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Queuing Models 

In this lecture, we are going to see basics of queuing models. Queuing models are also called 

waiting line models. Here, we study about what happens when an individual or a set of people 

come and join queues. We are quite familiar with queues in our day-to-day life. Common 

examples of queuing models that we encounter are going to a doctor or going to a barber shop. A 

queuing system essentially happens when there are entities or people who are called arrivals who 

require a kind of service from another entity. There is a service and there is a line or a queue 

where a person is joining this system. 
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If you take a typical example of a doctor; people arrive, spend some time, get served and people 

leave. What characterizes this queuing system or what makes it little different from the earlier 

models is the fact that these arrivals and service are assumed to follow some distributions. They 

are not deterministic but they are assumed to follow certain distributions. So, people arrive 



according to the given distribution or according to a certain distribution, the service is also 

provided according to certain given distributions. 
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Queuing models can be of several types. First category is called a single server queuing model 

where there is only one server. We also have multiple server queuing models where there are 

multiple servers. 
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A good example of a multiple server queuing model is a railway reservation system where we 

could have several counters where people who come join this line and whichever server is free 

the first person will go, then the next and then the next person goes and so on. So, we have a 

multiple server model where there is more than one server. Here, there is a common line and as 

soon as a server is free, this person will join, get the service and leave.  

Within the single server and multiple servers there are two categories. One is called a finite 

queue length and infinite queue length. The infinite queue length model assumes, that every 

person who comes joins the line, for example, if already three people are waiting for the doctor, 

the fourth person will join the line and so on. There is no restriction on the number of people 

who are actually waiting or there is no restriction on the length of the queue. The queue length 

can theoretically be infinite so it can go on and on. In finite queue length models we try to 

restrict the queue length to a certain limit after which we say that if this threshold limit is 

reached, people who come into the system do not join the system. 
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A good example of a finite queue length model is a garage. Let us say there is a garage with a 

single server or a single mechanic. There is a mechanic here and let us say this garage has space 

to park, say ten cars. For example, someone is coming into the garage to give his or her car for 

service if some slots are available which means the number in the system is less than 10. 



Remember, these are the spaces for the garage, this is not garage this is the server. These are the 

places in the garage, if the number of cars in the garage including the one that is being serviced is 

less than 10, then the person who is coming in will have a space to park the car, the person will 

leave the car and go. When some person is coming, the garage is full which means all the ten 

slots have been taken up including the car that is being serviced, then this person does not find a 

place to park his or her car. The person will leave the system without joining the line without 

getting served. Such models are finite queue length models, whereas ordinarily we have infinite 

queue length models. 

There is one further classification which is called finite population models and infinite 

population models. If we take the example of the doctor or the reservation system or the car 

mechanic they all come under the category of what are called infinite population models. This is 

an example of a single server, infinite queue length and infinite population. This is an example of 

a single server, finite queue length and infinite population models. How do we categorize 

something as an infinite population and finite population? In this case, the population simply 

represents anybody who can come for treatment or service to this doctor and therefore it can be 

infinite. 
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A good example of a finite population model is like this. If we have a factory and if this factory 

has about thirty machines and if there is a dedicated maintenance team, this maintenance team 

attends to calls every time these machines breakdown. Then we have a system where the 

breakdown represents the arrival of a job for the maintenance team. The service is the time or the 

service provided by the maintenance team to attend to these breakdowns. There is a finite 

population because only any one of these thirty machines when they breakdown, this team will 

come and attend them. This is an example of a finite population situation. Ordinarily we discuss 

more of infinite population situation compared to finite population situations. 
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The queuing system is also characterized by the distribution of this arrival and distribution of this 

service. The arrivals and services can follow any given distribution or we can go observe 

physically, what is happening in the queuing system. From the data that we can collect from 

what is actually happening we can fit a corresponding distribution. Most of the times it also 

observed that arrivals follow a Poisson distribution, with arrival rate called lambda per hour.  

Lambda usually denotes the arrival rate in a queuing system. It is also observed from practice, 

that service times are exponentially distributed, at the rate of mu per hour. We also observe that 

Poisson distribution and exponential distribution are related. Poisson distribution has an 

important property called the memory less property based on which we will derive some 



expressions for the performance of the queuing systems. Essentially, we will assume right 

through this lecture series that arrivals follow a Poisson distribution with lambda per hour and 

service times are exponential, denoted by mu per hour. 

