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Advanced Operations Research 

Prof. G. Srinivasan 

Dept of Management Studies 

Indian Institute of Technology, Madras 

Lecture- 10 

Goal Programming Solutions  

Complexity of Simplex Algorithm 

In the last lecture, we were solving goal programming problems using the graphical 

method for those problems that had only two decision variables and the rest of the 

variables were the deviation variables.  

(Refer Slide Time: 00:30) 

 

Today we will take an example that has more than two decision variables and more 

deviation variables and try to solve this using a simplex algorithm. The objectives are 

minimize eta1 plus eta2 plus rho3 and then rho4 and eta5, subject to these set of 

constraints because, eta1, eta2 and rho3 are the first part of the objective function. The 

objective function has three parts. The first part contains these three, which implies 

that these three constraints are the rigid constraints. We start the simplex algorithm by 

considering this objective function and only the rigid constraints to begin with. We 

can set up the simplex table like this. 
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This table will have X1, X2, Y1, Y2, eta1, eta2, eta3, rho1, rho2, rho3 and a right hand 

side. We can start the simplex table this way. Then we write this X1 plus Y1 plus eta1 

minus rho1 equal to 20. X2 plus Y2 plus eta2 minus rho2 equal to 20. 4 X1 plus 3 X2 

plus eta3 minus rho3 equal to 90. We could start with this and we want to minimize 

eta1 plus eta2 plus rho3. So this is what we want to minimize. This is how your first 

simplex table will look like. Because every constraint is an equation and every 

constraint has an eta or a rho, simply starting with eta1, eta2, eta3, the eta’s will always 

qualify to be initial basic variables and eta’s will have an identity matrix associated 

among themselves. For example, if you can have eta1 1 0 0, 0 1 0, 0 0 1 you can do 

that. Then your first simplex table will look like this, with a 1 for eta1, with a 1 for 

eta2 and 0 for eta3, with value equal to 40 here on the right hand side and then all these 

are 0s. You calculate your Cj minus Zj or Zj minus Cj; you could calculate any one of 

them. But you should remember that it is a minimization problem and also remember 

that we have not converted it to a maximization problem. We are solving the 

minimization problem as it is. 

If you evaluate Cj minus Zj the usual way, you will get 1 into 1, 1. So this will become 

minus 1, this will also become minus 1, this will become minus 1, this will also 

become minus 1, this will become 0, this will become 0, this will also become 0. You 

will get a plus 1 here, you will get a plus 1 here and you will get a 1 here and 40. It is 

a minimization problem; you have calculated Cj minus Zj. So for a minimization 
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problem what will happen is, a negative Cj minus Zj will enter. You could enter either 

this or this or this or this and so on and may be you can start with this and then 

compute your thetas and proceed in your simplex iteration, till you reach the optimum 

solution. 

For want of time and because of our own familiarity, we will not go through the 

simplex iterations. We will only give you the optimum table and then see something 

interesting from the optimum table. The optimum table alone will look like this. This 

will actually happen after three iterations and you will finally get something like this. 

You will have X1, Y1, X2, with 0 0 and 0. You will have 1 0 0; Y1 you will have 0 1 0, 

X2 you have 0 0 1, Y2 minus 3 by 4, plus 3 by 4 and 1, eta1 0 1 0, eta2 minus 3 by 4, 3 

by 4, 1, eta3 1 by 4, minus 1 by 4, 0. Rho1 will be 0, minus 1, 0; rho2 3 by 4, minus 3 

by 4, minus 1 and rho3 minus 1 by 4, 1 by 4, 0; 15 by 2, 25 by 2 and 20 with Z equal 

to 0. 

The Cj minus Zj values will be 0 0 0. For Y2 it is also 0 because, all this will be 0; this 

will be 1 1 0 0 0 1. This is all you will get because, now all your basic variables have 

0, so automatically the Cjs will repeat. There is no negative Cj minus Zj, the present 

solution is optimal. Basically, the purpose of solving the first problem is to verify that 

there is a feasible region associated with the rigid constraints. If there is no feasible 

region associated with rigid constraints, then you will not have the 0 coming here. The 

presence of the 0, the optimal value of the objective function being 0, indicates that, 

there is a feasible region. If there is no feasible region, then you will get some other 

number that comes here. So this happens after three iterations. It turns out it happens 

after three iterations here, so all three of them go away. 

