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Quadratic Programming 

In this lecture, we continue our discussion on nonlinear programming. We mentioned in the 

earlier lecture that the focus is primarily on quadratic programming but in order to understand 

the principles we need to look at the basics of nonlinear programming. 
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In the previous lecture, we were looking at a constrained optimization problem with 

inequalities as constraints. The constrained optimization problem with inequalities would be 

of the form, maximize Z equal to f of X subject to g of X less than or equal to 0. We have 

already mentioned, particularly in nonlinear optimization, we do not have an explicit 

condition that X has to be greater than or equal to 0. If there is a restriction that X has to be a 

greater than equal to 0, then it has to be included as a constraint in the problem. Therefore, all 

these constrains can be written in the form g of X less than or equal to 0. 

We take the case where we wish to maximize and we derived the conditions for it. Every 

minimization problem can be written suitably as a maximization problem, with suitable 

changes in the objective function. The guiding principle is first to convert this inequality into 



an equation. Then, using the method of Lagrangian multipliers and take it into the objective 

functions. This inequality is written as an equation by using g of X plus S square is equal to 

0. The S square comes, because we do not have an explicit restriction that the S should be 

greater than or equal to 0. If it were linear programming, we would have written this as g of 

X plus S equal to 0 and said S greater than equal to 0. Here, we will write it as g of X plus S 

square equal to 0, so that, S can be positive or negative or 0, S can be less than or equal to 

greater than or equal to or equation. But S square will be greater than or equal to 0, so that g 

of X plus S square is equal to 0. Remember that, this g of x plus S square equal to 0 is a set of 

constraints. Similarly, Z equal to f of X is a function that involves more than one variable. 

We would have X1 to Xn as variables. In general, we say n variables and m constraints for 

this problem. 

Now we take this to the objective function by introducing Lagrangian multipliers, as many 

multipliers as a number of constraints. This is also called dualizing the constraint and 

bringing into the objective function. We now define the Lagrangian function L, which will be 

f of X and because it is a maximization problem you would put it as minus lambda into g of 

X plus S square. Partial differentiation of this with respect X, lambda and S would give us the 

conditions for the optimum.  

Therefore there are three sets of variables: X, which are the given decision variables in the 

problem; S which are slack variables so we will have as many slack variables as the number 

of constraints because each constraint is written as g of X plus Si square equal to 0. Then we 

take it into the objective function by introducing lambdas so we will have as many 

Lagrangian multipliers as the number of constraints.  

We have this L which is the Lagrangian function. Now, dow L by dow X equal to 0 would 

give us del f of X, minus lambda del g of X equal to 0, dow L by dow S which is a slack 

variable would give us 2 lambdai Si equal to 0. Here we differentiate with respect to S so this 

becomes 2 times lambda S equal to 0, so 2 lambdai Si equal to 0. Differentiating with respect 

to lambda would give us g of X plus S square equal to 0. We modify these three conditions, 

we also use lambda greater than or equal to 0 for this, under the principle that, when we 

brought it into the Lagrangian, we relax the constraint. Therefore, the restricted problem, a 

maximization problem with the addition of the constraint will only have its objective function 

value reduced so lambda will be greater than or equal to 0. 
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The conditions that we have are lambda greater than or equal to 0. First derivative del of X 

minus lambda del g of X equal to 0, is exactly written there, then, lambdai gi of X equal to 0. 

This comes from 2 times lambdai Si equal to 0. This is g of X plus S square equal to 0, so 2 

lambdai Si equal to 0. This would give us either lambdai equal to 0 or Si equal to 0. 

Lambdai equal to 0, we can simply write lambdai gi of X equal to 0. When S is equal to 0, 

then we get g of X equal to 0. We can write it as lambdai gi of X equal to 0. This form 

actually captures 2 lambdai Si equal to 0, except for the fact that, we have eliminated the 

variable which is the slack variable that we actually added into this problem. Then, g of X 

plus S square equal to 0, automatically become g of X less than or equal to 0. The reason for 

writing it in this form is the original problem did not have the inequalities. The slack variable 

was added to convert the inequality into an equation and then we used the method of 

multipliers. Therefore, at the end this is to be written in the form, which does not have the S 

square. Now, use of lambda is inevitable, because we have to convert this inequality into an 

equation. We eliminate the variable S that we have introduced here and write it in this form. 

