 

programming problem. We also know that Xj being the number of sheets that are cut, 

cannot be a continuous variable. So the problem actually is an integer programming 

problem, where we would say Xj greater than or equal to 0 and integer. We have 

already seen that, at the moment, we do not know the techniques of integer 

programming. We would relax the integer assumption, treat the problem as a linear 

programming problem and try and get an integer solution from the linear 

programming solution. We will try and solve this in more than one stage. In the first 

stage what I am going to do is to tell you that it is enough to solve it as a linear 

programming problem, even though the linear programming problem can give 

fractional values for the Xjs while the Xjs have to be integers. Then we will go on to 

show how we can get a very good solution to the integer programming problem from 

the LP optimum. That is the first thing we will do and the second thing we will do is 

to try and solve the LP, the linear programming problem by exploiting this equation. 
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I have already mentioned that if the primal has equations, the corresponding dual 

variable is unrestricted inside, so we would exploit that. Then we would develop a 

simplex like algorithm, which uses ideas such as primal feasibility, dual feasibility 

and complementary slackness to solve the LP. While we develop that algorithm, we 

will also explain the column generation idea where we will not store explicitly all the 

patterns, but generate patterns or columns based on the solution to a sub problem that 

we will be solving. We will see three things, the first of which is to show that the LP 

optimum is good enough and from the LP optimum we can actually get a very good 

solution to the integer programming problem. 

Let us, for the purpose of this discussion, assume that we have actually optimally 

solved the linear programming problem, which is to cut 511 9-inch, 301 8-inch, 263 

7-inch and 383 6-inch sheets out of a given number or large number of 20-inch sheets 

and to minimise the number of such sheets that we will be looking at. Let us assume 

that we know the optimum solution to the linear programming problem, from which 

we will show why this solution is good enough and how we can get good solutions to 

the IP. This is the optimum solution to the linear programming problem. 
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There are four types required, 9, 8, 7 and 6 which means there are four constraints 

here, which also means that there will be four basic variables and there will be four 

patterns in the solution. We can see that these are the four patterns which are in the 

solution; 2 0 0 0, means 2 into 9 plus 0 into 8 plus 0 into 7 plus 0 into 6, which means 

we are able to cut two 9-inch sheets from a 20-inch and we use 255.5 such sheets. 

Please note that this is an optimum to the linear programming problem and therefore 

this can take a fractional value. Similarly, the pattern 0 2 0 0 is used, which means we 

cut only 8-inch sheets and two such sheets, 2 8-inch sheets from every 20-inch and we 

do that with 87.625 number of sheets. Similarly, we use 0 0 2 1, which means we cut 

2 into 7 plus one into 6 and use up all the 20; waste is equal to 0 in this case. We use 

up all the 20 and we use 131.5 such sheets. 0 1 0 2 is, 1 into 8 plus 2 into 6 which is 

also 20, which means there is no wastage in this pattern. We use 125.75 such sheets, 

or sheet we use or we cut this pattern out of 125.75 sheets. 

In all we have used 600.375 sheets based on the LP optimum. What more can we 

understand from the LP optimum? The given problem is an integer programming 

problem and we have relaxed the integer assumption and we have solved the 

corresponding linear programming problem. If the linear programming says, we need 

600.375 sheets it means the integer programming problem would mean that it will 

have a solution of 601 or more. So the LP optimum is always a lower bound or a 

lower estimate of the integer optimum. We can say comfortably from this that we 
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would require 601 or more sheets. The first thing that we learnt from this solution is 

that ZLP is less than or equal to ZIP and it is a lower bound on the ZIP which is the 

optimum solution to the integer programming problem. 

(Refer Slide Time: 07:35) 

 

Since the problem is an all-integer programming problem, the ZIP has to be an integer 

and therefore 600.375 become 601. We can say definitely that for this problem, we 

need 601 or more sheets. Also, if we are able to get a feasible solution to the integer 

programming problem with 601 sheets, then it is optimal to the IP because 601 is a 

lower bound to the integer programming problem. If we are able to get a solution with 

601, then we have got the optimum solution. Before we proceed further let us also 

verify that this optimum solution meets this demand, so that, that will be useful to us. 

9-inch sheets are cut only using this pattern. We do not cut 9-inch from these three, so 

for every sheet we cut 2 9-inches so 255.5 into 2 is 511 and we require 511 of 9-inch 

sheets.  

