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Lecture - 27 

Heuristics for TSP (Continued) 

In this lecture, we continue our discussion on heuristics to solve the Traveling Salesmen 

Problem. In the previous lecture we were looking at the heuristics based on matching. 
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We start with the minimum spanning tree for the data that is given in the problem. We consider 

the same data here and the minimum spanning tree which we have already drawn like this. 
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The minimum spanning tree has these four edges 2 to 4, 2 to 5, 3 to 4 and 1 to 5 with length 

equal to 26, 8 plus 5 equal to 13 plus 6 equal to 19  plus 7 equal to 26. We also mentioned in the 

previous lecture that in the minimum spanning tree, the number of vertices that have odd degree 

will be even. This is a vertex that has odd degree. These three vertices have even degree equal to 

2. There are two edges, here, this is a vertex that has odd degree equal to 1.  

The number of s with odd degree will have to be even. We even mentioned in the previous 

lecture that this is an important result. It is a very easy result to prove because each edge is 

incident to two vertices. Therefore the sum of the degrees of every vertex when added is an even 

number, because each edge contributes to the degree of two vertices. So, sum of the degrees of 

the vertices is an even number and because the sum of the degrees of the vertices is an even 

number, the number of vertices that have odd degree is even. In this case there are two vertices 

that have odd degree. We could have a case where four vertices have odd degree because we are 

considering a 5 by 5 problem. 

If we have only two vertices that have odd degree all that we do is, go back to that matrix and 

add that vertex. For example, 1 and 3 are the vertices that have odd degree, so add the edge 1 3 

into the minimum spanning tree to get a Hamiltonian circuit or to get a feasible solution to the 

Traveling Salesmen Problem. If we do that, now, 1 3 has weight equal to 8. There is only 1 



 

 

feasible solution here, which is a tour feasible to the Traveling Salesmen Problem. This will have 

a length equal to 34, so this method for this particular problem gives a feasible solution with 

length equal to 34.  

If the number of vertices that have odd degree is 2, then we add only one edge into the minimum 

spanning tree to complete it. Therefore we have only one solution that is given to this problem. 

For this instance, that solution gives a length equal to 34. We may have the case were there are 

more than two vertices and even number. It would be four vertices that have odd degree or for a 

larger size problem, we could have six vertices or eight vertices that have odd degree. Let us see 

what happens in such a case. 
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Let us assume for a moment that the minimum spanning tree is like this. In our example, it is not 

so, but let us assume for a moment the minimum spanning tree is like this. This is a case where 

there are four vertices that have an odd degree. When there are four vertices that have an odd 

degree what we do is, we go back to the original matrix and then pull out the corresponding 4 by 

4 from the original matrix. The original matrix has vertices 1 2 3 4 and 5 and 1 2 3 4 and 5. We 

pull out the corresponding 4 by 4 matrix. If this were the minimum spanning tree then the four 

vertices that we are interested are 2 3 4 and 5 that have odd degree.  
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We pull out a corresponding 4 by 4 matrix out of this. What we do is we try to find out what is 

called the minimum weighted matching. This number is always an even number. It is either 4 or 

6 or whatever depending on the size of the matrix. In this case it is a 4 by 4. When we have a 4 

by 4 matrix, what I mean is by a matching like this. Let us look at the edge 2 3 and the edge 4 5. 

There are four vertices, so what we try to do is with two edges, such that these two edges do not 

share a common vertex. We try to exhaustively look at all the vertices at a typical example of a 

matching could be 2 3 and 4 5. 

There are two edges, the four vertices divided by two edges and all the vertices are covered. 

Another matching could be 2 4 3 5 and the third matching could be 2 5 3 4. At this case, there are 

only three possibilities. If it were a 6 by 6, then we will have more possibilities. Every matching 

will have three edges that will cover all the six vertices. Here, we have three possibilities. Now 

we find out the weight associated with each of them. The weight associated with this is 2 3 plus 4 

5 which is 10 plus 6 which is 16.  

