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We continue the discussion on the MILP cut. In the last lecture, we derived the 

expression for the MILP cut, and the MILP cut looks like this. 
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So, we go to the familiar example. The example is written here again, and the LP 

optimum is shown here. In the example problem Y 1 is greater than or equal to 0 and 

integer, so LP optimum is giving as Y 1 equal to 10 by 3 which is not an integer value. 

So, the Y 1 row will act as a source row to generate the MILP cut, and from here we use 

this MILP cut equation; f naught is the fractional portion of the right hand side value. So, 

10 by 3 is 3 plus 1 by 3; so, f naught takes value 1 by 3. Now, we realize that there are no 

non basic Y j’s in this table. Therefore, this term does not figure in our MILP cut for this 

example. 

So, the f i j Y j terms do not exist. So, we have look at only these two terms; now this is 

the term that has a positive coefficient for X j, the other one is the term that has negative 

coefficient for X j. So, the one with a positive coefficient remains as 5 by 3 X 3, one with 

a negative coefficient becomes minus a i j f naught is 1 by 3, a i j is minus 1 by 3 by 1 

minus f naught 1 minus 1 by 3 which is 2 by 3. So, this on simplification would give as 5 

by 3 X 3 plus 1 by 6 X 4 is greater than or equal to 1 by 3. So, this is the MILP cut; the 

presence of this negative number negative coefficient here, has now change this 1 by 3 to 

1 by 6, because you have f naught by 1 minus f naught which is a multiplication factor. 

So, we include this into the LP optimum as a MILP cut; so, we introduce a new variable 

X 5 which comes as a result of the MILP cut. This X 5 is the surplus variable which is 

added to convert the greater than or equal to inequality to an equation. So, this is like 



minus X 5 is equal to 1 by 3. So, take X 5 to one side, and 1 by 3 to the other side; so, X 

5 will become minus 1 by 3 plus 5 by 3 X 3. So, plus 5 by 3 X 3 there is a minus already 

there, so plus 5 by 3 X 3 plus 1 by 6 X 4 would give as minus 1 by 6 X 4. So, now we 

have to do a dual simplex iteration. 

 So, this is the variable that will go out, which has a negative value for the right hand 

side. The entering variable is found based on a minimum ratio rule; so, leave out the 

negative portion 1 by 3 divided by 1 by 6 is 2, 4 by 3 divided by 5 by 3 is 4 by 5, 4 by 5 

is smaller so variable X 3 enters the basis. So, we do one simplex iteration with this; so, 

X 5 becomes non basic. So, X 3 replaces X 5 in the basis. So, we have Y 1, X 1, and X 3, 

this is our pivot. 

So, pivot element becomes 1 by pivot; so this becomes minus 3 by 5 divide every 

element of the pivot row by the pivot. So, you get plus 1 by 5, you get plus minus 1 by 6 

divided by 5 by 3 is 1 by 6 into 3 by 5 which is 1 by 10 divide by the negative of the 

pivot. So, 4 by 5; 1 and minus 2 by 5 negative of the pivot minus 2 by 3 divided by 5 by 

3 is minus 2 by 5. Now, we need to find out this value; so 44 by 3 minus 4 by 15. 

So, this is 220 minus 4 is 216 by 15 which is 72 by 5; 10 by 3 minus 1 by 3 is 9 by 3 

which is 3; 8 by 3 plus 2 by 3 into 1 by 5, 8 by 3 plus 2 by 15 is 42 by 15 which is 14 by 

3. Now, this value is 1 by 3 minus 4 by 30 or 1 by 3 minus 2 by 15, 3 by 15 which is 1 by 

5 minus 1 by 3 minus 1 by 6 which is minus half minus 1 by 3 minus 5 by 3 into 1 by 10. 

So, minus 1 by 3 minus 1 by 6 which is minus half. So, 1 by 3 plus 2 by 30 which is 12 

by 30, which is 12 by 5. 

So, now we look at this solution, and we realize that X 1, Y 1 which should take integer 

value has taken the value 3. So, this is optimal to the MILP with the solution Y 1 equal to 

3, X 1 equal to 14 by 3, and Z is equal to… Let me just check this 14 by 3 again, so this 

value here will be 8 by 3 plus 2 by 15 which is 42 by 15; so, this is 14 by 5. So, that 3 X 

1 plus 2 Y 1 is 42 by 5 plus 6 is 72 by 5. So, the optimum solution is given by Y 1 equal 

to 3, X 1 equal to 14 by 5, and Z equal to 72 by 5. This is the same solution that we 

obtain, when we solve the problem using the branch and bound algorithm. 