8 inch sheets are cut using this pattern and this pattern, so 2 into 87.625 plus 125.75. 2 

into 87.625 would give us 170. This is 87.625 into 2, this is 175.25 plus another 

125.75 would give us 301; so, we get 301 8-inch sheets. 
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7-inch sheets are cut using only this pattern. So 131.5 into 2 is 263; so 263. 6-inch are 

cut using this and this; so, 125.75 into 2, this is 251.5; 251.5 plus 131.5 is 383, so we 

require 383. Therefore we have got this solution. This will meet all the requirements. 

This was more for verification purposes. 

Second thing that we can do is, if instead of 255.5, if we say that we use 256, which 

means each one of these, if we try and put it to its upper integer value, which means 

we are looking at a solution with 256 sheets cut using this pattern, 88 cut using this 

pattern, 132 cut using this pattern and 126 cut using this pattern. 

(Refer Slide Time: 11:01) 
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If we assume that each one of these goes to its upper integer value, automatically the 

solution will be feasible because right with 255.5, 87.625, 131.5, 125.75, it meets 

these numbers. So by increasing this, it will definitely meet these numbers. Such a 

solution with 256, 88, 132, and 126 would be feasible to the linear programming 

problem. It would also be feasible to the integer programming problem because we 

are able to meet all these demands with an integer number of sheets cut using each of 

these patterns. This is a feasible solution to the corresponding integer programming 

problem and this uses, 8 plus 6 equal to 14, plus 2 equal to 16, plus 6 equals to 22. 2 

plus 2 equals to 4, plus 7 equals to 15, plus 5 equal to 20, and 6. 

(Refer Slide Time: 12:04 min) 

 

This uses 602 sheets. So, we have a feasible solution to the IP with 602 sheets and this 

act as an upper bound to ZIP star, if you might call it, the optimum solution. ZIP star is 

less than or equal to 602, because 602 is now an upper bound to this. 

We have a feasible solution; every feasible solution to an integer programming 

problem is an upper bound. Here we find that the gap between the lower bound and 

the upper bound is 1; but in general the gap can only be less than or equal to 4, 

because there are four variables in the solution and each variable is brought to its 

upper integer value. So utmost, the increase is 1 in each of these four. The maximum 

increase that we can get is only 4, which incidentally is equal to four patterns. If we 

agree to accept a solution, which is greater than the optimum by utmost K, where K is 

the distinct number of types of cuts that we want to make. 
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In this case there are four, so if we agree that a solution which is within K of the 

optimum, in this case, within four of the optimum is acceptable to us. Then we can 

surely accept the solution with the upper integer values of these. It also happens that 

when we do the upper integer rounding, it does not exceed by 4, it is only exceeding 

by 1. But in the worst case, if we agree to have a solution that exceeds the optimum 

by K or within K, then we can accept this straight away as the solution. The only 

thing that remains as far as we are concerned is, we already have a solution with 602. 

We know that the lower bound is 601. The solution cannot be 600. If we are able to 

get a solution with 601, then it is certainly optimum. If we are not able to get a 

solution with 601, we are still not worse off. Two things can happen. The optimum 

may still be at 601 and we may not reach it or the optimum itself is 602. Even in the 

case that the optimum is 601 and we do not reach it, we are still worse off only by one 

extra sheet because we already have a solution with 602.  

Let us look at another thing.  

(Refer Slide Time: 15:24) 

 

Let us now take each of these and round it off to the lower integer value. Let us say 

that we are going to use 255 sheets of the first type, we are going to use 87 sheets of 

the second type, we are going to use 131 sheets of the third type and we are going to 

use 125 sheets of the fourth type. Now, clearly this will be infeasible, because we 

have reduced the number. So, we will not be able to meet the demand of 511, 301, 

263 and 383 with this.  
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Let us go back and see how much of demand we are able to meet or how much of 

demand we are not able to meet, if we bring these things to the lower integer value. 

255 sheets of the first one would give us 510 of 9-inch, 255 into 2 is 510, we require 

511. Now 8-inch we take from here, as well as here. So 8-inch will be 2 into 87, 

which is 174. 174 plus 125 is 299. So we have 299 of 8-inch as against 301 in the 8-

inch. So 87 into 2 is 174 plus 125 is 299. 7-inch sheets we cut only using this. So 131 

into 2 is 262 of 7-inch, as against the requirement of 263 that we have here. 6-inch, 

we cut from this as well as this, so, 131 plus 2 into 125 which is 250. 250 plus 131 is 

381of 6-inch. We are short by 1 of 9-inch, 2 of 8-inch, 1 of 7-inch, and 2 of 6-inch. 