The weight associated with this is 2 4 and 3 5, which is 8 plus 6 equal to 14. The weight 

associated with this is 2 5 and 3 4, which is again 8 plus 6 which is14. Out of these three, we find 

out the best one which can be either this 14 or the other 14. Let us say we take this 14 and then 

we superimpose this matching on to the minimum spanning tree. We would get something like 



 

 

this 2 to 4 and 3 to 5 on this. Once we superimpose this matching on to the minimum spanning 

tree, we can try and get an Eulerian circuit which means, starting from any vertex we will be able 

to go to every edge once and only once and come back to the starting vertex.  

Such an Eulerian will look like this. For example, it will look like 1 to 2, 2 to 4, 4 to 1, 1 to 3, 3 

to 5 and 5 to 1. We will have an Eulerian circuit like this and as we did in the earlier case, we can 

go back and get feasible solutions to the Traveling Salesmen Problem. They could be 1 2 4 3 5 1; 

1 to 2, 2 to 4, 4 to 3, 3 to 5, 5 to 1 or it could be 1 3 5 2 4 1; 1 to 3, 3 to 5, 1 to 3, 3 to 5. Come 

back so we have 5 to 2, 2 to 4, 4 to 1 or it could be 1 4 3 5 2 1. We have only two cases, 1 to 2, 2 

to 4, 4 to 3, and 3 to 5, 5 to 1.  

We have the case starting with this one, 1 to 3, 3 5, 5 to 2, 2 to 4, 4 to 1. These are the 

possibilities that we have and we can find out the Lh associated with each one of them and 

choose the best. When we had in our spanning tree only two vertices that have odd degree, we 

simply add that edge and proceed. When we have more than two vertices that have odd degree, 

then we pull out the corresponding matrix from this matrix and then we find out what is called 

the minimum weighted matching. Superimpose the minimum weighted matching on to the 

spanning tree, obtain an Eulerian circuit, from which obtain feasible solutions to the Traveling 

Salesmen Problem. Then find out the best out of these and declare them or give them as the 

heuristic solution to the problem.  

How good is this algorithm? Can we derive an expression like what we derived for the twice 

around the tree heuristic?  

It is possible to have a derivation for this which we will look at right now. Let us try and derive 

that expression for this here. Let us call the best out of these as Lh and if triangle inequality 

holds, like we discussed in the earlier case, if triangle inequality holds we can show that, for 

example, this has been brought out of this, this is 1 2, 2 4, 4 3 3 5 5 1. If triangle inequality holds, 

4 1 plus 1 3 is greater than or equal to 4 3. Therefore this length is greater than or equal to this 

length. If we call this length as Le (length of the Eulerian), then Le is greater than or equal to 

every one of these Lh. Therefore Le is greater than or equal to the best out of these, which we are 

going to call as Lh. We have this simple relation, Lh is less than or equal to Le which we can 

show. If triangle inequality holds where Lh is the best among these that we have taken.  
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We write the first result, that Lh is less than or equal to Le. Now, what is this Le? This Le is 

nothing but the length of the minimum spanning tree plus the length of the matching, that we 

have added on to this, so Lh is less than or equal to Le. We have Le equal to LMST, length of the 

minimum spanning tree plus length of the matching that we have added to the minimum 

spanning tree. Therefore Lh is less than or equal to LMST plus LMATCHING.  

We already know that LMST is less than or equal to L0. So Lh is less than or equal to L0 plus 

LMATCHING. We have already written LMST with reference to L0. We need to write this LMATHING 

with reference to L0 that we will be able to derive Lh by L0. What is the relationship between this 

LMATCHING and L0?  
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Let us look at the case where we have four vertices having odd degree. Let us say that we have 

some unknown L0. For this problem, there is an unknown L0 which have five edges here. We do 

not know exactly what L0 is but one thing that we know is that all the five vertices are actually 

present in L0. For the moment let us assume that the L0 since we know the L0. Let us assume that 

L0 is 1 3 4 2 5. We can actually derive this by assuming that we do not know L0 just to make the 

derivation simpler, I am assuming that we know the L0 and I am going to show this to you. This 

is 2 3 4 5 that are here.  