What is the relationship between this lambda and mu?  

We also need realize that lambda by mu is less than 1, particularly, if we have an infinite queue 

length models. For example, we assume lambda equal to 5 per hour and mu is equal to 6 per 

hour, then lambda by mu is less than 1. What happens, here lambda is equal to 5 per hour means 

on an average five people enter the system every hour, which means, on an average every twelve 

minutes a person enters the system and on an average every ten minutes a person gets served and 

leaves the system. 

What happens when lambda by mu is greater than one?  

For example, if mu were not 6 per hour and mu were 4 per hour. Then, every hour five people on 

an average enter the system and four people on an average leave the system, so, the queue length 

will automatically increase by 1 every hour and this means that somebody who joins the queue 

will never get served. For a queuing system to be efficient, particularly, when we have infinite 

queue length, lambda by mu has to be less than 1. 

If we have finite queue lengths we may have lambda by mu greater than 1 because in finite 

queue length models depending on what we have here, people may not join the line or join the 

system. Therefore, we are not that worried about lambda by mu being greater than one. Since 

some people do not join the system and go away, everybody who joins the system there will get 

an opportunity to be served. We have to be very careful and we should have lambda by mu less 

than 1. Particularly, when we have infinite queue length models and lambda by mu can be 

greater than one. 

If lambda equal to 5, mu equal to 6, lambda by mu is less than 1. This means, every hour on an 

average five people enter the system while six people will leave the system. We may be tempted 

to ask a question why should we have a queue at all or a line at all, when five people enter the 

system and six people can leave? The answer comes from the fact that, this is an average or 



expected value of a distribution. This 5 per hour does not means that exactly every twelve 

minutes a person gets in.  

The inter arrival times are exponential; the arrival rate is Poisson with lambda per hour, it means, 

on an average five people enter the system following a Poisson distribution. It may happen 

between two consecutive arrivals, it could be five minutes, it could be twenty minutes, but at 

steady state, if we measure then we will have five people per hour entering the system. 

Therefore, there will be a line even though lambda is less than mu. There will be a line and we 

are interested in analyzing the performance of this queuing system or this line. There are a 

couple of other things that we need to look at, before we start deriving some expressions for the 

queuing models. There are three other terms which are often associated with queuing and these 

three are called balking, reneging and jockeying. 
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What is balking?  

Let us assume that, we are going to book a ticket in a railway reservation system. Let us say that 

we have these three servers. Let us assume we are in a slight hurry and we enter this system, and 

we observe that there are already some sixty people waiting in the line. As this person enters the 

person forms an opinion of how much time it is going to take for this person to finish this service 

and leave. If this person thinks it is going to take a lot of time, then the person leaves the system 



without joining the line. If an arrival does not join the system and leave, then the arrival is set the 

balk. The person balks when the person does not join the line and leaves.  

Balking can again be of two types: Forced balking and an unforced balking. For example, when 

you enter as a sixty-first person in a line and you think it is going to take a lot of time, therefore, 

you do not join the line and nobody is forcing you to leave. That is an example of an unforced 

balking. 

On the other hand, if you go take the mechanic example with space only for ten cars, including 

the car being serviced and you drive your car for service and you realize that all these ten cars 

are full then you do not have a choice, you leave the system then such a balking that is called 

forced balking. Whenever we have finite queue length models, then there is a chance that balking 

occurs. The second phenomenon that happens is called reneging.  

Again come back to this example let us say you enter the system to book a ticket and there are 

sixty people already waiting. Then you realize you wish to join and say you join as the sixty-first 

person in the line. When you join as the sixty-first person you expect the line to move in a certain 

speed. After a while, let us say you observe that there it is actually moving slower than what you 

thought and your time is running up, then half way through from somewhere in the middle of the 

line you decide to quit, you just come out the line and you go away. Such a phenomenon is 

called reneging. The person joins the system, but after some time decides not to continue and 

simply moves out of the system, called reneging. 
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The third one is also an interesting phenomenon. It is called jockeying. For example, if this 

system, we have multiple servers but there is a common line. People are waiting here now 

depending on which server is free, the person will automatically go to the corresponding server 

and solve. 
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Instead, if we had a system where there are three servers and each server has a dedicated line let 

us say you come to the system and you find about nineteen people here and about twenty people 

here and fifty nine people here including the people who are being served we normally would 

join here or we would join here, we would join one of these lines. Many times there will be a 

tendency to join the shortest line. Let us say, you join the shortest line as a twentieth person. All 

the three lines are moving towards the server and more people have actually come in and joined. 