This is the shortage that we have, if we bring down each of these into its lower integer 

value. Now, by bringing down into the lower integer value, let us see how many 

sheets we actually consume. We actually consume 5 plus 7 12 plus 1, 13 plus 5 18, 6 

14 17 19, 3 4 5. So, using 598 sheets, we are able to meet 510, 299, 262, 381 and we 

are short by 1, 2, 1 and 2 sheets. 

We already know that the optimum solution can only be 601 or more. If we are able to 

show that in three additional sheets, we can meet all these demands, then we have a 

feasible solution with 601. Let us see whether we can do that.  
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So, we are short by 1 of 9, 2 of 8, 1 of 7 and 2 of 6. What we can do is, we can now 

have a pattern which is 1 1 0 0, which means, we cut 1 of 9 and 1 of 8 with that. Now, 

we have 0 1 1 0, which means we cut 1 of 8 and 1 of 7 and we could have 0 0 0 2 

from the third. We can now take three more sheets and cut 1 1 0 0 from 1; 0 1 1 0 

from another, 0 0 0 2 from the third. All three patterns are feasible because 9 plus 8 is 

17, 8 plus 7 is 15, 2 into 6 is 12, so it is possible to cut. This way we now have an 

extra 9, so this is met. We have 2 8s, this is met; we have 1 7; this is met and we have 

2 6, this is met. So, these 598 sheets plus these 3 sheets give us 601 sheets and we 

have a feasible solution with 601.  

We also know that the lower bound is 601; therefore one of the optimum solutions is 

this plus this, with 601 sheets. Also note that there are lot of alternate optimum, 

because several ways we can actually get this. We could have done 9 plus 6, we could 

have done 8 plus 6 here and so, there are several ways of getting the three extra 

sheets. Even here there could be several ways of doing it. Now, we have got the 

optimum solution through a simple manipulation. From the LP optimum, we have got 

the optimum solution to the integer programming problem. For this problem instance 

we have been able to do this comfortably. For other problem instances, it may not be 

as easy as we did here. But the principles that we have seen, the three very basic 

principles that we have seen, will help us in identifying a very good solution to the 

integer programming problem using the linear programming optimum. The three 
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principles that we saw are the following. One is the optimum solution to the LP 

provides a lower bound to the IP. The upper integer value of the objective function 

value of the LP optimum, which is from 600.35 into 601, is a very good lower bound 

to the integer programming problem. 

Creating all of these into the upper integer value would clearly give us a feasible 

solution and that feasible solution, in the worst case, will exceed the optimum only by 

K, where k is the number of distinct sheets that we cut, which is 4 in this example. 

That is the second principle. 

Third principle is lower integer values of these will be clearly infeasible, but it will 

give us an estimate of how much less is this from the lower bound; as well as how 

much less these are from the demands and then by a quick algorithm, it may be 

possible to try and get the solution as we got here. 

These three principles help us in getting the integer programming optimum from the 

linear programming optimum. Since this part is available which means, since we now 

know how to approach the IP solution from the LP optimum, we now say that we are 

not going to solve this problem as an integer programming problem. We are going to 

solve this problem as a linear programming problem to try and get this LP optimum, 

because we now know how to get the IP solution from the LP optimum. So the first 

part of the discussion on the cutting stock problem is to try and study the IP solution 

from the LP optimum, which we have completed right now. From the LP optimum, 

we have shown how we get to the IP solution. 

Second part of the discussion on the cutting stock problem is to actually solve this LP 

and use the ideas of column generation, where we do not store every possible pattern, 

instead we generate patterns depending on the state of the solution. We will now look 

at the second part where we actually try and solve the LP to get this solution 255.5, 

87.625, etc., with 600.375; so, we will look at that. 
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Let us assume that we have 20-inch sheets and we are going to cut these four types. 

The four easiest patterns to look at are patterns where we cut only 9, only 8, only 7 

and only 6. If we cut only 9, the pattern that we will have is 2 0 0 0. If we cut only 8 

the pattern will be 0 2 0 0. If we cut only 7 it would be 0 0 2 0. Even though, with 

some amount of common sense, we can say that 2 into 7 is 14 plus 1 can be cut, so 

that, all twenty can be used.  