What I do is I simply take 2 3 4 5. What I am trying to say, it is always possible from L0 to 

remove edges and bring it such that we have a smaller thing corresponding to these vertices that 

we have here. Now, again based on triangle inequality, this plus this is greater than this. 

Therefore the L, 3-4 plus 4-2 plus 2-5 plus 3-5 is now less than or equal to L0. 

Now, we have this, now for these four vertices, we have the matrix here and we have found out 

what is called the minimum weighted matching associated with this, which means we have 

looked at 2 3 4 5 which is not here. If we take a matching out of this, if we take a matching out of 

these four, there are only two possibilities; 3 5 plus 2 4 is one matching and 3 4 5 2 is another 

matching. If we take a matching out of this, we say 3 5 2 4 is one matching and 3 4 5 2 is another 

matching. The minimum of these two will have to be less than or equal to half of this.  



 

 

Let us call this length as L2345. Let us call this as L2534, as this length, by triangle inequality L2534 

is less than or equal to L0, because 1 3 plus 1 5 is greater than or equal to 3 5.  

So L2534 is less than or equal to L0. From this 2 5 3 4, we may get two matches, which are either 

3 5 2 4 or it can be 3 4 5 2. The minimum of these two will have to be less than or equal to, let us 

call this, as sum Lm small matching.  

This Lm which is the minimum of these two should be less than or equal to L2534 by 2. This is 

like saying if we add these four lengths, for example, 2 5 is 6, this is 6, 2 4 is 5, 3 4 is 8 and 3 5 is 

9. We can look at the two matchings. The total is 9 plus 8 equal to 17 plus 5 equal to 22 plus 6 

equal to 28. One matching is 14, 3 5 and 2 4. This is 9 plus 5 is 14, the other is 8 plus 6 equal to 

14. You see that this is the minimum of them, has to be less than or equal to 28 by 2. It is just 

like saying I have a number, I divided into two numbers and if I divided into two numbers, such 

that the sum of these two, is the given number, the minimum of the 2 should be less than or equal 

to half of it. It is a very simple result, from which we can say that this Lm is less than or equal to 

L2534 by 2. Therefore this Lm is less than or equal to L0 by 2. Now, these are matchings that are 

got from this and what are these? 

These are matchings that are got from the complete graph associated with this. The complete 

graph is here. These matchings are also part of this. For example, 3 5 2 4 is here and 3 4 5 2 is 

also here. When this is part of this, when we identified this, we looked at 3 4 5 2 and we looked 

at the complete graph which is a 4 by 4 and we identified the minimum matching out of this 

complete graph. This is part of the complete graph and then we identified the minimum matching 

associated with this part. 

The minimum matching that we get from here, will again have to be less than or equal to the 

minimum matching that we get from here. Therefore the LMATCHING is less than or equal to L0 by 

2. This is less than or equal to L0 by 2. LMATCHING is less than or equal to Lm. Therefore 

LMATCHING is less than or equal to L0 by 2. This will be less than or equal to L0 plus L0 by 2. This 

is less than or equal to 3 by 2 L0. So, Lh by L0 is less than or equal to 3 by 2 or1.5.  

Again, just to explain again this L0 by 2, let me quickly do that one more time. This is little more 

involved portion up to this it is fine. What we try to do is the following. If there is an unknown 



 

 

L0, the moment we know that these are the vertices, it is always possible to do something like 

this, in this example, just you leave out 1. This 1 will have to be connected to either of the four 

out of these 2 4 3 and 5. It is like just leaving 1 out of the L0 and joining the rest of them to get 

this figure L2534. This L2534 is derived from L0, assuming that L0 is not known, but the only thing 

we know is that, no matter what is the optimum solution, this L2534 will be less than or equal to 

L0 based on triangle inequality. Because this 1 has been left out, so, L2534, which are 

corresponding to the vertices that have odd degree. 