 Now, we can either use the MILP cut, the cutting plane algorithm or the branch and 

bound algorithm to solve this. Usually branch and bound is preferred, because when 

compare to a branch and bound for all integer; the branch and bound for MILP uses 



fewer nodes, because fewer variables alone or restricted to be integers. Whereas, in a all 

integer problem, we should have all variables take integer value at the optimum. 

Therefore, the number of nodes, when you compare with an equivalent all integer 

problem; the number of nodes will be lesser, when you solve the MILP. On the other 

hand, if we take a closer look at the MILP cut, at some point we realize that we had some 

quantity greater than equal to f naught. And some other quantity was also greater than or 

equal to f naught, and then we added both of them and created this cut. We see carefully, 

we had this portion which was greater than or equal to f naught, and this portion is 

greater than or equal to f naught. We added both of them, and set that we would have a 

cut greater or than or equal to f naught. 

 Now, we also realize the because of this the MILP cut is the little weak, and there can be 

instances where, we need more MILP cuts until we get to the optimum solution. In this 

particular example, just one MILP cut is enough to try and give as the optimum solution 

but, there can be situations where we need more cuts. So, keeping all those things in 

mind one would prefer using a branch and bound algorithm to solve an MILP rather than 

MILP cut; it also possible to look at better cuts then what we have seen right now. In the 

sense cuts which are much tighter, and much better than this cut which could help as get 

the optimum solution in fewer iterations. 

(No audio from 09:48 to 10:11)  

 Now, let us look at another method to solve the MILP problem, where we essentially try 

to partition the variables into two sets; those variables that should take integer values, 

and those variables that can take continuous values. In fact our very idea if introducing 

different notation using X for those variables that take can take continuous values, and 

using Y for those variables that take integer values is to partition them at some point into 

two sets of variables. 

 So, we look at some kind of a partitioning algorithm, where we partition the variables 

into two sets, and then we try and solve this problem. 
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 So, let us look at this problem again, and write this as maximize 3 X 1 subject to X 1 

less than or equal to 6 minus Y 1, and 5 X 1 less than or equal to 20 minus 2 Y 1, X 1 

greater than or equal to 0. So, what we have done here is, we have now written the 

problem in terms of X assuming that X are unknown; so maximize 3 X 1, I have right 

now left out the 2 Y 1, we will see Y; X 1 is written as 6 minus Y 1, and 5 X 1 is written 

as 20 minus Y. Now, X 1 greater than or equal to 0. 

 So, if you assume that we know the value of Y, there is only one variable Y which you 

can call as Y or Y 1 in this example. If you know the value of this Y 1, then X 1 is 6 

minus Y 1, 5 X 1 is less than equal to 20 minus 2 Y 1, and if Y 1 is known, this 2 Y 1 

becomes a constant. And therefore, this is 3 X 1 plus constant. And write now, we can 

ignore a constant in a linear programming problem. So, for known values of Y 1 this 

becomes a LP.  

So, if the values of Y 1 are known, then for known values of Y 1 we can solve this to get 

the value of X 1. In our example, there is only one X variable, and one Y variable; in 

another example involving more number of X, and Y variables. Then once the values of 

all the Y variables are known, the X variables can be found out by solving this linear 

programming problem, this is the LP. 
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Now, let us write the dual of this LP. So, the dual of this LP will be to minimize, the dual 

will be to minimize; so, we introduce two variables which we call as u 1 and u 2. So, the 

dual will be to minimize u 1, u 2 into 6 minus Y 1, and 20 minus 2 Y 1; such that u 1 

plus 5 u 2 is greater than or equal to 3; u 1, u 2 greater than or equal to 0. 

 So, this is the dual, at present we may tend to think that there is some non-linearity, but 

actually there is no non-linearity, because this dual is written under the assumption that 

Y 1 values are known. So, the moment Y 1 values are known this becomes a linear term 

involving u 1 and u 2; the constraints are anyway linear, there is only one constraint, 

because a primal has only one variable. There is only one constraint that we have. Now, 

at the moment we do not know the values of Y 1; therefore, we let us say we are unable 

to find the optimum solution to this dual. If the values of Y 1 are known, then we can 

solve the LP to get the optimum solution to this dual. Since, we do not know the Y 1 at 

the moment, we take only a feasible solution to the dual - and a feasible solution to the 

dual is given by (3,0), because this constraint would give as (3,0) as a feasible solution to 

the dual. 