After five minutes you realize that, this is moving slightly faster. You have now become the 

eighteenth person here, but if you realize that, if you actually shift this line, you can become the 

seventeenth person in this line, because this line is moving faster. 

There will be a tendency to shift from one line to another line for a while and come back 

depending on what we think which is the rate at which people in these lines are moving. Such a 

phenomenon is called jockeying. Ordinarily, jockeying happens within the first few minutes of 

joining the line. Once we realise that there are four or five people behind us. If you skip this, if 

you are the eighteenth person here and then if you jockey, you will become the twenty-third 

person here then you will not like to jockey. Nevertheless, jockeying happens at the beginning.  

When we enter we find the queue lengths more or less the same as we enter any queuing system 

which has multiple servers and dedicated lines. Jockeying is something that is common to 

multiple server queuing system. 
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Another parameter that we need to discuss before we derive models is called the queue discipline 

or the service principle. If we take the example of a doctor that we have seen let us say there are 

six people already in the line, you join as the seventh person So ordinarily you would know and 

you would expect the queue discipline to be what is called first-in-first out, also called first come 

first served, which is either FIFO or FCFS. Ordinarily, when human beings are involved and the 

service provider is also a human being it is customary to assume a first-in-first out service 

discipline or first-in-first out rule to send the next person into the system. 

When we do not have human being in the system the service discipline can vary or can change. 

There are times we can have a last-in-first out system and so on. But most queuing models are 

also derived under the principle first-in-first out system. Steady state models usually are 

independent of the service discipline whereas transient models involve the discipline and are 

derived using first-in-first out models. With this kind of an introduction we will look at four 

different queuing models in this lecture series. We will not consider aspects like balking, 

reneging and jockeying. We are not going to consider finite population, we will consider single 

server model, multiple server model and within each of these we will consider finite queue 

length and infinite queue length. 

Two types of servers single server and multiple server models and two types of queue lengths 

which is finite queue length and infinite queue length, would give us four basic models of 

queuing theory. We will first look at a single server, infinite queue length model then single 

server, finite queue length model; multiple servers, infinite queue length model and multiple 

servers, finite queue length models. This will be the order in which we will study these models. 
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We start our discussion on the single server infinite queue length model. We will represent this 

model following a certain notation. The notation that we use will be called M/M/1 

/infinity/infinity model. This is part of a very familiar notation called the Kendal’s notation. We 

have used a portion of the Kendal’s notation. I have left out one of the spaces in the Kendal’s 

notation. This M characterises the arrival, this M characterises the service. The M and M 

indicates the memory less property of the arrival and the service, or Morkovian property of the 

arrival and the service. These come here, because of the assumption, that it is Poisson that 

follows the Morkovian property of lambda per hour. This is exponential with mu per hour. This 1 

represents, the number of servers, so, it is a single server model. This infinity is the queue length, 

so it is an infinite queue length model. This represents the population, so it is an infinite 

population model. 

M/M/1/infinity/infinity model would mean a single server model with Poisson arrival and 

exponential service following the memory less property, the infinity, infinity represent infinite 

queue length and infinite population model. 
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The queuing system will be like this. There is a server, who serves at the rate of mu per hour. 

There are arrivals at the rate of lambda per hour. In the memory less property, we are going to 

assume that the behavior of the system does not have any memory. Therefore, it does not take 

into account the earlier states of the system in order to define the present state of this system. 
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The memory less property also helps us in one important property which is an important 

assumption here, that during a very small interval only one event will take place. One event takes 

place in a small interval h. An event is either an arrival or a service. What we want to study is in 

a system like this, at steady state, what is the probability, that at steady state this system has zero 

people, one person, two people and so on. This can go up to infinite. What are all the other things 

we wish to study in this system? Typically, from a user point of view or from a customer point of 

view the customer is interested in four important parameters. 
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These four parameters are called length of the system, length of the queue, waiting time in the 

system and waiting time in the queue. What is this length of the system and length of the queue? 

Length of the system is the expected number of people who are actually in the system, including 

the person who is being served. Length of the queue is the expected number of people who are 

waiting for service in this system. Obviously, there is a relationship between these two. A person 

who enters the system would actually like to know when the person will actually leave the 

system. The person is interested in waiting time in the system and there are times the person is 

interested in waiting time in the queue. 