One way to do is to start the problem in the normal traditional simplex way, by 

looking at the positive slack variables, as the basic variables and then, one could 

proceed starting from this 40, till you get this 0 and then understand that the first 

phase of the problem is solved optimal. But if you look at this problem very carefully, 

you could have started with three other variables which have an identity. You could 

have started with Y1 right at the beginning. Instead of eta1, eta2, eta3, you could have 

started with Y1, Y2 and eta3, which has 1 0 0, 0 1 0, 0 0 1, which have an associated 

identity matrix. If you had started with Y1, Y2 and eta3, then straight away you will 

get Z equal to 0 here, because Y1, Y2 and eta3 have 0 contributions. So straight away 
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your Z will be 0 here and because they have 0 contributions, you would have the same 

Cj minus Zj appearing. Such a thing is possible only when you look at the problem in 

little more detail and try to choose the correct set of basic variables. If you normally 

solve the problem the way you are used to, you would end up taking the slack 

variables or the positive deviation variables as your starting basic variables and then 

end up performing three or four iterations till it comes. So either you can do this or 

you could have just straight away said I will start with Y1, Y2, eta3 to get Z equal to 0. 

Now that we have got this, let us take this solution and proceed further. We assume 

that, we started with the actual thing and then we have solved this, we have got this 

optimal solution for the first phase and from this we will proceed. The 0 indicates we 

are doing all right, which means we have a feasible region which is symbolized by the 

Z equal to 0. 

(Refer Slide Time: 10:25) 

 

Look at this solution now; the solution for you is X1 equal to 15 by 2, X2 equal to 20 

and Y1 equal to 25 by 2. The rest of them are all zeroes, which means, your eta1, eta2, 

eta3, rho1, rho2, rho3 are all zeroes here. Remember that you have already solved up to 

this. These things are non-basic and they are not going to appear in your solution. 

They do not appear in the subsequent constraints. The eta1, eta2, eta3, rho1, rho2, rho3 

do not appear in the subsequent constraints and they are at 0 in the iteration. You can 

eliminate all these variables from now on. So you can eliminate eta1, eta2, eta3, rho1, 
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rho2, rho3; you can do that and then you need to keep the Y2 because Y2 appears later. 

You cannot eliminate Y2. Right now, Y2 is at 0 but you cannot eliminate the variable 

Y2 because it appears in the subsequent constraint. So you will keep this. Your next 

table will only have this portion. 

(Refer Slide Time: 11:46) 

 

It will start with X1, X2, Y1, Y2. It will not have eta1, eta2, eta3, rho1, rho2 rho3, all of 

them are non-basic and they do not appear; they are at 0. Therefore your minimize 

eta1 plus eta2 plus rho3 is 0. You look at the next constraint. The next constraint 

contains eta4 and rho4. So just add them, eta4 and rho4 and then put your right hand 

side values here. Now repeat this portion of the table into that, at the same time you 

have to add this also. Repeat this; somewhere you may have five constraints; so you 

will have to have a five row simplex table right. You have taken the first three, so 

repeat from this table, whatever is relevant here. So X1, Y1 and X2 and you will repeat 

1 0 0 minus 3 by 4, 15 by 2. Y1 has 0 0 1, 3 by 4, 25 by 2. This is 0 1 0, 1 and 20. You 

have 0 0 0 0 0 0. Now this constraint has to be written 4 Y1 plus 3 Y2 plus eta4 minus 

rho4 equal to 20. 

Let us see if we can straight away write it here. You have eta4, so you have 4 Y1 plus 

3 Y2 plus eta4 minus rho4. Try writing equal to 20. You cannot directly write it 

because you will lose your identity structure on this. You have to write Y1 which is 
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presently a basic variable. You have to substitute for Y1 in terms of the non basic 

variable and then retain the identity column for Y1. What you need to do is this.  