(No audio from 14:58 to 15:13) 

 So, now since (3,0) is a feasible solution to the dual, then 3 into 6 minus Y 1 plus 0 into 

20 minus 2 Y 1 is a value of the objective function of this for a known feasible solution 

(3,0). I am not writing this 0 into 20 minus 2 Y 1, because it is 0; so 3 into 6 minus Y 1 is 



the value of the objective function corresponding to the solution (3,0), and (3,0) is 

feasible. Therefore, 3 into 6 minus Y 1 is the objective function value of a feasible 

solution to the minimization problem, and because it is an objective function value of a 

feasible solution to a minimization problem.  

It is an upper bound to the optimum solution to this, because any minimization problem 

the objective function value of a feasible solution is greater than or equal to that of the 

optimum. Optimum is a smallest value that you can think of; therefore, 3 into 6 minus Y 

1 is an upper bound to W, if we called this as W. Now, by weak duality theorem, we 

know that the objective function value of every feasible solution to the dual is greater 

than or equal to the objective function value of every feasible solution to the primal. So, 

if Z is the objective function value here, then Z is less than or equal to 3 into 6 minus Y 1 

by weak duality theorem. 

So, we go back and re-write this problem, and this problem now becomes maximize Z, 

now this Z has two components 3 X 1 plus 2 Y 1. The 3X 1 components has been written 

here, and this as gone. So, 3 into 6 minus Y 1 is an upper bound to 3 X 1; therefore, Z is 

less than or equal to 2 Y 1 plus 3 into 6 minus Y. Note that there are two components to 

this, is called as Z, now so there is a 3 X 1 component, there is a 2Y 1 component, when 

we wrote this we assume that Y 1 is known. And therefore, this becomes a constant. 

 So, we wrote only the 3 X 1, and then we wrote its do well, and we set that 3 into 6 

minus Y 1 is an upper bound on this value, which imply it is on upper bound on this 

value. Therefore, Z should be less than or equal to 3 into 6 minus Y 1 plus 2 Y 1, 

because Y 1 greater than or equal to 0 and integer. What is Z? Z is the objective function 

value here 3 X 1 plus 2 Y 1, now Z need not be an integer, because 2Y 1 is an integer, 

3X 1 need not be an integer.  

So, in principle we should write Z greater than or equal to 0; Z is a continuous variable, 

but then if we want to find out the value of Y 1 which maximizes Z, such that Z is less 

than equal to 2 Y 1 plus 3 into 6 minus Y 1, that Z greater than or equal to 0, Y 1 greater 

than equal to 0 and integer. This problem is a MILP, where Y is integer valued, Z is 

continuous. 

 So, we start by solving on MILP, where X are continuous, Y are integer; and then 

somewhere inside we get a sub problem which is also an MILP. So, we solve that by 



saying that we are now going to force Z also to be integer, and then say that now this 

problem becomes on ILP. And this is not a MILP; so instead of solving an MILP with in 

an MILP, you actually end of solving an ILP integer linear programming problem within 

a mixed integer linear programming. So, let us try and solve this; so this is will reduce to 

Z less than or equal to 18 minus Y 1; Y Y is integer value, so the obvious optimum 

solution is Y 1 equal to 0, and Z equal to 18, because you have Z less than or equal to 18 

minus Y 1. So, the optimum value will be at Y 1 equal to 0, and Z equal to 18. 
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 Now, we go back and substitute here into this dual, the known value of Y 1 which is Y 1 

equal to 0. We go back, and substitute to get minimize 6 u 1 plus 20 u 2 subject to u1 

plus 5 u 2 greater than or equal to 3; u 1, u 2 greater than or equal to 0. Now, you get 

your first known value of Y 1, in the earlier case we did not get known values of Y 1; 

therefore, we picked on upper bound here, now we have a way that we know Y 1. 

 So, substitute that Y 1 back to get 6 u 1 plus 20 u 2, because Y 1 is 0; so, when you 

substitute Y 1 equal to 0 you get this therefore, you have. Now, you have to solve this 

linear programming problem, which can be solved easily; write now, it is a single 

constraint. So, when you put u 1 equal to 3 you get 18, when you put u 2 equal 3 by 5, 

you get 20 into 3 by 5 which is 12. 