We also realise in this example that the number of 6-inch sheets are higher, the 

demand is higher. It would certainly be worthwhile to try the pattern 0 0 2 1 instead of 

0 0 2 0. However, when we begin the LP optimum, we do not want to think on those 

lines. We would rather say that we would start with patterns where we are cutting 

only one at a time, which means if we take a 20-inch sheet and we are going to cut 

only 7-inch and not bother about the rest of them, we will end up doing 0 0 2 0. So, 

we will take this 0 0 2 0 as a starting pattern. 

Now, as far as 6-inch is concerned, we will take 0 0 0 3, because 3 is possible. We 

will now say that these four are the four patterns; we may call them as X1, X2, X3, X4 

but these four are the four patterns that we will use. Now, the basis matrix B 

corresponding to these four patterns is given this way. If we choose to cut only these 

types of patterns, how many sheets are we going to cut? So, if we use the pattern 2 0 0 

0 and cut 9-inch sheets out of this, then for each we are going to get 2 9-inch sheets. 
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So, we would require 511 by 2, which is 255.5 sheets we will require to meet the 

demand of 511. 

(Refer Slide Time: 27:32) 

 

Similarly, we are going to cut only 8-inch sheets; so, two sheets at a time, so we will 

require 301 by 2, which is 150.5 sheets of this pattern, we will cut. Similarly we will 

require 263 divided by 2, which is 131.5 sheets that we require to cut using the pattern 

0 0 2 0, so that our requirement of 263 is met. Now 383 has to be divided by 3, 

because every sheet we get 3 6-inches. So we will require 383 divided by 3 which is  

127 .66. 

If we follow this pattern then we would require a total of 6. Right now let us keep it as 

6 6. It is actually 6 6 6 and so on. We will keep it as 6 6. So 15 plus 6 is 21, 2 9 10 15, 

3 6 11 16, 2 3 4, 6. So, we require 665.16 sheets if we use this pattern. This is a 

feasible solution to the linear programming problem, because we will be able to meet 

the demand of all of these and the X which satisfies all the constraints, all the 

variables X is greater than or equal to 0. This is a feasible solution 665.16. We now 

need to check whether this is optimum. 
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This will be optimum provided we evaluate Cj minus Zj of all non basic variables or 

in this case of all non basic patterns. If we have listed all the possible patterns, then it 

may be possible to try and find out the Cj minus Zj of all non basic patterns, which 

means all those patterns that are not here and the problem is a minimisation problem, 

therefore a negative Cj.minus Zj or a positive Zj minus Cj will enter the basis. 

There are two things, one is we have not listed out all the patterns, so only when we 

list out all the patterns, we will be able to compute the Cj minus Zj for all these 

patterns. Now that we have not listed all these patterns, we are not able to compute the 

Cj minus Zj. So what we are going to say is that, if there is a pattern which has a 

negative Cj minus Zj, then such a pattern can enter the basis. We will try and find out 

if there is a pattern which has a negative value of Cj minus Zj. If such a pattern exists, 

if we are able to find a pattern with the negative value of Cj minus Zj, then such a 

pattern can enter the basis. We will now try and see whether there exists a pattern and 

try and find out that pattern, if such a pattern exists. 

In order to find that out, let us go back to the formulation again. 
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We have already seen that the problem is to minimise sigma Xj, where Xj is the 

number of sheets cut using pattern j, subject to the constraint sigma aij Xj is greater 

than or equal to bi, where bi is the requirement and Xj greater than or equal to 0. We 

have already seen that by considering a large exhaustive set of patterns where the 

waste need not be less than 6, then the inequality will now become an equation, where 

we will say it is equal to bi. In this particular example, there are four constraints, so 

there are four equations. Let us write the dual of this problem. The dual of this 

problem, let us say that it has yi as the dual variable, and there will be four dual 

variables, one each associated with each of these constraints.  
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If we define this yi here, then the dual will be a maximisation problem, which will be 

maximise sigma bi yi, such that, aijyi is greater than or equal to one. The aij comes 

from here; we should actually look at the transpose of that particular matrix, but, for 

the sake of notation I am using the same aij. Now, each y will take an element from 

this. The dual will have aijyi is greater than or equal to 1, because each Xj has an 

objective function coefficient of 1. 