Where we write it in terms of lambda and in terms of X, we leave out the S as such. This 

form is called the Kuhn Tucker conditions, also called Karush Kuhn Tucker conditions 

depending on the contribution of the three people. 

This provides us with a general set of equations and inequalities to solve any nonlinear 

optimization problem, with multiple variables, particularly, when the constraints are 

inequalities. This would give us a set of inequalities and equations. For example, you have a 



set of inequalities here, we have this is an explicit lambda greater than or equal to 0, you have 

a set of equations here and these can be linear or nonlinear or can have any power depending 

on f of X, again g of X less than equal to 0, can have product form or quadratic form of the 

variables, depending on g of X, for general non linear programming problem. Nevertheless, 

once we write these conditions and write the resulting equations and inequalities, all we need 

is to solve this using suitable methods to get the correct value of X and lambda. 

With this background we move to the central theme of this lecture series which is the 

quadratic programming. Central theme in the sense, that aspect of nonlinear programming 

that we are going to cover in this lecture series is quadratic programming. We use these Kuhn 

Tucker conditions and then write down the corresponding Kuhn Tucker equations for a 

quadratic programming problem. Then, we show that the resultant system can actually be 

solved as a linear programming problem, with some additional restrictions. To that extent, we 

are going to do two things: one is we are going to drive the specific Kuhn Tucker conditions 

for a quadratic programming problem; in part two, we are going to trying to show that this 

resultant system can be solved using linear programming. Therefore, this will be shown as a 

linear programming application. 
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The quadratic programming problem, can be written as maximize or minimize Z equal to CX 

plus X transpose DX subject to, AX less than or equal to b, X greater than or equal to 0. We 

note a couple of things, X equal to X1, X2, to Xn, are a set of decision variables. The objective 

function is quadratic that happens, because of the form X transpose DX, which gives us the 



quadratic form. There is also a linear portion in the objective function, which is CX. There 

can be a constant, which can be ignored temporally. Z equals to CX plus X transpose DX, 

represents the quadratic objective function.  

Remember that the constraints are linear, so it is written in the form AX less than or equal to 

b. All these constraints are linear, if the constraint is of the greater than or equal to type, it can 

automatically be written in this form. This can also handle equations and there is no difficulty 

about it. What is all the more important is X, is explicitly stated to be greater than or equal to 

0. In general, nonlinear programming, whenever we have X greater than or equal to 0, it is 

treated as a constraint. In quadratic programming, we explicitly have all X greater than or 

equal to 0 which is actually pulled out of the resultant system. This is a general form of a 

quadratic programming problem. This has several applications and one of the common 

applications that, one can think of is actually to look at a portfolio problem. 
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If someone has an investment, say portfolio of shares and other investments, ordinarily, there 

are two things associated with this. One is called the return and the other is called the risk. 

Here, the objectively decision variable will be, how much proportion do I spend on each of 

these securities that, form part of the portfolio. Such that, there is some expected return, 

expected return is greater than or equal to some R and minimize the risk, subject to, of 

course, the condition that sigma Xi equal to 1. Sum of the proportions of the investments 

should add up to 1. This problem is modeled as a quadratic programming problem, because 

this risk is seen as a variance or a covariance of the returns and therefore it is a quadratic 



form. The objective function is quadratic, subject to 2 constraints: one is a greater than or 

equal to constraint; the other is the sum of proportions are equal to 1; third is an explicit 

condition that, X greater than or equal to 0, because we do not want negative proportions of 

investment. This is an application of quadratic programming to a real life situation. 
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If we have a quadratic programming problem like this, then we write the Kuhn Tucker 