So, the optimum solution is u 2 is equal to 3 by 5 with W equal to 12. Now, go back and 

check what happens you have a solution here with W equal to 12, you have Y equal to 0; 



so the solution from the dual side is 12 plus 0 which is 12, the solution from this side is 

18. 

 So, the solution here is bigger than the solution there. Which simply means that this 

actually has to come down; the solution that we get here which is 2 Y 1 plus 3 X 1 from 

this side is 18 write now. The solution from the other side is actually 12 from the dual 

side plus 2 Y 1 which is 0, so the solution there is 12; automatically, if you have an 

optimum solution to a set of LPs, after all we have converted an LP here, and we have 

written the dual there. 

So, when we have that we at some point at the optimum the objective function values of 

the primal, and the dual will have to be equal. So, right now this 18 is higher than 12  

plus 2 Y 1; therefore, we proceed further to see what we can. So, now what happens to 

this, now when u 2 is equal to 3 by 5; the objective function value here that you have for 

3 by 5 is 3 by 5 into… So, this is 0 into 6 minus Y 1 plus 3 by 5 into 20 minus 2 Y 1, that 

is your objective function value that you get. Now, ideally this should be an upper bound 

to this; therefore, we put a constraint making this as an upper bound. 

So, that this value comes down. So, now you write maximize Z, we already have the first 

upper bound for Z, that is comes from Z less than or equal to 2 Y 1 plus 18 minus 3 Y 1 

which is 18 minus Y 1, which is the first upper bound. And your second upper bound 

that comes, because one second this is a feasible solution to the dual. So, this has to be an 

upper bound; therefore, this will give you Z less than or equal to 3 by 5 into 20 minus 2 

Y 1 plus 2 Y 1; the plus 2 Y 1 comes from here, because all these the dual is written for 

the linear programming problem that involves only 3 X 1. So, this is an upper estimate of 

the 3 X 1; whereas, the actual Z is 3 X 1 plus 2 Y 1, therefore we write 3 by 5 into 20 

minus 2 Y 1 plus 2 Y 1. And then, you write Y 1 greater than or equal to 0 and integer.  

And then again we go back to the same conflict, that actually Z need not be integer; Z 

can be continuous, but then you get a MILP within an MILP which we do not want. So, 

we constraint Z also to be an ILP, and then we write this. So, now we have to solve this, 

before we solve this simplify this first. 

So, we write Z less than or equal to 18 minus Y 1; Z less than or equal to… Now, this 

becomes 12, 3 into 20, 60 by 5 is 12; this is plus 2 Y 1 minus 6 by 5 Y 1 plus 2 Y 1 

minus 6 by 5 Y 1. So, that is 4 by 5 Y. So, 12 plus 4 by 5 Y. So, now we want to find out 



the optimum value of Y 1, actually we can solve this ILP by either using a cutting plane 

algorithm or any ILP algorithm, but since we are having a very small problem, we try a 

use substitution to get the best value of Y 1.  

So, you start with Y 1 equal to 0. so Y 1 equal to 0 will give you Z less than equal to 18, 

Z less than equal to 12; so Z will be equal to 12. Y 1 equal to 1 will give you 17 here, 

this is 12 plus 4 by 5 into 1, 12 one 4 by 5, Z is an integer. So, Y 1 equal to 1 will also 

give Z is equal to 12. Y 1 equal to 2 will give 16 here, this is 8 by 5; so Y 1 equal to 2 

will give Z equal to 13, because this is 18 minus 2, 16; this is 12 plus 8 by 5 lower 

integer value. Therefore, 8 by 5 is lower integer value is 1, so you get Z equal to 13. 

Now, Y 1 equal to 3, Z is equal to 18 minus 3 is 15; this is 12 by 5 which is 2, so Z will 

be equal to 14. Now, Y 1 equal to 4; this is 14, this is 16 by 5. So, 3 plus something 4 

into 4 16 by 5 is 3. 