Now that L2534 will be less than or equal to L0, then we go back and say that it is always possible 

to get a matching out of this. The minimum such matching will be less than or equal to L0 by 2. 

Lm is less than or equal to L0 by 2. Then we go back and explain that this is only a part of the 

complete graph from which we have got a minimum matching. This is the complete graph from 

which we get a minimum matching. Obviously the one that we get from the complete graph, that 

minimum matching should be less than or equal to every matching that is obtained out of this. 

The LMATCHING will be less than or equal to this Lm which in turn is less than or equal to L0 by 2. 

Therefore LMATCHING is less than or equal to L0 by 2. Lh is less than or equal to L0 plus L0 by 2 

which would gives Lh equal to 3 by 2 L0. Whenever we have n is odd, if we have n equal to 5 

then the number of vertices that we may have to look at is either 2 or 4. 
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For 4 we went back and did this. For 2 what do we do, in the actual case where 1 3, where the 

only two vertices that had an odd degree. The spanning tree actually looks like this. The 

spanning tree had 5, 2 to 4 is 5. Then 2 to 5 is 6, 2 to 4 is 5 and 2 to 5 is 6, 5 to 1 is 7, 3 to 4 is 8 

and the spanning tree looks like this. Then we actually do not know L0, but if we assume that 

somewhere the only 1 and 3. What we do is, we do not know but let us assume that 1 and 3 are 

here and we simply put this.  

By a triangle inequality this L13 is less than or equal to L0, because L13 is less than or equal to 

this plus this. Therefore L13 is less than or equal to L0. Simply adding 1 3, again we are adding a 

quantity that is less than or equal to L0 by 2. We can even prove that actually L13 is less than or 

equal to L0 by 2 because from triangle inequality this portion, L13 is less than or equal to sum of 

these 2 and L13 is less than or equal to sum of this plus this plus this. Therefore L13 is less than or 

equal to L0 by 2. 

Even when we are adding only 1edge into this, we are adding an edge whose weight is less than 

equal to L0 by 2. Whenever the number of vertices with odd degree happens to be less than or 

equal to the actual number of vertices, we assume that we actually use triangle inequality to get 

this and prove that whatever is added into the minimum spanning tree has a weight, which is less 

than or equal to L0 by 2. Therefore Lh by L0 is always less than or equal to 3 by 2. This heuristic 

based on minimum matching, it has a worst case performance of 3 by 2, which means no matter 

what the size of the problem is, no matter what these numbers are, as long as the data satisfies 

triangle inequality, we can get a heuristics solution. This is utmost 50 percent away from the 

optimum.  

These kinds of heuristics also give us an opportunity to understand how to derive or evaluate the 

worst case performance of these heuristics. It is possible to do this for certain heuristics. It is not 

possible to do for certain others. Those heuristics for which we could get this kind of analysis are 

called approximate algorithms. Once we define a heuristic as an approximate algorithm, then it 

means that there is an expression or a derivation for the worst case performance of the algorithm. 

We now move on to some improvement heuristics for the TSP. We will look at some 

improvement heuristics. 
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Improvement heuristics means, you already have a solution and you are trying to improve it. In a 

construction heuristics you do not have a solution; you build or construct a solution. All the 3 or 

4 heuristics that we saw, the nearest neighbour, the one that was based on the branch and bound, 

twice around the tree heuristics and the heuristics based on the matching, they are all examples 

of construction heuristics. Let us look at some improvement heuristics. In order to get an 

improvement heuristic, you need a starting solution which we actually try and improve. Let us 

look at a starting solution. Let us look at the solution 1 4 3 2 5 1. This solution has length 1 to 4 

is 9, 4 to 3 is 8, 17. 3 to 2 is 10, 27. 2 to 5 is 6, 33 and 5 to 1 is 7, 40. 

Here Lh equal to 40. This has length equal to 40. Can we improve this further? A very simple 

thing to do is called pairwise interchange, which we can do. What are the easiest ways of doing 

pairwise? The pairwise can be done in more than one way.  