Normally, if we are interested in going for specialized services, say a doctor or a legal service 

then the time taken by the server also matters. There are times we are worried about waiting time 



in the queue, we are worried about when our service is exactly going to start So in such a 

situation we are concerned about the waiting time in the queue. 

If we have a restriction on the total time that we want to spend in the system, then we look at 

waiting time in the system. Ordinarily, these are represented as Ls, Lq, Ws, and Wq. It is also 

obvious that these two are related, these two are related and there is a relationship between Ls 

and Ws which means all four of these are actually related to each other. 

If we derive an expression for one of them from first principles we can actually use the 

relationship among these parameters to derive expressions for the rest of them. This queuing 

system finally is going to be measured for equations that define Ls, Lq, Ws, and Wq. These are 

expected values, expected number of people, expected waiting time and so on. Therefore, these 

depend on the probability that there are n people in this system. Probability that there are zero 

people in the system is p0, p1, p2 and so on. This can go up to infinity.  

 

We are interested in getting expressions for p0, p1, p2 etc which represent, the steady state 

probabilities that there are 0 1 2 etc., people in the system. Based on these probabilities, we will 

derive expressions for Ls, Lq, Ws and Wq. In order to get expressions for these p0, p1, p2 etc., the 

three important things that we know are lambda, mu and the number of servers, in this case, this 

is 1, is called C equal to 1. C represents the number of servers. The input values to the queuing 

system are lambda, mu and C. The output values are Ls, Lq, Ws, and Wq. The intermediate values 

are p0, p1, p2, etc. 

We start deriving some expressions to get a general pn, the probability that there are n people in 

the system in terms of lambda, mu and C. Once we get an expression for pn, we can substitute for 

various values of n as 0 1 2 and so on. we can get these from which we can go back and get these 

expressions. 
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Let us start deriving some expressions for this; pn (t plus h) means, the probability that there are 

n people in the system at time (t plus h) where h is small. There will be n people in the system at 

time (t plus h), if we had (n minus 1) people at time t and during this small period h, one person 

has arrived and no person has left. So, pn (t plus h), probability that we have n people at time (t 

plus h) can happen, when there are (n minus 1) people at time t and in the small period there is 

one arrival and no service. This can also happen if there are (n plus 1) people at time into there 

was one service and no arrival plus there where n people into no arrival and no service. 

This is obvious that we have n people here. That can happen if we had (n plus 1) at time, this is 

time t, this is time (t plus h). One way it can happen is there were (n plus 1) people here and one 

person has left. So, one services zero arrival or we could have had (n minus 1) people here and in 

this small gap we would have one arrival zero service. We could have n people here; we could 

have had zero arrivals, zero services or one arrival one service. 

We are not considering other possibilities for the reason that in a small period only one event can 

take place. That event is either an arrival or a service. Therefore, we are not looking at (n plus 2) 

people in the system and two people leaving in this small period h. Similarly, we are not looking 

at any other value other than (n minus 1). We do not say (n minus 2) people were there and there 

were two arrivals. Now, coming back to this n, two things can happen. There is a zero arrival and 



zero service; there is a one arrival and one service. Now, one arrival and one service means, two 

events. We have made an assumption that we will not have more than one event taking place. So, 

we do not consider this as part of defining the probability, that there are n people in time (t plus 

h), using n in time t. 

That is the reason I have not written the fourth step, which is one arrival and one service. That 

means, there are two events and therefore we do not write that. These things come from the 

memory less property of this system. Which also says, it is not state dependent as such, the 

system does not respond to what it was doing in earlier periods.  

System does not have memory and therefore does not carry whatever it was doing in earlier 

stages than what we are looking at. Therefore, based on the memory less property which the 

Poisson and exponential distributions provide us with, we can write this expression. Coming 

back to this expression, now probability of one arrival during any given period is lambda h and 

probability of one service is given by mu h. 
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When we when we do this, we can write this as pn of (t plus  h) equal to pn-1 at time t into 

probability of one arrival, which is lambda h. Probability of no service is 1 minus mu h; because 

mu h is the probability of one service or one person leaving the system. So, the probability of 

zero people leaving the system is 1 minus mu h. 



We do not consider two persons leaving, three persons leaving and so on. Therefore, the 

probability that zero person leaves plus, probability, that one person leaves is equal to 1. 