So, Y 1 equal to 4 also gives Z equal to 14, so Y 1 equal to 5 will give you, this will give 

you 13, this will give you 25 by 5 which is 17. So, Z equal to 13. So, we get solution Y 1 

equal to 3 or Y 1 equal to 4 which are optimal to this. So, let us take Y 1 equal to 3 first, 

and Z is equal to from here, Z is equal to 14. So, we take Y 1 equal to 3, and Z is equal to 

14 from this one. Now, we go back and check now what happens, here the value of Z is 

14. Here the objective function value is actually 3 by 5 into 20 minus 2 Y 1; so 20 minus 

2 Y 1 is 42 by 5; Y 1 equal to 3.  

So, this is 14  into 3 by 5, 42 by 5 plus 2 Y 1, 42 by 5 plus 6 is 72 by 5 which is greater 

than 14; therefore, you have now reach the optimum with 14, because this the value as 

sufficiently come down. The dual is giving you a solution of 72 by 5, the primal is giving 

you a solution of 14, your duality theorems are satisfied; the only reason why there are 

not equal is the fact that you have restricted this to be an integer. 

 Now, this value as come down, and has become less than that of the corresponding dual 

computation, so you will go back and say that Y 1 star equal to 3 is optimum to the IP or 

to the IP portion of the problem. And once you substitute known value, then you come to 

this, now you are maximizing 3 X 1 subject to X 1 less than or equal to 3, and 5 X 1 less 

than or equal to 14. So, out of this X 1 will become 14 by 5, because X 1 less than equal 

to 3 X 1 less than equal to 14 by 5. 
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So, 14 by 5 into 3 is 42 by 5. So, Y 1 star equal to 3 X 1 star is equal to 14 by 5, and Z is 

equal to 72 by 5 is one answer. (No audio from 31:35 to 32:01) Now, you go back now 

you one can always go back, and say that we got another solution with Y 1 equal to 4 

which also gave as the value of 14 there; so when you substitute Y 1 equal to 4 there, 

you get a solution 20 minus 8  which is 12  into 3 by 5 is 36 by 5, because we when we 

substituted Y 1 equal to 4, we got 18 minus Y 1 as 14, 4 into 4 16 by 5 gave as 3. So, 12 

plus 3, 15; so less than equal to 14, less than equal to 15; so, we got another solution with 

14. So, let us go back, and see what happens to that solution.  

(Refer Slide Time: 33:02) 

 



So, when you put Y 1 star equal to 4; now the dual value will become 20 minus 8 which 

is 12, into 3 by 5 36 by 5, 36 by 5 plus 8 which is 76 by 5. So, dual value was 76 by 5 

here, primal value was 14. So, one second it was less; so, now you go back and substitute 

for Y 1 equal to 4, you would get X 1 less than or equal to 2. And it would give you 5 X 

1 less than or equal to 12 from which X 1 will take value two, the smaller of that; so this 

will give you X 1 star is equal to 2, and Z is equal to 3 X 1 plus 2 Y 1 which is 14.  

 So, you would go back, and choose this solution, I had of the other one, because this 

solution has a higher value; so maximization. The other one happened, because in some 

sense the error that you have between this two, this is 14 and 2 by 5, and this is 14; both 

of them have lower integer component of 14, and because we actually solve the ILP 

instead of MILP, we got this. If we go back, and actually calculated the Z value here for 

a corresponding MILP, then this would have become 14 and 2 by 5, whereas this would 

become only 14.  

We can even see that see, when Y 1 equal to 3, you got 15 here, but then we got here 12 

plus 12 by 5, 4 into 3 by 5 12 by 5. So, we got 72 by 5; whose lower integer value was 

14, but we could have got 72 by 5. Here we could have got 72 by 5 instead of 14 when 

we actually substituted and not treated Z as integer. Whereas, when you did Y 1 equal to 

4, we would get 14 exactly from here, we would get 15 plus something from here. 15 and 

1 by 5 which is 76 by 5, but then you realize the 14 dominates, and you would get only a 

14; which is the 14 that you got here. 

So, if you had carefully solved the MILP component write here, instead of an ILP for Z 

or instead of saying Z is integer; if we at Z is continuous. Now, 3 would have given as 72 

by 5, and 4 would have given as 14. So, we would not have looked at this, we would 

have looked only at this; and this is the optimal solution, because we restricted Z to 

integers, we have to look at both, and then at the end go back. And say this is the 

optimum solution, because this has a higher value of the objective function to the 

maximization problem. 
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So, this is how we use a partitioning algorithm to solve this, and this partitioning 

algorithm is called the Benders partitioning algorithm. 