(Refer Slide Time: 14:30) 

 

The constraint now becomes 4 Y1. The constraint is 4 Y1 plus 3 Y2 plus eta4 minus 

rho4 equal to 20. Now Y1 has to be written from this. So 4 times 25 by 2 minus 3 by 4 

Y2 plus 3Y2 plus eta4 minus rho4 equal to 20. This becomes 50 minus 3Y2 plus 3Y2 

plus eta4 minus rho4 equal to 20. This gives you eta4 minus rho4 equal to minus 30. 

The Y1 becomes 0 here, Y2 also becomes 0 here; eta4 minus rho4 is equal to minus 30, 

with Cj minus Zj retained at 0 0 0 and 0 here. Under Y2 you have a 0. Before that we 

need to write this; we have 0 0 0 0. The second objective is to minimize rho4. So you 

will have a plus 1 here; so you will have 1, these are all 0 0 0 and 0, so you will have 

1 coming in here and the right hand side value is 0. There is one more thing before we 

do this. Remember again, right here at this iteration, this is not a unique optimum. It is 

not a unique optimum because Y2 is non basic and can enter and so on. That is 

precisely the reason why, if you had chosen as I said here, Y1, Y2 and eta3, you would 

have still got an optimum. That is the alternate optimum; there could be many, that is 

one of them. So irrespective of what you start it is perfectly fine. 

Instead of doing three iterations to get this, if you had started with Y1, Y2 and eta3, 

you have got an optimum table right here, but you cannot eliminate the variable eta3 

here. Eta3 would have got a value, so eta3 column will keep coming again. Only those 
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that are non basic at that stage and not repeating can be eliminated. So depending on 

how you do it, you may have the advantage of fewer variables or fewer iteration. It is 

common sense to take the advantage of fewer iteration than fewer variables, but then 

you have to be aware of that. If you had chosen Y1, Y2 and eta3, then eta3 will appear 

here. That is number one. 

Number two is, this solution is optimum already, so you add a constraint here. When 

you add a constraint, the only thing that will happen is the constraint may be satisfied, 

the constraint may be violated. If the constraint is satisfied then straight away this 

would be optimum. What you should do even before writing this is, you should look 

at the value of X1 equal to 15 by 2, Y1 equal to 25 by 2, X2 equal to 20. Substitute it 

here. If we had substituted X1 equal to 15 by 2, it is okay; Y1 equal to 25 by 2, so, that 

becomes 50. 50 and 20 here is violated, therefore this constraint becomes binding and 

you need to do an iteration. Go back to the basics; if I have an optimum solution and I 

add a constraint, in sensitivity analysis, the first thing you did was to check whether 

the constraint is satisfied or violated. If it is satisfied, then you will not take the 

trouble of carrying out another simplex iteration. Only when it is violated you will 

carry out the simplex iteration and when it is violated it is always indicated by 

infeasibility of our right hand side but the optimality condition will be satisfied. 

Now when you realize that it is violated and then, you go back and write this. You 

realize now that the feasibility is violated, so you get a minus here, which is 

infeasible; the optimality condition remains intact. What you should do is a dual 

simplex iteration on this and try to get the next iteration. Leave out this fellow, now 

go back and do a dual simplex iteration. Remember again, a dual simplex iteration 

should have a negative pivot. As there is only one negative pivot here, you do not 

have to add a theta row; so straight away this is your entering variable and that is your 

leaving variable. 
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Complete your dual simplex iteration here. With variable rho4 replacing eta4 you will 

have X1, Y1, X2. You now have 0 0 0 and 1. Rho4 comes in into the basis with 1. 

What will happen is, first divide by the pivot element here, so you get 0 0 0 0 minus 1, 

1 and 30 and luckily for you all of them are 0s here. You just have to write the same 

thing again. When you write the same thing again, you get 1, 0, 0, minus 3 by 4, 0, 0, 

15 by 2, 0, 0, 1, 3 by 4, 0, 0, 25 by 2, 0, 1, 0, 1, 0, 0, 20. You actually do not have to 

calculate the Cj minus Zj .The reason being, the moment primal becomes feasible it is 

optimal in a dual simplex iteration. In a dual simplex iteration the moment primal 

becomes feasible, it is optimal. The optimality condition will any way be maintained. 

Just for the sake of completeness, you just put Cj minus Zj here. So I get 0 here 0 0 0. 

This is the 1 place, this is 0; I get a plus 1 here, this is a 0 and I get 30. 