conditions here, for maximization. The first thing that, we will have is lambda greater than or 

equal to 0, there are as many Lagrangian multipliers lambda here. In fact before we do that 

we also try and write it. The quadratic programming problem has an explicit condition that X 

is greater than or equal to 0, but the Kuhn Tucker conditions are derived for a general 

nonlinear programming problem. Therefore in order to write down the Kuhn Tucker 

conditions, we actually write this also as constraint and then write the Kuhn Tucker 

conditions. When we do that, we now get rid of this form maximize CX plus X transpose DX, 

subject to the condition we have some G of X is equal to A minus I X minus b 0 is less than 

or equal to 0. The Kuhn Tucker conditions were derived for G of X less than or equal to 0. 

Therefore, AX minus b automatically qualifies, because it is of the less than or equal to type, 

X greater than or equal to 0 is written as minus X less than or equal to 0. Therefore, these two 

put together now forms the constrained set G of X. Therefore, it is written as A X minus b 

less than or equal to 0 minus X less than or equal to 0. This is the general set here. 

Again, we have n variables m given constraints and again n variables here therefore n 

constraints. Because this X is greater than or equal to 0 are treated now as an explicit 



constraint. Therefore now when we start writing the Kuhn Tucker conditions for this, we 

introduce Lagrangian multipliers lambda for this, we also introduce Lagrangian multipliers 

mu for this. There are as many lambdas as the number of constraints and there are as many 

mus as the number of variables and we have as many X as the number of variables so we 

have n X1 to Xn, mu1 to mun, lambda1 to lambdam, this is what we introduce here. Then we 

write the Kuhn Tucker conditions for this, so this would mean, both lambda mu greater than 

or equal to 0 because this represents all the Lagrangian multipliers, both lambda mu greater 

than or equal to 0.  

Hence, del f X minus lambda del g X would give partial derivative of this which is C. Then 

this del f X will be, C plus 2X transpose D derivative of this del of X minus lambda del g X 

equal to 0, so this will become minus lambda mu because the set of Lagrangian multipliers 

and del g X will be AX on differentiation so you get A minus I equal to 0. Thus, del f X 

minus lambda dell g X equal to 0 would give this equation for us. Then, lambdai gi of X equal 

to 0 would give us lambdai gi of X equal to 0. 

Then we have g of X less than or equal to 0 which is given by AX less than or equal to b and 

X greater than or equal to 0 because g of X less than equal to 0 is the same set of constraints 

that repeat here so that is given by AX less than equal to b X greater than equal to 0. This we 

are explicitly written exactly it this way and then we will make some modifications to this. 
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So, we rewrite this and then make some modifications. Hence Lambda mu greater than or 

equal to 0 which comes from here. Now this is written as; we keep this C on this side and 

take the rest of them on the other side because this involves a variable X, these involve 

variables lambda and mu, now C is the only one that is the constant. Hence we keep C on this 

side and take the rest of them on the other side then we would get minus 2X transpose D plus 

lambda transpose A minus mu transpose equal to C. This lambda A goes on this side, minus 

mu into minus I would give you a plus here, and when this goes to the other side you get a 

minus. Therefore this equation is written that way. 

This one, lambdai gi of X equal to 0, is now written like this. If we have for this set, please 

remember, that this is for a general Kuhn Tucker form. This has to be written for both lambda 

and mu that we talk about. This will be written as lambda times, each one of these constraints 

will become Ai Xi minus b. This will be written as lambdai into Ai Xi minus b equal to 0. This 

will be written as mu into X is equal to 0. This will be written as muj Xj equal to 0 and then 

we have AX less than or equal to b. We have X greater than or equal to 0. I repeat again, this 

one is has been written from the Kuhn Tucker form. This has to be written for both set of 

constraints, this constraint as well as this constraint. When we have this lambdai, actually 

represents both lambda and mu, lambda for this set and mu for this set. This will become 

some lambdai into Ai Xi minus b for the ith constraint here; this will become mu into X equal 

to 0. 