In TSP, we generally leave this and we assume that we come back to this. The first thing we do 

is called as adjacent pairwise interchange. When we do an adjacent pairwise, I first swap just 

these two, I get 4, 1, 3, 2, 5, 1 which means I will come back to 4. This will give me a length. 4 

to 1 is 9, 1 to 3 is 8, 17. 3 to 2 is 10, 27, 2 to 5 is 5, 32 plus 5 to 4 which is 6. So, this gives L 

equal to 38. 



 

 

I can do another adjacent pair with this. So I try 1 3 4 2 5 and 1. So 1 3 is 8. 3 4 is 8, 16. 4 to 2 is 

5, 21. 2 to 5 is 6, 27. 5 to 1 is 7. L equal to 34. We can try this adjacent pairwise to get 1 4 2 3 5 

and 1. 1 4 is 9, 4 2 is 9 plus 5 equal to 14, 2 3 is 10, 14 plus 10 equal to 24. 3 5 is 9, 33. 5 1 is 7. 

This L equal to 40.  

We can try this pairwise, so we get 1 4 3 5 2 1 with L equal to 1 4 is 9. 4 3 is 8, 17. 3 5 is 9, 26. 5 

2 is 6, 32. 2 1 is 10, 42. We can do these pairwise exchanges. There are five numbers so we can 

do four pairwise exchanges. If there are n numbers we can always do (n minus 1) adjacent 

pairwise exchange. Each of these is called adjacent pairwise exchange. We can do n minus 1 

adjacent pairwise exchange and take the best solution. In this case the best solution happens to be 

34. At the movement we do not know that it is optimum.  

The next thing that we can do is to go back to this and then look at some adjacent pairwise 

exchanges that are possible. If there is no improvement, then stop the algorithm. That is one way 

of doing this. Another way which is a slightly greedy way is, the moment we start with this 40 

and moment we get this 38, we then look at this 38 and continue to do pairwise exchanges. That 

is also possible, but ordinarily you do one pass of the adjacent pairwise exchange and then leave 

it here. Because even if we try and make pairwise exchanges out of this, we would still get some 

solutions, some changes. This would give us the first exchange, would give us 3 1 4 2 5 3. 3 1 4 

2 5 3 we have not evaluated this, so there is still a possibility that some changes can happen. 

We can do one more pass of this algorithm to see if we can get an improvement. Of course, for 

this instant we will not get improvement because we already know that 34 is the optimum. Once 

we do not know the optimum, we can continue doing this, till there is no improvement and then 

stop with the best solution that we have. This is the adjacent pairwise exchange heuristics, which 

is an improvement heuristics.  

Then next one is a general pairwise exchange heuristics, which means we can take out of these 

five and exchange all possible pairs. There are five nodes or there are five cities. A pairwise 

interchange can be done in 5C2 ways which is 10 ways. Let me just write down only those 10 

and the first one would be one. The given one is 1 4 2 3 5 1. The first pairwise can be 4 1 2 3 5 4. 

The second one can be 1 and 3. I will have 2 4 1 3 5 2; then this exchange 3 4 2 1 5 3 and then 

this exchange 5 4 2 3 1 5. These are the four possible exchanges with 1. Then we look at this. 



 

 

This is 1 2 4 3 5 1, that is I am exchanging this 4 and 2; I exchange this 4 and 3, I will get 1 3 2 4 

5 1; then I exchange 4 and 5, to get 1 5 2 3 4 1, I will exhausted this. I come to 2 and 3, so 1 4 3 2 

5 1; then I do 2 and 5, 1 4 5 3 2 1, I have exhausted this.  

Then I come to this, I do 1 4 2 5 3 1. I start with this and I have 1 2 3 4 5 6 7 8 9 10 possible 

pairwise exchanges. This is superscript n C2 number of exchanges. This is n minus 1exchanges 

and so on.  

We will also realise that this is a subset of this 10. We can evaluate all these 10 solutions and 

then choose the best. That is the normal pairwise exchange heuristics or a pairwise exchange 

algorithm applied to the travelling salesmen problem.  