I have got the optimal solutions here and the optimal solution is X1 equal to 15 by 2, 

Y1 equal to 25 by 2, X2 equal to 20 and rho4 equal to 30. I have solved the problem up 

to this and the 4th constraint. Now what do I observe? I observed that at the optimum 

the objective function is not 0. If the objective function value is not 0, it implies that I 

need already a deficit here somewhere. I am not able to get that rho4 equal to 0; 

therefore, I stop. I do not proceed to include the other objectives and constraints and 

optimize further. 
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The moment I realize that I do not have a 0 here, I stop the algorithm and I only 

evaluate the effect of the solution on the subsequent objective functions and 

constraints. So I go back and look at my solution. 

(Refer Slide Time: 22:29) 

 

My solution is X1 equal to 15 by 2, Y1 equal to 25 by 2 and X2 equal to 20. I go back 

and substitute here in the last one. So I have 7 X1, which is 105 by 2 plus 160 plus 6 

Y1. What do I get? 7 X1 is 105 by 2 plus 8 X2 is 160 plus 6 Y1, which is 75 plus eta5 

minus rho5 equal to 200. This would mean that, this is 235; 235 plus 52.5, which is 

287.5. 287.5 plus eta5 minus rho5 is equal to 200, would give me rho5 equal to 87.5. 

This would give me rho5 equal to 87.5. 

Remember always eta5 and rho5 have to be greater than or equal to 0. So you will get 

rho5 equal to 87.5. So straight away I realise that I will have an eta5 equal to 0 here, 

but I will be having a rho5 equal to 87.5. Now the value of the objective function here 

would be 0, 30, 0. The first objective is completely satisfied. Right here I have a 

deviation of 30, so I stop here and I just evaluate the subsequent ones. It turns out that 

I still get eta5 equal to 0; that is fine. The present solution is able to satisfy the 

condition or the requirement on the eta4. So the algorithm stops or terminates. This is 

how you solve a goal programming problem using linear programming.  

What we have seen, I will just quickly summarize and then move to the next topic. 

Under the section of goal programming, we first understood that optimization 
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problems may have more than one objective. Sometimes the constraints may be rigid, 

sometimes the constraints may be flexible, they may not be very rigidly defined. 

Constraints may have priorities that are given. So rigid constraints will always occupy 

the first priority and the rest of them will occupy priorities as listed or defined in the 

problem. Let us do the goal programming formulation, where every constraint is 

represented as an equation with positive or negative deviations and depending on the 

nature of the requirement you will get an objective function which will typically look 

like this. It will be a set of etas and rhos which represent the rigid constraints. The 

non-rigid goals or objectives will come as indicated in the problem or as required by 

the person who is going to use it and then you get a formulation like this. 

If it has only two variables, you can solve two decision variables. You can solve using 

the graphical method. If you have more than two decision variables, you can solve 

using the simplex method in the way we have indicated. Now this is one of the ways 

of modeling or formulating a problem with multiple objectives. Goal programming, as 

it is, is only one among the many. There are other ways of solving multiple objective 

problems, which we are not looking at in this course. Within the goal programming, 

what we have done is called Lexicographic goal programming. That is, we take the 

objectives as indicated in a certain order of priority and try to solve. We do not attach 

weights to the objectives but instead we attach priorities to the objectives and then 

solve the objectives in the order of priorities. The moment a particular priority is not 

met, which is indicated by a non-zero value in the objective function, we realise that 

we do not try and optimize for the rest of the priorities. At that point we stop the 

algorithm and we go back and evaluate the other objectives for the optimal solution 

currently available, which is what we did here. Here we realized that this objective in 

not met in totality. The desirable 0 has now become 30. So we look at this solution 

and treat this as the best solution and only evaluate the rest of the objectives for this to 

get 0, 30 and 0 respectively.  

There are other ways. For example, one could think of assigning weights to each one 

and then solving it directly, as a single objective problem. There are many such ways. 

But what we have covered in two or three lectures is a very small portion of an 

otherwise large field called multiple objective programming. What we have tried to 

do is to just give an introduction to it, in terms of a couple of examples and 
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formulation and the same example is solved by more than one way so that you can get 

a feel of how multiple objective problems are formulated and solved.  