Therefore, probability of no service will become 1 minus mu h, plus p n+1 t into probability of 

one service and no arrival. So one service is mu h, no arrival is 1 minus lambda h. For the same 

reason, one arrival is lambda h. Therefore, zero arrival is 1 minus lambda h, plus pn of t into no 

arrival and no service, so 1 minus lambda h into 1 minus mu h. This is the expression that comes 

from this. This we can simplify. We simplify and we leave out the higher order terms. On 

simplification, this will become pn-1 of t lambda h minus lambda mu h square. So lambda mu h 

square is a second order term. We leave out the second order term. 

We get pn-1 t into lambda h plus pnplus1 at time t into mu h, plus pn of t into 1 minus lambda h 

minus mu h plus lambda mu h square. So, second order term is left out, so this into 1 minus 

lambda h minus mu h. 
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We bring this pn (t to the left-hand side. We will get pn of (t plus  h), pn probability that n people 

are there and dividing the whole thing by h, h is common in all of them, would give us pn-1 at 

time t into lambda plus p(n plus 1) at time t into mu minus pn time t into lambda plus mu. This 1 will 

come to the other side divided by h. From this equation, if we apply the steady state condition 

which means the change of pn by t to the interval h, will be 0 at steady state. 



At steady state the probability is not going to be time dependent. When we apply the steady state 

condition, this portion becomes 0. We have pn-1 into lambda or lambda pn-1 plus mu pnplus1 equal 

to lambda plus mu pn. If pnplus1 represent the steady state probability, that there are (n plus 1) 

people in the system, pn-1 represents the steady state probability, that there are (n minus 1) people 

in the system. Now, pn represents the steady state probability, that there are n people in the 

system. Then the equation that is joining them is lambda pn-1 plus mu pnplus1 equal to lambda plus 

mu into pn. We call this as equation number 1. 
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We go back and do this. Make a slight difference here. Then, we derive one more expression 

here, which is this. Probability, that there are zero people in the system at time (t plus  h) will be 

probability, that there is one person in the system at probability that there are 0 people in the 

system at time (t plus h) is probability that there is one person in the system at time t. There is 

one service and no arrival plus probability that there are zero people in this system, there is no 

arrival and no service. This, when we expand, we will get p0 time (t plus h) equal to p1 of t into 

no arrival and one service, which is 1 minus lambda h into mu h. Probability of one service is mu 

h, probability of one arrival is lambda h, so probability of no arrival is 1 minus lambda h plus p0 t 

into probability of no arrival, is 1 minus lambda h, but probability of no service is 1, because 

there are already zero people in the system, so there is no service. So, probability of no service is 

1. Please note this difference; earlier when we had other than zero, then there could be a service. 



So, probability of service was mu h, probability of no service is 1 minus mu h, because we have 

zero people in the system; probability of no service is 1. 

When we expand this, p0 (t plus h) equal to p1 (t) expanding and leaving out the higher order 

terms into mu h, plus p0 (t) into 1 minus lambda h. Now, taking to this other side, p0 (t plus h) 

minus p0 (t by h), will become p1 (t) into mu, minus p0 (t) into lambda.  

Again, applying the steady state conditions, at steady state, the rate of change of p0 with respect 

to h is 0 because we assume that p0 is a steady state probability. So, there is no change to the 

respect to h. This will become 0 and p1 (t) will simply become p1 and p0 (t) will simply become 

p0. So, this will give us a second equation mu into p1 equal to lambda into p0. This is the second 

equation that we have. 
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From these two equations, the first thing we can derive is p1 equal to lambda by mu into p0. This 

is the first thing that we can derive. Now, we go back and apply this to this one. We get lambda 

into p1, put n equal to 1, we get lambda into p0 plus mu into p2 equal to lambda plus mu into p1. 

This is lambda p0 plus mu p2 equal to lambda p1 plus mu p1 when we expand. From this we know 

mu p1 equal to lambda p0. This is lambda p1 plus lambda p0 so the lambda p0 gets cancelled. 