What we do here, is we now start introducing; this is a Kuhn Tucker condition that is written. 

Since, we have AX less than or equal to b, we can always introduce a slack variable S, such 

that, AX equal to b or AX plus S equal to b. This is written as AX plus S equal to b. 

Therefore, this becomes lambdai Si equal to 0. This becomes lambdai Si equal to 0. Here we 

have a muj Xj equal to 0 and because AX is less than or equal to b and X greater than or equal 

to 0, we can always write this as AX plus Si equal to b or AX plus S equal to b. The Kuhn 

Tucker conditions will become, lambda mu greater than or equal to 0, comes from here. X 

greater than or equal to 0 is already here, S greater than or equal to 0 has happened, because 

we have introduced this S, such that AX plus S equal to b. We have now used this, we have 

now used this, we have now used this, and we have now used this. The Kuhn Tucker 

conditions, now reduced to minus 2X transpose D plus lambda transpose A minus mu 

transpose equal to C and we have AX plus S equal to b. Kuhn Tucker conditions reduce to 

these two things, plus these two sets of things, plus we have these. Kuhn Tucker conditions, 



now reduces to this, plus this, plus this. We will look at all these carefully, now we realise 

that, these are only variable definitions. We are okay with these being greater than or equal to 

0. Lambdai Si and muj Xj are not linear; they represent a product form here, so these are some 

product form. Remember, how we got these two, now muj Xj equal to 0, is got automatically 

from the Kuhn Tucker condition, which comes from this form. This was the original Kuhn 

Tucker equation, for every constraint there are two sets of constraints, this and this. This is 

written for both lambda and mu. Therefore, for lambda we got lambdai into Ai Xi minus b 

equal to 0. For mu we got muj Xj equal to 0. We also have from here AX less than or equal to 

b X greater than or equal to 0. So we simply introduced the slack variable S. 

Please note, the difference that this slack variable S, I am talking about here, was actually 

different from the S that was introduced to get the Kuhn Tucker conditions. We have first 

applied the Kuhn Tucker conditions. After applying the Kuhn Tucker conditions, since we 

get AX less than or equal to b and we know that X is greater than or equal to 0, we could 

always write this as AX plus S equal to b and define a new slack variable S greater than or 

equal to 0. Therefore, in quadratic programming we will have slack variable S greater than or 

equal to 0. 
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After writing this, we realize that we can write it actually in three different pieces or three 

different sets. The first set are these equations which are got from this and this, this modified 

to AX plus S equal to b. So, these two would give us, I call this as 1 and call this as 2, so this 

is 1 and 2. Then, we get into lambdai Si muj Xj equal to 0. I am going to call this as 3 and this 



as 4 (Refer Slide Time: 24: 46) because S is defined as AX plus S equal to b, since this is AX 

plus S equal to b, S equal to b minus AX, this would give us minus lambdai Si equal to 0 from 

which lambdai Si equal to 0. hence these two (Refer Slide Time: 25:15) comes from 3 and 4. 

The rest of them are here lambda mu greater than or equal to 0, X greater than or equal to 0 

and S greater than or equal to 0. 
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Therefore the Kuhn Tucker conditions reduce to solving these three sets. We also said that 

this is like a product form; this interestingly, is a set of linear equations. Linear equations, 

because from the given 1, Z is the only one that is quadratic, therefore, the partial derivative 

of Z, with respect to X, will give us a linear set of equations, which are here. AX less than or 

equal to b represents a set of linear inequalities, therefore, AX plus S equal to b would 

represent a set of linear equations. All we need to do now is to solve for 1 2 3 4 5 6, all these 

six things put together.  

Each one, for example, this is a partial derivative with respect to X. Therefore, this will have 

as many equations as the number of variables in the problem. This is as many equations as 

the number of constraints in the problem. This product form is lambdai Si, both depend on the 

number of constraints muj Xj, both depend on the number of variables and lambda mu X are 

all variable. We have two times m plus n number of variables, where n is the actual number 

of decision variables, because both mu and X are from 1 to n. Lambda and S are from 1 to m, 

the number of constraints. This will have the number of variables plus number of constraints. 