Once again, in these instants we will get L equal to 34, because in the subset that we have 

evaluated, we have already got the solution with L equal to 34. We could do either an adjacent 

pairwise exchange, which means we evaluate n minus 1 new solution in one pass and then we do 

one pass of the total pairwise and then take the best out of this. We will have a small change in 

this and then we can do one more pass and proceed because we can take the best out of this and 

then again do one more pass of superscript n C2 and see if there is a further improvement. 

There will be some new solutions that will come in, while majority of the solutions will repeat 

because here we have evaluated superscript n C2 out of the possible n minus 1 factorial. n minus 

1 factorial, 24 solutions are possible. In this pass, we are evaluating only 10 out of the 24 

solutions.  

Once we get the best out of this we can again subjected to another pairwise interchange which 

means we will evaluate 10 more solutions and keep doing it till there is no improvement. We can 

either use an adjacent pairwise exchange or a complete or total pairwise exchange, where we 

evaluate (n minus 1) solution in 1 pass or superscript n C2 solutions in 1 pass and so on. Now we 

look at another type of improvement heuristics, which is very specific to the Traveling Salesmen 

Problem.  
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That is called the 3 opt heuristic or a 3 way exchange heuristic. Let us assume we look at a 

Traveling Salesmen Problem, let us say we consider a six TSP and let us call these six nodes as 

ab, pq and uv. What we can do is for these six nodes or 3 pairs of nodes, it is possible to create 

some more feasible solutions. For example, this is one feasible solution; we could create ab, pu, 

qv. What is that mean, ab, pu, and qv? It means these two edges go and they are replaced by 

these 2 edges. What we can do is, if we take three 3- edges ab, pq and uv, then we can show that 

7 new solutions can be obtained. Including the given one, there are eight solutions, but seven 

new solutions can be obtained. One of which is ab, pu, qv. The others are ap bu qv, ap bq uv, aq 

ub pv, aq up bv, au qb pv and au qp bv. These are seven new solutions that are possible.  

We also realise what are common in these including the given one is that the first one is always 

‘a’ and the last one is always ‘v’. The rest of them are shuffled inside, so since there are three 

edges, you can do that in 2 to the power 3 ways, So 2 to the power 3 minus 1 would give us 

seven new solutions one of which we showed as ab pu qv, they now have become ab pu qv.  

Let us try and show this aq, up and bv. We show aq. Now the new solution will become aq up bv 

which means it comes here. aq qp pu, this goes, this goes and this goes. This means that this is 

not there, this is there aq qp. This one is there which comes here aq qp pu uv, so this one is there; 



 

 

this one is there; this one is there; this one is left out; this is not there; this is not there and this is 

not there. The 3 edges are replaced by 3 other edges so we have seven such possibilities.  

If the given problem has more than six nodes then it will have more than ab pq uv.  
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For example, if we look at 10 city problem in a 10 city problem the ab pq uv by itself can be 

chosen in 10C3 ways. In general it can be chosen in superscript n C3 ways. If we have a 5 city 

problem like what we have, again these ab pq uv can be chosen in 5C3 ways which are ten ways 

except that there will be reputations as we move along.  

For example, let us start with this feasible solution with length equal to 40. If we chose ab as 1 4, 

pq as 3 2 and uv as 2 5 then the first one will be ab pq uv, ab pu. ab is 1 4. We include 1 4 ab, pu 

is 3 2, we are looking at this, ab is 1 4, pu is 3 2, qv is 2 5, which means we go back to this. We 

do 1 4, then we do 4 3, 3 2 to 5 1 which is the same as the given one then there is a repetition 

whereas if when we look at this one we get aq is 1 2, ub. is 2 1 which we cannot have, aq,.  

The up is 2 3 and bv is 4 5. So aq up bv, aq is 1 2, up is 2 3 and bv is aq, up and bv, bv is 4 5. 

Now we start with 1 2. What it means is, we have 1 4 3 2 5. Now ab pq, ab is 1 4, pq is 2 3 and 

uv is 2 5. These are the 3. We go to 1 2, we go to 1 2, then we use 2 3. We again use 2 3 and we 

use 4 5. The new solution will be 1 2 2 3 3 4 4 5 and 5 1. This goes, this remains in the solution. 