This is the value and we also have yi unrestricted in sign. The unrestricted in sign 

comes because all the primal constraints are equations. Therefore, all the dual 

variables are unrestricted in sign. Here, the greater than or equal to comes because 

primal is a minimisation problem, dual is a maximisation problem. The primal has the 

correct type of variable, which is greater than or equal to here. Therefore, the dual will 

have the correct type of constraints, which will be less than or equal to 1 from this. 

The dual will be maximise biyi such that aijyi is less than or equal to 1. 
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We are now interested in finding if there is a pattern that can enter the basis, which 

means such a pattern should have a negative Cj minus Zj. So, an entering pattern 

should have a negative Cj minus Zj less than or equal to 0. Every pattern has an 

objective function coefficient of 1, because the primal is sigma Xj for all Cj’s are 1. 

This is Cj minus Zj less than or equal to 0. Cj minus ypj less than or equal to 0, which 

means ypj greater than or equal to 1, then such a pj can enter. If there is a pattern Pj, 

such that ypj is greater than or equal to one, then such a pattern can enter and the 

pattern has to be feasible, therefore the pattern should satisfy, if the pattern is A, B, C, 

D then the pattern should satisfy the condition 9 into A, plus 8 into B, plus 7 into C, 

plus 6 into D is less than or equal to 20, because we should be able to cut all feasible 

patterns from 20-inch. Therefore, any feasible patterns contains an A, B, C, D, such 

that 9 A plus 8 B plus 7 C plus 6 D is less than or equal to 20 and if we have a dual y 

from the given basic feasible solution, you can find out y and ypj is greater than 1, 

strictly negative value will enter, so that would give us ypj greater than 1, then such a 

pattern will enter the basis. 

So, our job is to find out a pattern given the dual y, to find out a pattern pj such that 

ypj is greater than 1 and pj is A, B, C, D, where 9 A plus 8 B plus 7 C plus 6 D is less 

than or equal to 20. Let us first find out the value of y. Now y, which is the dual is 

given by y B equal to CB or y is equal to CB B inverse.  
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So, y B equal to CB, so let the dual y be y1, y2, y3, y4 into B which is 2 0 0 0, 0 2 0 0, 0 

0 2 0, 0 0 0 3 is equal to CB which is 1 1 1 1. Why the dual is y1, y2, y3, y4; the basis 

matrix B is repeated from here. CB is the objective function coefficient which is all 

made up of 1s. Now this matrix is very close to an identity matrix, except that the 1s’ 

have certain numbers. So, it is very easy to compute y1, y2, y3, y4 and we need not 

actually invert this explicit. Simple computation would give us y will be equal to 1 by 

2, 1 by 2, 1 by 2, 1 by 3, because from this 2 y1 plus 0 y2 plus 0 y3 plus 0 y4 is equal to 

1, which would give us 1 by 2. Similarly, y2 is 1 by 2, y3 is 1 by 2 and y4 will become 

1 by 3. We have now found out the dual y. Now, we go back and say that, if there is a 

pattern which is Pj which is given by an a b c d, then the pattern should actually do 

two things.  
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If we have a new pattern a b c d, such that 9 a, plus 8 b, plus 7 c, plus 6 d less than or 

equal to 20, which makes the pattern feasible and half a, plus half b, plus half c, plus 1 

by 3 d greater than 0, then such a pattern can enter the basis. We have to find out the 

existence of such a pattern. Also we have a, b, c, d greater than or equal to 0 and 

integer. The integer comes because all the patterns will have only an integer number 

there. So, 9a plus 8b plus 7c plus 6d is less than or equal to 20; half a plus half b plus 

half c plus 1 by 3d greater than or equal to 1, because from here we have said that 

entering pattern will have ypj greater than 1. So, half a plus half b plus half c plus 1 by 

3d is greater than 1 and a, b, c, d greater than or equal to 0 and integer. We have to 

actually solve this problem to try and find out a, b, c, d such that a, b, c, d satisfies all 

these three, then such a, b, c, d can enter the basis. 