This will be m plus n. Here, we have m product, n product. Again m plus n sets, here it is m 

plus n, plus m plus n, so two times m plus n. So, finding out X, lambda, mu, S, such that it 

satisfies all this, would give us the maximum or the minimum, assuming that the maximum 

or the minimum exists and it is unique here. We are not at the moment stressing on the 

second derivative to actually prove that it is a maximum or minimum. We restrict ourselves 

to solving this problem, understanding that, whatever we get by the solution of this, by the 

unique solution of this will be the corresponding maximum or minimum. 

It boils down to solving these and how do we solve this. (Refer Slide Time: 27:42) In order to 

solve this, these can be written in a slightly different way, minus 2D A -I 0, A 0 0 I into X 

lambda mu S equal to c b. The first can be written as minus 2 D x, which is this form, plus 

lambda A, which is this form, multiplying by transpose, we get minus mu, which is here 

equal to C, which is here. The other one is written as AX plus S equal to b, so AX plus S 

equal to b. This is the nice representation of this set of linear equations, which are given here, 

plus of course, we have this and we have this. If we momentarily leave out this, then add, for 

example, X, lambda, mu, S greater than equal to 0, this is like solving a set of equation 

subject to the condition that the variables X, lambda, mu, and S are greater than or equal to 0. 

These equations are linear equations. 

We also have learnt much earlier in the lecture series that, solving a set of equations subject 

to the condition that all variables greater or equal to 0 can be modeled as a linear 

programming problem. This quadratic programming problem, whose optimality conditions 

reduce or after applying the Kuhn Tucker conditions, reduces to a set of linear equations, a 

set of non-negative restrictions on the variables and a set of product relationship among these 

variables, if we temporarily leave out this set of equations or the product form, we get a set of 

linear equation, subject to this, it can be solved as a linear programming problem. In some 

way, linear programming can be used provided, the linear programming iterations are 

suitably carried out to make sure that this is not violated. Essentially, we relax this solve as a 

linear programming and make sure that at every iteration these constraints are satisfied, so 

that, the solution of the linear programming with the additional restriction of these is 

obviously optimal to the system, where we try to solve this, plus this greater than equal to 0. 

All these we try and show through a numeric examples, so that, all these computations come 

out quite clearly. 
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So the numerical example that we would have is this. Minimize X1 square, plus 3 by 2 X2 

square, minus X1, minus X2, subject to the condition X1 plus X2 greater than or equal to 6 and 

X1 X2 greater than equal to 0. There are two variables, so X1, and X2 that we have; there is a 

single constraint, so there is a lambda1. Since, there are two variables X1 and X2; there are 

two Lagrangian multipliers mu1 and mu2. Since, there is only one constraint here, you get a 

S1. These will be the set of variables that we will have for X, lambda, mu, S, as X1 X2 

lambda1 mu1 mu2 S1. 

Again, this is the linear portion, so this is your C. This first is written as maximize, because 

this table was set up for maximization. We get maximize minus X1 square, minus 3 by 2 X2 

square, plus X1, plus X2, so that C or C transpose is 1 1. Then b, which is the right-hand side, 

is 6. The constraint is X1 plus X2 greater than equal to 6. This is a greater than or equal to a 

constraint, but the Kuhn Tucker conditions were derived under the condition that Gi f X is 

less than or equal to 0. Therefore, this will become X1plus X2 is less than or equal to minus 6. 

A will become minus 1 and minus 1. This will become X1 plus X2 less than or equal to minus 

6, so A will become minus 1 minus 1. 