Now with this, we will move to the next part of the topics in linear programming, 

which is this. We will look at something called how fast is the simplex method?  

(Refer Slide Time: 28:14) 

 

We will try to address this question now and perhaps continue the discussion in the 

next class. The speed or the time taken for a simplex algorithm depends on two 

things. It depends on time per iteration and it also depends on the number of 

iterations. There is an additional dimension in terms of goodness of the algorithm, 

which is also what is the memory required for this simplex algorithm. We will first try 

to look at this time taken per iteration and number of iterations. Let us also 

somewhere write down the memory. If we go back and see what all we had covered 

before the goal programming, we started with the revised simplex algorithm and then 

we did a column generation. Then we did a bounded upper bounded simplex and then 

we did a decomposition. Now all these four essentially have tried to address this 

problem, the first problem in a certain way.  

The revised simplex would look at this. In a normal tabular form, we said we are 

using Gauss Jordan method, to invert a matrix or solve for the basic variables. We 

looked at the revised simplex algorithm which used the eta factorization method, so 

that for very large problems the eta factorization method works faster per iteration 
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than the Gauss Jordan. It is not for very small problems but for large problems. We 

did not prove that result, but then we kind of said it or mentioned or indicated that the 

revised simplex with the product form or the eta matrix is faster than the normal 

simplex per iteration, if for example, the number of constraints exceeds 1000 or of 

that order. That tried to address this problem of time per iteration. Revise simplex 

algorithm also address the problem of memory, because we realize that you store less. 

You store less in the revised simplex algorithm therefore it is better in terms of 

memory. 

From now on you can assume that, all other forms that we have read, we will now use 

the revised simplex idea to invert. The upper bounded simplex helped us save a little 

bit of memory but more importantly time because if there is a bounded variable, the 

advantage by taking it outside of the iteration would automatically reduce the size of 

the matrix that we are inverting. Therefore, the time is saved per iteration of the 

simplex algorithm. 

Column generation is primarily a method which concentrates a little more on space 

rather than time. Column generation would mean you do not save or store the entire 

coefficient matrix. Instead you store only the B inverse part of it. So instead of storing 

an m into n, you store an m into m, and even that m into m, if you use revise simplex 

you store it in a more efficient way. Therefore, for long coefficient matrices n is very 

large compared to m. The column generation is the way by which you save on 

memory and may be compromise on time. Because you solve a sub problem every 

time, it may increase the time a little bit but as a method it helps. 

Decomposition is clearly a case where you save on time because you have a bigger 

problem which can be broken into sub problems and therefore it is easier to invert. 

Typically the example that we saw, had 6 constraints which had 2 sub problems of 2 

constraints each. If you solved it as an original problem, it would be to invert a 6 by 6 

matrix at every iteration, but with the sub problems we ended up inverting a 2 by 2, a 

2 by 2 and a 3 by 3, which should be faster. All this effort was concentrating on time 

per iteration.  
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Then we have to look at the next one. What is the number of iterations a simplex 

algorithm will take before it terminates? There are a couple of pointers to it. If we go 

back to the first course, fundamentals of operations research course, we started with 

what is called the algebraic method. 

(Refer Slide Time: 33:10) 

 

Now in the algebraic method, we said that, we always evaluate n Cm or n Cn-m, as the 

case may be, if there are n variables and m constraints, out of which, some of them 

could be infeasible, etc., and some of them need not give progressively better 

solutions and so on. Essentially, the point that we tried to address there is, if we want 

to do an exhaustive enumeration, then we end up doing n Cm number of iterations, 

some of which may be useful, some of which may not be useful. Now this nCm is not 

a polynomial number. nCm increases exponentially with increase in n and m, and 

something like m tends to n by 2, it reaches a very large value and so on. 

In some sense the algebraic method indicated that, if you look at solving a linear 

programming problem using an enumeration algorithm, then that enumeration 

algorithm turns out to be exponential in nature and will have a lot of iterations. Then 

we moved on to the simplex method and said that, at least some of the things that are 

undesirable in this exhaustive enumeration algorithm can be avoided. The undesirable 

ones being the infeasible solution, the undesirable thing being not able to get a better 

solution in the next iteration; these are the two things that we tried to eliminate. We 
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tried to eliminate these two things using two important aspects of simplex, which is 

the choice for leaving variable and entering variable. Choice of leaving variable 

ensured that the feasibility is maintained. Choice of entering variable ensured that in 

some sense optimality is maintained or progressively you move towards optimality. 