We now move away from the linear programming and then we start concentrating on 

how to solve this particular problem. Let us take a closer look at this problem. This 

problem by itself is not a linear programming problem, because of the presence of 

integer values of a, b, c, d. We cannot relax this, because every pattern should have an 

integer number of 9, 8, 7 and 6 that we can cut. This problem becomes an integer 

programming problem within a linear programming problem. We will now try and 

solve this problem. Another difficulty here is that this has a very strict kind of an 

inequality, which says it has to be greater than 1, not greater than or equal to 1. In 

linear programming or integer programming, we are used to greater than or equal to, 
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or less than or equal to, not strictly greater than. The better thing to do is to treat this 

as a constraint and to treat this as an objective function and say that we are now 

interested in maximising 1 by 2a plus 1 by 2b plus 1 by 2c plus 1 by 3d, subject to the 

condition 9a plus 8b plus 7c plus 6d less than or equal to 20; a, b, c, d greater than 

equal to 0 and integer. We solve this problem and if we say that if the optimum 

solution to this problem has an objective function value greater than 1, then it means 

we have found out an a, b, c, d which satisfies all this.  

So instead of finding out a solution to a problem containing only inequalities and 

some restrictions on the variable, we convert it into an optimisation problem, where 

we have an objective function, we have a constraint, we have a single constraint with 

the integer and then we say that if the objective function value is greater than 1 then 

we have found such an a, b, c, d. 
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This problem is called a Knapsack problem. This problem can be described as 

follows: there is somebody who is going for a mountaineering trip or a trekking trip. 

The person has to choose all the things he or she can put in a sack or in a bag that this 

person can carry. The single constrained can represent either a weight restriction or a 

volume restriction on the bag and the objective function will represent some kind of 

index of usefulness of the items. You want to put those items into the bag, more than 

one number; it is not a 0 1 Knapsack, it is an integer Knapsack. You can put more 
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than 1 number of that. Correspondingly the usefulness increases, so the problem is a 

well known problem called a Knapsack problem. There is a very efficient algorithm to 

solve the single constrained Knapsack problem. We will now look at that algorithm to 

solve the single constrained Knapsack problem. 
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What we do now is since a, b, c, d are now variables that we have to find out, we will 

use the notation X1, X2, X3, X4 instead of a, b, c, d. We will also renumber it 

depending on a certain computation. The first thing we need to do in a single 

constrained knapsack problem is this. There is an equivalent between the single 

constrained knapsack problem and the corresponding single constrained linear 

programming problem. That is, if you relax this integer restriction, then the problem 

becomes a single constrained linear programming problem. A single constrained 

linear programming problem has a very simple solution that, that variable which has 

the largest ratio of the objective function to the constrained will be in the solution. 

What we do now is we are now going to redefine the a, b, c, d, as X1, X2, X3, X4 in the 

decreasing order of the ratio of the objective function to the constraint. This is 1 by 

18, this is 1 by 16, this is 1 by 14 and this is also 1 by 18. 1 by 18 comes, because 1 by 

2 divided by 9 is 1 by 18. 1 by 2 divided by 8 is 1 by 16. 1 by 2 divided by 7 is 1 by 

14 and 1 by 3 divided by this is 1 by 18. What we will do is we will number these 

variables instead of a, b, c, d as X1, X2, X3, and X4 in the decreasing order of this. So, 

this is the biggest one, so this variable becomes X1. This is the second one, so this 
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variable becomes X2. This is the third one which becomes X3. This is also equal so 

this becomes X4. One of these can become X3 and the other can become X4. The 

problem is now rewritten to maximise. 
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This is your variable X1 so maximise half X1. This is your variable X2 plus half X2. 

This is your variable X3 plus half X3 plus 1 by 3 X4, subject to the condition this is 

your first variable, so, 7X1.This is your second one, 8X2 plus 9X3 plus 6X4 less than 

or equal to 20; Xj greater than or equal to 0 and integer.  

These objective function coefficients are now fractions. Just to make it a little more 

comfortable, we can bring all of them into integer by simply multiplying by the LCM, 

which is 6. The problem will now become maximise 3X1 plus 3X2 plus 3X3 plus 2X4 

subject to 7X1 plus 8X2 plus 9X3 plus 6X4 less than or equal to 20; Xj greater than or 

equal to 0 and integer. Now, for a moment, if we remove this integer restriction, the 

optimum solution to the problem is given by X1 equal to 20 by 7 with Z equal to 3 

into 20 by 7 which is 60 by 7. So we first take the LP optimum. LP optimum will be 

X1 equal to 20 by 7 with Z is equal to 60 by 7. We now go back and say that, so this is 

Z is equal to 60 by 7. Again we go back to the integer programming, linear 

programming idea and say that LP optimum is a lower bound and therefore the better 

lower bound is the upper integer value of 60 by 7 which is 9. So, the lower bound is 

60 by 7, but the upper integer value is 9 which is a lower bound to this. From this we 

can also say that X1 can take the value 0 or 1 or 2 and cannot take more than that. 