Now this, from which we have to write 2D, so D will become 1 0, it is a maximization, so 

minus 1 0, 0 minus 3 by 2. So that X transpose DX would give us minus X1 square 0 X1 X2 

minus 3 by 2 X2 square. We do not have an X1, X2 term here. If we had an X1, X2 term, say 

with a positive coefficient here, then this would come as something with a negative 

coefficient here. This divided by 2, should appear here, because the multiplication actually 



happens twice. Right now we do not have an X1, X2 term, so we can leave this as it is. We do 

not have any difficulty about this particular thing. 
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We already know C, we know b, we know A, we know D, so we can write it in this form and 

see how it looks like. Right now, minus 2D will become 2 0, 0 3, A is minus 1 minus, I will 

become minus 1 0 0 minus 1 and 0 is 0 0. The third one will the last one, will be minus 1 

minus 1, which is A, 0 and then this 0 will be 0 0, I will be plus 1. This multiplied by X1, X2, 

lambda1, mu1, mu2, S1 is equal to, we have C, which is 1 1 and we have b, which is a minus 6, 

because this is written in the form, minus X1 minus X2 is less than or equal to minus 6.  

When we expand this, we would get 2X1 minus lambda1 minus mu1 is equal to 1. We have 3 

X2 minus lambda1 minus mu2 equal to 1. Then, we have minus X1 minus X2 plus S1 is equal 

to minus 6, this is what we have here. We need to solve this set of three equations, subject to 

the condition that lambda mu X S greater are equal to 0 and lambdai Si equal to muj Xj equal 

to 0. When we write this, we also mentioned that this can be solved as a linear programming 

problem. 

The first thing that we have to do if we were to solve it as a linear programming problem is to 

ensure that the right-hand side values are non-negative, so this is multiplied again with a 

minus 1 to get X1 plus X2 minus S1 equal to 6. It gets X1 plus X2 minus S1, which comes from 

this inequality. So X1 plus X2 minus S1 equal to 6. We can leave out this particular equation, 

which is now rewritten as this (Refer Slide Time: 37:10). We actually solve for six variables 



here, three equations here, subject to the condition that these two are satisfied and these are 

also satisfied. If we want to write it as a linear programming problem, then we have all 

equations here.  

The first thing we see or we verify is whether we can identify a basic variable. When we 

expand this in this form, we realize X1 does not have an identity matrix, because X1 is here, 

as well it does not have an identity column, because X1 is here and X1 is here. X2 does not 

have an identity column, because it is present here and it is present here. Lambda1 does not 

qualify because it has a minus 1 and a minus 1. Then, mu1 seems okay, but mu1 has a 

negative coefficient, therefore it does not qualify, mu2 also does not qualify, S1 also does not 

qualify.  

In order to solve this as a linear programming problem, since we have equations, we 

introduce three artificial variables A1, A2 and A3, such that A1, A2, A3 now form the initial 

basis and the objective function automatically shifts. We add an A1 here, so this will become 

plus A1equal to 1 plus, A2 equal to 1, plus A3 equal to 6. Then we say, minimize A1 plus A2 

plus A3. This is like the two phase method where finally, if we get a solution with Z equal to 

0; A1, A2, A3 which are currently the beginning basic variables are out of the basis. Some 

three other variables get into the basis. Since all X, lambda, mu and S is greater than equal to 

0, the moment we get a solution with Z equal to 0, we have reached the optimum.  

What we do now is we take these three equations, we add the artificial variables A1, A2, A3. 

Then, we set up the corresponding simplex table so that we solve this system, minimize A1 

plus A2 plus A3, subject to, this plus, this plus, this with three artificial variables introduced 

into the problem. 
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That we show here as part of this table. This is the expanded simplex table, where we have X1 

X2 lambda1 mu1 mu2 and S1, which are these six original variables. As I mentioned, we need 

three more artificial variables A1, A2 and A3, which are also shown here as A1, A2 and A3. In 

the first equation, which is written here as 2X1 minus lambda1 minus mu1 plus A1 equal to 1 2 

X1 minus lambda1 minus mu1 plus A1 equal to 1. Similarly, the second one is 3X2 minus 

lambda1 minus mu2 plus A2 equal to 1. The third is X1 plus X2 minus S1 plus A3 equal to 6. 