We also saw one more thing that in a simplex algorithm it is always possible for a 

variable that leaves in an earlier iteration to re-enter. The moment a variable that 

leaves can re-enter, we do not have something like a polynomial limit on the number 

of iterations. If for example, we said that a variable once leaves cannot enter, 

automatically we know that simplex has to terminate in n minus m iterations; that 

does not happen unfortunately. Now the choice of the entering variable was trying to 

dictate the rate or speed or the way in which we approach the optimal solution.  

Earlier we had seen four things or four ways of entering a variable into the basis. We 

will make a quick recap of that. The largest coefficient rule, largest increase rule, first 

positive rule, random - these are the four rules that we saw. In all the hand 

calculations, in all the book examples, we will always do this largest coefficient rule, 

largest Cj minus Zj rule, the rate of increase being large. The largest increase rule, you 

are aware of, is like you look at every positive Cj minus Zj, find out the corresponding 

theta; product of Cj minus Zj and theta is the extent of increase from this iteration. So 

enter that Cj minus Zj which has the largest value of the product. 

This is a typically greedy way of looking at it. It is something like the method of 

steepest ascent. If we are starting at 0 and you want to reach the optimum for a 

maximization problem, at every point then I try to jump the farthest, hoping that I will 

reach my destination at the earliest. Particularly when solving large problems, these 

two involve a certain amount of computation. Because to find the largest, you need to 

sort them; to find this out you need the product and store it and then try to sort it and 

get it. These two basically do not do that. All you need is to look at the Cj minus Zj 

and the first one that is positive will enter. Now this is commonly used in 

implementation where we just try to look at the first positive, do not spend that much 

time and quickly enter a variable. Last but not the least is random and random is you 

just pick a random Cj minus Zj, if it is positive it enters.  
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Among these four, this is considered to be the best and it is used very widely and 

extensively. The reason being, based on a lot of experimentation, different researchers 

carried out experimentation and tried to find out for the same set of problems or for 

problems that have been defined in a particular order. For example, in randomly 

generated problems, following certain distributions, with all the problems being 

generated out of a certain order, they tried it on say 10,000, hundred thousand 

problems and then tried all the four rules. They tested it on problems of different 

sizes, different values of number of constraints, number of variables, something like 

starting from a 5 by 5 to 100 by 100 or even more, for different problem sizes, 

combinations of problem sizes; all the coefficients, that is the right hand side, the 

objective function and the constraint coefficients randomly generated out of certain 

distributions, the range of values being defined and consistent. Which means, 

effectively they tested the same problem using all these four and came to the 

conclusion that, the largest coefficient rule, actually fairs better in terms of average 

number of iterations per problem. One can argue by saying that if they had chosen a 

different distribution or if they had done something else, may be some other thing 

would have dominated. But it is an accepted fact that largest coefficient rule, which is 

the Cj minus Zj rule, is expected to give a minimum number of iterations in general, 

based on experimentation. 

 For a particular problem, it may turn out that this is inferior and this is superior. But 

in general this is considered to be a very good rule. Now this was followed 

extensively as a rule for entering variable till something called the Klee and Minty 

problems were proposed. 
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Two people called Klee and Minty came up with a set of problems which looked like 

this. Klee and Minty in 1972, said maximize….(Refer slide time:40:30). This is the 

generic class of the Klee and Minty problem and for example for n equal to 3, the 

Klee and Minty problem will look like this. 