(No audio from 36:29 to 36:47) 

 Called the Benders partitioning algorithm which can be used to solve MILP. Now, the 

benders partitioning algorithm has to be suitably interpreted and solved; if you are doing 

a minimization problem. What we have seen is a version for a maximization problem, 

because if it is a minimization problem, we would start with a minimization primal leave 

out the integer component, then the dual will be a maximization. And when we apply the 

week duality theorem, we have to carefully apply it that the week duality theorem is very 

clear that, every feasible solution to a minimization problem is greater than or equal to 

that of every feasible solution to a maximization problem. So, instead of solving 

maximize Z; Z less than equal to something, it will become a lower bound; so the 

problem will become minimize Z;  Z greater than or equal to something. 

So, this kind of a primal will become minimize Z;  Z greater than or equal to something, 

and because of that here we first had larger values, and it was coming down to smaller 

values. There when you solve minimize Z;  Z greater than equal to something, you will 

first have a smaller value, then tending to larger value. So, when we compare the primal 

and dual, we have to actually understand which is the maximization problem, which is 

the minimization problem. And at the end we have reached optimality, when either both 



of them are equal or the maximization problem shows as slight increase over the 

minimization. In this case, it the maximization showed a the minimization showed a 

slight increase over the maximization, because of the rounding . 

Because of the fact that Z is taken as a ILP instead of an MILP. So, we need to carefully 

look at that the basic idea is essentially the same, but if the given problem is a 

minimization the dual will become a maximization, this problem will become a 

maximization. And then we will go back, and solve minimization problems here; and 

then we have carefully compared the solution of this minimization verses the solution Z 

we get from this maximization. And then understand at what point the optimality has 

been reached. 

 So, constraints will be added to this; just like we have two constraints here; there could 

be another Z greater than equal to constraint in the other case, and so on. The other 

difference is as we iterate we realize that this particular problem is getting bigger and 

bigger. Initially, we started with a single constraint and then it became one with 2 

constraints, and then if there is a third iteration it would become one with a third 

constraint, and so on. So, solving this problem this is a we solve this ILP, because our 

example is a very small example with one integer variable, and one continuous variable. 

One could follow this approach to try and get to the optimal solution of this ILP, because 

irrespective of the number of constraints its essentially a single variable optimization, 

because a maximizing Z;  Z less than. If you had multiple Y’s, then this approach will 

not work, and one has to solve the ILP using on ILP algorithm or using a solver. So, this 

portion is actually a difficult portion here. 

In a similar manner all these single constrained LP so I one could look at the constraint 

and then say this is the optimal solution. Whereas if, there were multiple constraint, now 

when will we have two variables for u here, because we have two constraints here for X 

1. Now, if there been another X 2 variable here, then that would have put on one more 

constraint. 

 So, the more number of X variables here, the more constraints we will have in the dual. 

And so that l p has to be solved as a separate sub problem to try and get the optimal 

solution. So, the method invariably is not very amenable to a hand computation, because 

this sub problems themselves are l p problems and ILP problems, which have to be 



solved separately. In a very small example like this it is possible to show, because the 

corresponding lp is an ILP are now solved by inspection.  

Simply, because we have one variable and one constraint to do, so when you solve a 

larger MILP, then this one is not amenable for a hand calculation, but this is quite 

efficient when it comes to solving it using computer programs. Reason being if the 

problem is can be solved within very few additions of constraints here, we will get to the 

optimum solution. In this case there, where two; if the problem is nice, and if you are 

little lucky; then within 2 or 3 constraints here, we will able to get the optimal solution. 

(No audio from 41:39 to 41:56) 
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 So, one second let us have a recap of what we have, seen in the last 4 lectures. The last 4 

lectures essentially concentrated on integer programming - the integer programming we 

have seen in these 4 lectures, we have seen all integer problems, and mixed integer 

problems. In the last 4 lectures, we have not addressed the 0 1 problems, but 0 1 

problems, have been addressed in earlier lectures in this lecture series. So, in the last 4 

lectures we have looked at a few algorithms, we have looked at essentially 3 algorithms 

here: The Gomory cutting plane algorithm, the all integer dual algorithm, and the all 

integer primal algorithm. 



 Now, under MILP we have seen 3 algorithms, we have seen a branch and bound 

algorithm for MILP, we have seen an MILP cut or a cutting plane algorithm for MILP, 

and we have seen the partitioning algorithm for MILP. The branch and bound for all 

integer problems has been explained earlier in this lecture series. In addition, we saw we 

derive the equation of the general cut, here for all integer problems; and we also derived 

the expression for the MILP cut for the mixed integer problems. 