This is written here, these A1, A2, A3 being artificial variables, have an objective function 

contribution equal to 1. The initial simplex stable will look like this minus 3, minus 4, 0 0 

etc., we should also remember that, while we have to solve for this set, we also cannot ignore 

this and this. This has been taken care of by the fact that we have formulated a linear 

programming problem. 

This not only minimizes A1 plus A2 plus A3, this is going to have X lambda mu S greater than 

or equal to 0. We have left this out, so we temporarily relax this. When we do this simplex 

iteration, now this is for Cj minus Zj and this is for a minimization problem. The most 

negative Cj minus Zj will enter, so variable X2 enters the basis. Whenever a variable enters 

the basis, we now invoke this condition and make sure that this condition is not violated. X2 

enters the basis; the corresponding leaving variable is A2. Our condition is from here, X2 into 

mu2 should be equal to 0. Right now mu2 is not in the basis. Therefore, we can comfortably 

enter X2 into the basis. Only when mu2 is in the basis and X2 tries to enter, we can enter X2 



only when mu2 leaves, otherwise we cannot do that. We have to look at another entering 

variable, such that these conditions are not violated. 

Hence there is absolutely no difficulty in entering X2 here. So X2 enters the basis, A2 leaves 

the basis so we do one simplex iteration to get A1, X2 and A3 as a new set of basic variables. 

The original one, since the objective function values are 1, the objective function value is 8 

here. We can follow the simplex. We have 4 and 1 by 3, so 4 by 3, so 8 minus 4 by 3, is 20 by 

3 which has come here. Then, at the end of simplex iterations, we still realize that, these two 

artificial variables are in the basis. We also see that the most negative Cj minus Zj will enter, 

so variable X1 enters. When variable X1 enters, we try to invoke this condition. The 

corresponding leaving variable is artificial variable A1. Entry of variable X1 does not affect 

this, because mu1 is currently non-basic at 0. X into mu is equal to 0 is satisfied. 

We enter X1, now A1 leaves, we perform one more simplex iteration to get X1, X2 and A3. We 

have still not reached the optimum because variable lambda1 can enter the basis with a 

negative value. In some sense we have not reached the optimum with respect to the quadratic 

programming, because we still have not got 0 objective function values. Now, lambda1 tries 

to enter here, with a negative value. Again we do not want to invoke this condition; lambdai 

Si should be equal to 0. S1 is not in the basis; therefore, lambda1 can comfortably enter the 

basis. So, lambda1 enters the basis and there is 1 leaving variable, which is A3. Now A3 

leaves the basis. 

At the end of this iteration, we have X1 equal to 18 by 5 X2 equal to 12 by 5. Lambda1 equal 

to 31 by 5 with Z equal to 0 and there is no entering variable. There is no candidate for 

entering variable. The simplex algorithm terminates and in this simplex we have also ensured 

that these are not violated. Therefore, the solution that we have here, with X1 equal to 18 by 5 

and X2 equal to 12 by 5 is optimal with respect to the given quadratic programming problem. 

The corresponding Z can be calculated for X1 equal to 18 by 5 and X2 equal to 12 by 5. That 

is how a quadratic programming problem is solved. We can go back and now calculate, the Z 

for X1 square plus 3 by 2X2 square minus X1 minus X2 and get the corresponding value of the 

objective function. This is how the quadratic programming problem is solved to optimality. 

We wish to go back and show that, this portion is like an LP application because the 

quadratic nature of the quadratic programming problem. When we apply the Kuhn Tucker 

conditions, we end up getting a set of equations, a set of linear equations along with this, plus 



this. The set of linear equations with the non-negativity of the restriction of the variable is 

now solved as a linear programming and shown as an LP application to this problem. The 

other important thing there is in all the simplex iterations, we have to ensure that, lambdai Si 

equal to 0, muj Xj equal to 0. Whenever a lambda or an X or a mu or an S enters the basis or 

tries to enter the basis, based on the largest coefficient rule, we have to make sure that, first 

find out the leaving variable and then make sure that the pair and the entry of this does not 

violate any of these. 