(Refer Slide Time: 41:18) 

 

Maximize 100 X1 plus 10 X2 plus X3; X1 less than or equal to 1. 20 X1 plus X2 less 

than or equal to 100, 200 X1 plus 20 X2 plus X3 less than or equal to 10,000; Xj 

greater than or equal to 0. This is the Klee and Minty problem where n equal to 3. The 
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Klee and Minty problems were defined from n equal to 3 onwards. So n equal to 4, 

problem will look like 1000 X1 plus 100 X2 plus 10 X3 plus X4, subject to something 

X1 less than equal to 1. This, this, this and 2000 X1 plus 200 X2 plus 20 X3 plus X4 

less than or equal to something; 10,000 into 100, which would be what 10 lakhs or 

whatever. This is the Klee and Minty problem. Let us do one iteration with the Klee 

and Minty problem and then see what happens when we try to solve this. We will just 

do one iteration to understand this.  

(Refer Slide Time: 42:40) 

 

We start with X1, X2, X3; we will assume X4, X5, X6 as the slack variables and then, 

you have a right hand side. You will have 100 X1 plus 10 X2 plus X3 0 0 0. You start 

with X4, X5, X6; 1 0 0 1 0 0 1; 20 1 0 0 1 0 100; 200, 20, 1 0 0 1 with 10000; With Cj 

minus Zj 0 0 0 100, 10, 1 0 0 0 and 0. This is how your simplex will begin. Now the 

largest Cj minus Zj is here, so you will enter this and if you go back and compute the 

thetas, you get a 1 here, you get a 5 here, you get a 50 here. The first iteration will 

happen with this as leaving variable, this as the pivot and so on till you will reach the 

optimum. The optimum for this problem is X4 equal to 1, X5 equal to 100, X3 equal to 

10,000 with Z equal to 10,000.  

Number one, what is wrong? It is like any linear programming problem. I can just 

solve it till I get 10,000. Only problem is, if you start with X4, X5, X6 and proceed the 

way we are used to, by using the largest coefficient rule always enter the most 
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positive Cj minus Zj; this problem will take 7 iterations till it reaches the optimum. In 

general, any Klee and Minty problem will take 2 to the power n minus 1 iteration till 

it reaches the optimum. That is where the problem is. Now 2 to the power n is not a 

polynomial number. So you will end up getting a very, very large number and 

exponential number of iterations. There are many things about it.  

Number one, you can always go back and look at this problem and say why should I 

start with X4, X5, X6? Might as well start it with X4, X5 and X3; X3 with a 0 0 1 

qualifies. The moment I start with X4, X5 and X3, I have the optimum right in the first 

iteration because, the optimum is 10,000. So I would start with X3 equal to 10,000; Z 

equal to 10,000.  

Second, I do not look at 2 to the power n minus 1, I could have just done it in one 

iteration. If I use the largest increase rule instead of the largest coefficient rule, look at 

the largest increase rule. The largest increase rule would give me 100 and 1 which is 

100. If I enter this 10, I would get 100 and some other number. So minimum theta 

would be 10 into 100, which is 1000. If I enter here, I would get 1 into 10,000, which 

is 10,000. X3 will straight away enter if I use the largest increase rule instead of the 

largest coefficient rule. It will go; that is also possible. In one iteration, I will get the 

answer. If I scale the variables in such a way that I define a Y1, Y2, Y3, such that, Y3 

is 0.0001X3, Y2 equal to 0.01X2, Y1 equal to X1 and solve it. Using the largest 

coefficient rule in one iteration, I will get the answer because, somewhere here …. 

10,000; I will have to scale it in such a way that 10,000 appears here. 

There are multiple ways by which you can show that I can get the answer in one 

iteration but that is not what theory is all about. Theory would close its eyes to all its 

arguments and tell you that look if I start the simplex the way I know, which is X4, X5 

and X6, starting with the slack variable, I get 2 to the power n minus 1 iterations. So 

Klee and Minty problems, in some sense, they did not challenge anything but they 

brought out the fact that simplex can be worst case exponential algorithm, which 

means simplex is not a very good algorithm; it is a worst case exponential algorithm. 

But any amount of experimentation always proved that simplex is a fantastic 

algorithm when it comes to average case. When it comes to trying out different 

problems and trying to see the number of iterations on an average, simplex was doing 

exceedingly well. The average number of iterations were always close to 3 m by 2, 
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where m is the number of constraints in the problem, rarely exceeding up to 3 m it 

never went beyond 3 m. So simplex was a very good algorithm when it came to 

average case and a very poor algorithm when it came to worst case. What people did 

to overcome this, we will see that in the next lecture. 