 We derive the expression for the general cut, and we also showed that when h is equal to 

1 to get the Gomory cutting plane, when h is a positive fraction between 0 and 1, we use 

that for the all integer dual, and all integer primal. And both of them, since they are all 

integer algorithms, the h value was carefully chosen considering certain other aspects of 

the problem; if it is an all integer dual algorithm, h is chosen such that the pivot is minus 

1, pivot equal to minus 1 maintains the integer property of the table. Pivot equal to minus 

1 also ensures that at least one primal infeasible variable now become feasible, and h is 

also carefully chosen such that the dual feasibility is maintained. Which we saw we also 

try to get as large a value of h as possible; so that the increase or decrease in the 

objective function is as large as possible.  

So, that made as look at the absolute value of the dual variable and divide them, and then 

see the fraction to which it is going to affect the value of h, and so on. We also saw the 

all integer primal algorithm, where h again was suitably chosen; such that the pivot is 

plus 1. So, pivot equal to plus 1 would one second maintain the integer characteristics of 

the table would also ensure primal feasibility. Now, this aspect was addressed in the 

earlier lecture, but all integer primal cuts invariably result in large number of degenerate 

solutions.  

And therefore, would involve a large number of iterations before it actually terminates. 

So, while the all integer algorithms are very nice for hand computation, because the 

integer nature of the table is maintained therefore, it becomes lot easier to do the 

computations by hand. They are useful to solve problems, nevertheless the Gomory 

cutting plane algorithm is more popular, and Gomory cutting plane algorithm is used 

extensively more than the all integer algorithms.  

Similarly, when in the MILP we derived the expression for the MILP cut, we also said at 

the branch and bound for MILP is very amenable and easily usable, because an MILP 



does not restrict all the variables to integers. Only some of them are going to be integers, 

so which our variables that are restricted to integers; it is enough to branch on them, and 

keep solving l p’s. And even then very nature of the branch and bound, it is only going to 

introduce constraints of the type X j less than or equal to l j or X j greater than or equal to 

u j which are essentially bounds and not constraints.  

Therefore, when we introduce an X j less than equal to l j or X j greater than equal to u j, 

we are not actually introducing a constraint which would make the problem bigger. They 

can always be treated as bound, and some calculations can be used to keep the number of 

constraints the same as the original problem. And treat them as bounds or one could use 

a sensitivity analysis and then proceed; so, branch and bound we said is a very effective, 

and a very efficient way to solve MILP’s. 

 MILP cuts are good MILP cuts are equivalent of cutting plane algorithm, but again 

MILP cuts can be a little weak, and more MILP cuts can be required to solve the same 

problem. Nevertheless MILP cut is another way by which it can be solved, where could 

be instances where as in our example a single cut would give the optimum solution. 

Same is the case with the partitioning algorithm is completely unique way of looking at 

the problem, where the variables are partitioned into two sets. 

 Now, some interesting results from linear programming, now by fixing value is to the 

integer variables; the problem becomes a LP, and once it becomes a LP we borrow 

interesting relationships from between the primal, and dual of the LPs . And then end of 

creating problems, where the number of constraints increases with every iteration, an 

optimum solution of such a problem would give. So, there would be examples, where a 

partitioning algorithm will work. One of the advantages of the partitioning algorithm is 

that, the number of variables that we actually solve is less. 

When we solve the LP portion we solve only for the use, which are the dual variables - 

dual variables corresponding to the continuous variables in the original problem. So, 

more constraints in the original problem more dual variables there, but then we solve 

only for those set of dual variables when we solve the LPs. Similarly, when we solve for 

the ILP’s here, we solve only for the number of Y variable.  

So, we do not solve for example, if there are 10 continuous variables, and 10 integers 

variables in the MILP. In the branch and bound or in the cutting plane, we would be 



solving a 20 variable problem; whereas in the partitioning algorithm, if there are 10 

continuous variables, and say 5 constraints. Then will be solving for 5 dual variables at a 

time, will be solving for 10 integer variables plus 1 Z at a time. So, the size of the 

problem in terms of variables is actually very less in the partitioning algorithm. So, to 

that extend there is a gain when we use the partitioning algorithm. So, this we close the 

treatment of integer programming in this lecture series.      . 

 