If it violates then choose another variable which can enter such that there is a corresponding 

leaving variable and these conditions are not violated. In a way, it is not like, just feeding a 

linear programming problem say into a solver and getting the answer, because at every 

iteration we have to make sure that these are not violated. Therefore, it boils down to looking 

at every iteration. It is almost like doing it by hand or putting another condition into the linear 

programming and solving it. Nevertheless, we can use the very fact that the objective 

function being quadratic, the only place where we have the nonlinearity coming is this form. 

This is very convenient with respect to simplex because these variables are defined as basic 

and non-basic variables. 

A linear programming based approach to solving a quadratic programming problem is 

actually in place. That is called the Wolfe's method to solve a quadratic programming 

problem. With this we come to the end of the discussion of quadratic programming. As we 

have already mentioned, we are only going to see one part of nonlinear programming, which 

is the quadratic programming. It is now time to recap, what are all the things that we have 

seen in this lecture series of advanced operation research. 
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We started off with advanced topics in linear programming, we looked at integer 

programming, we looked at network models, we looked at traveling salesman problem and 

vehicle routing problem and then, we also looked at a little bit of game theory, CPM and 

quadratic programming. These are all the things that we have seen in this course. 

Here, we saw several topics which largely help us to solve slightly larger linear programming 

problems. We use certain features of simplex or certain ideas such that, we are able to expand 

the scope of solving linear programming to slightly larger problems, slightly specific 

problems and problems that have certain structures. We looked at even some varieties like 

goal programming here, where we tried to look at multiple objectives and then come up with 

a meaningful way of trying to solve them. One could also see that there was a lot of linear 

programming related stuff about complementary slackness conditions and so on. 

We also looked at column generation and solved cutting stock problem, so that large 

problems can be solved. We solved using decomposition algorithm to solve different types of 

linear programming problems. The integer programming provided us with a separate solution 

methodology but again largely based on linear programming, the idea either in the branch and 

bound or in the cutting plane we solved problems that have an explicit integer restriction on 

the variables, both the large focus was on cutting plane and branch and bound and both of 

them in some sense used ideas from linear programming. We also said that some ideas from 

here, some ideas from efficient matrix multiplication can also be used in solving here. This in 

particular has tremendous real life application and potential. 



Then we moved to network models, where the unimodularity nature of the constraints helped 

us to develop LP based algorithms, even though they were integer programming problems. 

Each one of them used certain special feature of the network model to get faster and better 

algorithms, than simply solving it by the simplex method. Here, we solved the shortest path 

problem, the maximum flow problem and the minimum cost flow problem and certain 

various versions of this, which were also, solved using principles and ideas from linear 

programming suitably modified for these types of problems. Then we moved to a set of 

problems traveling salesman and vehicle routing, which were difficult problems, which were 

closer to integer programming. They were difficult problems, they all had integer 

programming formulations, and their exact solutions depended largely on branch and bound 

methods, which we studied in integer programming. 

Then, we also had to look at heuristics, so that whenever we get into solving difficult 

problems, large sizes, it is absolutely necessary to provide good approximate solutions. Then, 

we saw a bit of game theory along with CPM and a little bit of quadratic programming. Each 

one is an area in its own right. Then, we introduced some queueing theory. We simply 

introduced some basics of each one of them. Queueing theory was the only topic that we 

looked at in this course, where we looked at some probabilistic kind of model. The rest of 

them could be seen as linear programming applications, even though each one has a lot of 

practical applications and each one is a separate field in its own right. 

We complete this lecture series on advanced topics in operations research, providing the user 

with a set of tools, which can be used extensively to solve real life practical problems. We 

hope this lecture series is useful in understanding the tools of operations research and learn 

more and more tools and techniques to solve real life problems. Thank you. 