23 

 

(Refer Slide Time: 51:29) 

 

We start with a node here which says, LP is equal to 60 by 7. From this X1 takes 2.85. 

So, X1 is equal to 0. X1 is equal to 1 and X1 is equal to 2. Now, when we fix X1equal 

to 0, what will happen is, we have removed this. So the LP optimum will now become 

X2 equal to 20 by 8 and Z is equal to 60 by 8. So, this is X1 is equal to 20 by 7. This 

will give us X2 is equal to 20 by 8, Z is equal to 60 by 8, which is 7.5. We can only 

think of a solution with 8 and more from this, whereas here we can think of a solution 

with 9 and more from this. Problem is a maximisation problem. Since the problem is a 

maximisation problem, the linear programming is actually an upper bound to this. 

Therefore, this is 8 point something so we could look at 8 from here. Now this is 7.5 

so, from this we could only look at 7 from here and so on. Now when X1is equal to 1 

that we have here, now when X1 is equal to 1, we are going to use up 7 units from 

here. We have remaining 13 units that are available. So X2 will be 13 by 8. So X2 is 

13 by 8 and Z is equal to 13 by 8 into 3, which is 39 by 8 plus another 3 that comes 

from here. So, 3 plus 39 by 8 which is 7 point something. So, a solution of 7 is only 

possible from here. This is 7 plus something. So the 39 by 8 is 8 times 4 are 32, 8 

times 5 are 40, so this is slightly less than 5; so 4 is slightly less than 5 therefore, you 

get 7 point something. 

Now, when you put X1 equal to 2, the solution that you will have is, now by putting 

X1equal to 2, you are using up 14 units here, so 6 units are remaining. X2 will be 6 by 

8 and the Z value will be 6 into 3 18 by 8 plus another 6; so Z is equal to 6 plus 18 by 
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8. This is 2 plus something, so up to 8 is possible. Z is equal to 8 plus is possible. 

Here a solution of 7 plus is possible. So only a maximum of 7 can be reached for the 

IP. Here, it is 7 plus something, a value that is less than 8. So only a maximum of 7 

can be reached out of this, whereas here a solution of this is 8 plus, so it may be 

possible to reach a solution of 8. We try and branch from here. Now this is X2 equal to 

6 by 8. X2 is strictly less than 1, so the only value that X2 can take is X2 equal to 0.  

(Refer Slide Time: 57:54) 

 

When X1 is equal to 2 and X2 is equal to 0, we use up 14 resources from here. This is 

0 and so remaining 6 resources are available. So X3 will be equal to 6 by 9. The 

objective function will be 18 by 9, which is 2 plus another 6, so again Z is equal to 8. 

Again from here a solution of 8 is possible. Remember we are trying to maximise it 

and each one is acting as some kind of an upper bound; so from here still a solution of 

8 is possible, whereas, from here a solution of a maximum of 7 are only possible, if 

we move down from there. Now since the solution of 8 is possible, we again branch 

from here. This X3 being 6 by 9, X3 cannot take 1. So, X3 will take value 0. So when 

X1 takes 2, X2 takes 0, X3 also takes 0, which means we have used up 14 units of 

resource. This is 0, this is 0, 6 units are available. Therefore, straight away X4 will 

take 1 and contribute 2 to the objective function. This will be 2 into 3, 6; so this gives 

us Z is equal to 8. Now this is an integer feasible solution with X1 equal to 2, X2 equal 

to 0, X3 equal to 0, X4 equal to 8, X4 equal to 1, with Z equal to 8.  
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This is a feasible solution to the integer programming problem, proceeding from here 

we cannot get solution with 8; it can only be 7 or less. Therefore, we say that we have 

reached the optimum solution with Z equal to 8. We have now solved this Knapsack 

problem and how we use this Knapsack solution and go back to the linear 

programming problem, we will see in the next lecture. 