 

 

This remains in the solution. So we have 1 2 2 3 3 4 4 5 5 1. This goes out of the solution. 2 5 

goes out of the solution. We get a different solution out of this. 

If we take ab pq uv to be 1 4 3 2 2 5 and then we can substitute in these. For example, this 

substitution would give us a solution with 1 to 2 is 10, 2 to 3 is 10, 20. 3 to 4 is 8, 28. 4 to 5 is 6, 

34 plus 7 equal to 41.  
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This would give us the same solution with 40. If we look at this, for example, ap bq uv, would 

give us ap is 1 3, bq is 4 2, uv is 2 5, so, we look at this. Then our original solution is 1 4 3 2 5. 

We are adding 1 3. Let me put it this way. We are adding 1 3. We are adding 4 2 and we have 2 

5. I have one the new solution, is now 1 3 which I have added. 2 4, 1 3 4 2 5 1, because I have 

added 1 3 3 4 4 2.I have added 2 5 again and 5 1 with L equal to 34. This would give us L equal 

to 34. 

Like this, for every ab pq uv we can get 7 solutions. But if ab pq and uv are not distinct, as in our 

example, there are only 5 nodes, therefore we cannot get distinct ab pq uv. When we do not have 

distinct ab pq uv, you will not get 7 distinct solutions. You may have one or two solutions 

repeating as it happened here. The original solution came back again when we computed this. 

Nevertheless for every ab pq uv, which can be done in superscript n C3 ways, we can get a 



 

 

maximum of, or we evaluate superscript n C3 into 7. Sum of which may repeat. It still does not 

matter.  

One pass of the 3 opt will actually do superscript n C3 into 7 solutions, sum of which may repeat 

and we may take the best out of the superscript n C3 into 7 solutions. For our example, we have 

already got this 34 and since we know that this is the optimum, we cannot have any more 

improvement over the 34. One pass will evaluated a maximum of superscript n C3 into 7 and 

then we can continue the passes till it does not show any improvement. Then the algorithm will 

terminate with the best available solutions. 

In our case, it will terminate with this solution with Z equal to 34. The improvement heuristics, 

we have seen 3 of them. One is the adjacent pairwise exchange heuristics, the other is the 2 opt 

or the pairwise exchange and the other is called 3 opt. 3 opt is a very famous heuristic. This came 

in the year 1971 and it is proposed by Kernigan and Lin it is a very famous heuristic even today 

for solving the TSP, particularly large instances of the Traveling Salesmen Problem. But all the 

improvement heuristics, essentially work on the idea that we have a solution and then we try to 

improve the solution using these heuristics. So far in the Traveling Salesmen Problem, we define 

the TSP and we saw the formulations and then we saw three branch and bound algorithms. Then 

we saw some heuristics, some number of construction heuristics and some number of 

improvement heuristics. Now we look at one more aspect of the Traveling Salesmen Problem 

where we again use the same matrix and study this aspect.  
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Usually in the Traveling Salesmen Problem, we said the person starts in any city, goes to every 

city once and only once and comes back to the starting point. Such a problem is called the TSP 

or the Traveling Salesmen Problem or the feasible solution is a tour or a circuit which means a 

solution 1 2 3 4 5 1 is feasible. A solution 1 4 5 2 3 1 is feasible for a 5 city problem. Can we 

define another kind of a TSP where I say that I want to start from 1. One is a starting node. Let 

us say my ending node is 3. But i want to go from 1 to 3, going through every other vertex once 

and only once. For example, 1 5 4 2 3 is a feasible solution to this problem. Because I start with 

1, I end with 3, I can go through this. I may have 1 4 2 5 3 is also another feasible solution. Such 

a problem is called a traveling salesmen path problem where you want to find out a path from 

given i to j, such that, in this path you go to every other vertex once and only once. You know 

the starting node, you know the ending node. These are feasible solutions to the traveling 

salesmen path problem. There are times traveling salesmen path problem is also an important 

problem. There quite a bit of work that is been done on the traveling salesmen path problem. 