From this we get p2 equal to lambda by mu into p1. 
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We already know that p1 equal to lambda by mu into p0 so this is lambda by mu the whole square 

into p0, p1 equal to rho p0; p2 equal to rho p1 equal to rho square p0. In the similar manner, we can 

derive p3 equal to rho p2 equal to rho cubed p0 and any general pn equal to rho power n. This we 

can derive by progressively substituting in the earlier equation. These are the important equations 

that relate this. At the moment, we know now that p1 equal to rho p0; p2 equal to rho square p0 

and so on. We still do not know the actual values of p1, p2, p3 or pn because they have all been 

derived as dependent on p0. Unless we know p0, we cannot find out the values of p1, p2, p3 or a 

general pn. To find out p0, we go back to the normal rule, that is the sum of the steady state 

probabilities is equal to 1.  
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We have p0, plus p1, plus p2, plus up to infinity is equal to 1. This would give us p0 plus rho p0 

plus rho square p0 etc, up to infinity is equal to 1. This is p0 into 1 plus rho plus rho square plus 

up to infinity is equal to 1. An interesting thing is the infinite series which is the first one. It is a 

geometric series because you have 1 rho rho square etc, we know the sum to infinity terms of a 

geometric series as a by 1 minus r provided r is less than 1. 

We also know that rho being lambda by mu should be less than 1 for an infinite population 

model. When lambda by mu or rho is less than 1, we can apply the infinite geometric series 

summation formula to get p0 into this will have by 1 minus r. So, 1 by 1 minus rho equal to 1 

from which p0 equal to 1 minus rho. So, p0 equal to 1 minus rho is an important equation for an 

M M 1 queuing model or M M 1 queuing system. Once we know that p0 equal to 1 minus rho, 

now p1 equal to rho p0 which is rho into 1 minus rho. A general pn is rho power n p0 which is rho 

power n into 1 minus p. We know rho as lambda by mu. Therefore we can calculate p0, p1, p2, 

any pn. We started off by saying that the inputs are lambda mu and C.  

In this case, because it is a single server model, it is lambda mu and 1 or essentially only rho, 

which represents lambda by mu. It is not even necessary to have the individual values of lambda 

by mu or lambda and mu, if we know rho which is the ratio of the arrival rate to service rate, 

which is less than 1, then we can find out the expression for p0 p1 up to any pn ,but it does not 



end there because we said earlier, that we are interested also not only in p0, p1, p2 up to pn, we are 

also interested in the expressions for Ws, Wq, Ls and Lq. 
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We need to derive expressions for Ws and Wq, Ls and Lq in terms of p0, p1, etc, which means in 

terms of rho, we will do that next.  
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Ls is the expected number of people in the system and Ls is given by sigma J equal to 0 to 

infinity jpj, Ls, is like an expected value. It is j, the number of people multiplied by the steady 

state probability that so many people are there in the system. This is like saying 0 into p0 plus 1 

into p1 plus 2 into p2 etc n into pn. So this will give us sigma j pj is rho power n p0 or rho power j 

p0. We take one p0 outside and a rho outside. This is p0 into rho into sigma j rho to the power j 

minus 1. This is p0 rho into sigma d by d rho of rho power j and then we follow the usual idea 

that when we have the summation and the differentiation, we can switch this without losing 

anything in the expression. We get p0 into rho into d by d rho of sigma rho power j. This will 

give us p0 into rho into d by d rho of sigma rho power j, this is 1 plus rho plus rho square etc., up 

to infinity. This is again an infinite geometric series, with rho which is lambda by mu rho less 

than 1. 

This will be p0 rho into d by d rho of 1 by 1 minus rho. This will be p0 rho into 1 by 1 minus rho 

will give minus 1 by 1 minus rho the whole square into another minus 1. We get 1 by 1 minus 

rho the whole square. Here again, p0 is 1 minus rho. This is 1 minus rho into rho by 1 minus rho 

the whole square. This is rho by 1 minus rho. We get an expression for Ls as Ls equal to rho by 1 

minus rho. So, expected number of people in the system is rho by 1 minus rho. We need to write 

down the expressions for the other ones. Expected number of people in the system is equal to 

expected number of people in the queue plus expected number of people who are being served 

plus expected number of people who are being served. 

We get Ls equal to Lq plus lambda by mu, lambda by mu or rho, represents the expected number 

of people who are being served. From this we can get the expression for Lq. Once we know Ls, 

Ls and Lq are related as Ls equal to lambda Ws and Lq equal to lambda Wq. This is the 

relationship between Ls and Lq and Ws and Wq. These two are the well known Little’s equation, 

which capture the relationship between the length of the any system and the time associated with 

this system. With this we can find out Ws, Wq, Ls and Lq. We will work out a numerical example 

and continue our discussion in the next lecture.  