If we try to plot this, if we go back and draw a graph associated with this. Let us say 1 5 4 2 3. 

This is a path. Now, one important observation is that the any feasible solution to the path 

problem is a spanning tree, by itself is a spanning tree. Let us look at the length of this. This is 1 

to 5 is 7, 4 to 5 is 6, 2 to 4 is 5 and 2 to 3 is 10. This is 7 plus 6 equal to 13 plus 5 equal to 18 

plus 10 equal to 28.  



 

 

We also know for the same problem LMST is 26 which we computed earlier. Therefore LMST is 

always less than or equal to L0 of the path problem. This is a feasible solution. If we call for 

example, L0p as the L0 for the path problem then L0 for the path problem is less than or equal to 

28. But L0 of the path problem being a spanning tree LMST has to be less than or equal to L0 of 

this one. So LMST is not only a lower bound to the Traveling Salesmen Problem, it is also a lower 

bound to the traveling salesmen path problem. If we draw our MST with 26, we would get 2 4 5, 

2 to 5 is 6 and 4 to 3 is 8 and 1 to 5 was 7, so we got 5 here. 3 to 4 was 8. 1 to 5 was 7, 2 to 5 was 

6, 7 plus 6 equal to 13 plus 5 equal to 18 plus 8 equal to 26. Now this is the LMST.  

In this path problem, we wanted to do with 1 and 3, so straight away we have LMST is a feasible 

solution to this path problem. Therefore for this instance, LMST is the optimum solution, so you 

could get the solution to this problem with MST itself satisfying it and giving us a solution with 

L equal to 26. Whereas if we look at a path problem not between 1 and 3. Suppose we say the 

starting node is as follows. 
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Hence 3 is the starting node and the ending node is 5. Let us say a feasible solution is 3 1 4 2 5 

with L equal to 3 to 1 is 8, 1 to 4 is 9 17, 2 to 4 is 5 22 and 2 to 5 is 6 28. With L equal to 28 is a 

feasible solution to this problem. This LMST is again a lower bound to this with L equal to 26, is a 

lower bound to this. We can actually say that the lower bound is 26 and then if we draw this 3 1 



 

 

4 2 5, this is a spanning tree. This is a feasible solution, so this should have a property, that the 

degree of this is equal to 1; degree equal to 1; degree equal to 2; degree equal to 2; degree equal 

to 2.  

Now, L0p will satisfy the property that the starting and ending nodes will have degree equal to 1 

while the rest of the nodes will have degree equal to 2. If we go to the MST, we have degree 

equal to 1 here; degree equal to one; degree equal to 2; degree equal to 2 and degree equal to 2. 

We know that for 5 and 3, the degree has to be equal to 1 while for the rest of the things the 

degree has to be equal to 2. There is a violation here. We could say that either this is in the 

solution or this in the solution. We could do a branch and bound algorithm from here, saying 

either d25equal to 1 or X25 equal to 1 or X25 equal to 0.  

Like this we can build a branch and bound algorithm to get the optimal solution to the traveling 

salesmen path problem also. In this lecture we are not going to elaborate on this but the purpose 

is to show that it is possible to have a branch and bound algorithm to get the optimal solution to 

this problem which uses the minimum spanning tree because for this problem L0 should have 

some properties and the minimum spanning tree. If it violates that then it is always possible to 

get a spanning tree which satisfies that.  

This branch and bound algorithm at every node will solve a minimum spanning tree problem and 

tries to see whether this property of degree equal to 1 for 3 and 5 and degree equal to 2 for the 

others. It satisfies this so it is possible to do a branch and bound to solve the traveling salesmen 

path problem also. The more important understanding is that the minimum spanning tree is lower 

bound to the path problem as well. With this we come to the end of our discussion on the 

traveling salesmen circuit problem and the path problem. In the next lecture we will look at the 

Chinese postman problem. 


