
1

Advanced Operations Research

Prof. G. Srinivasan

Dept of Management Studies

Indian Institute of Technology, Madras

Lecture- 10

Goal Programming Solutions

Complexity of Simplex Algorithm

In the last lecture, we were solving goal programming problems using the graphical

method for those problems that had only two decision variables and the rest of the

variables were the deviation variables.

(Refer Slide Time: 00:30)

Today we will take an example that has more than two decision variables and more

deviation variables and try to solve this using a simplex algorithm. The objectives are

minimize eta1 plus eta2 plus rho3 and then rho4 and eta5, subject to these set of

constraints because, eta1, eta2 and rho3 are the first part of the objective function. The

objective function has three parts. The first part contains these three, which implies

that these three constraints are the rigid constraints. We start the simplex algorithm by

considering this objective function and only the rigid constraints to begin with. We

can set up the simplex table like this.

2

(Refer Slide Time: 01:24)

This table will have X1, X2, Y1, Y2, eta1, eta2, eta3, rho1, rho2, rho3 and a right hand

side. We can start the simplex table this way. Then we write this X1 plus Y1 plus eta1

minus rho1 equal to 20. X2 plus Y2 plus eta2 minus rho2 equal to 20. 4 X1 plus 3 X2

plus eta3 minus rho3 equal to 90. We could start with this and we want to minimize

eta1 plus eta2 plus rho3. So this is what we want to minimize. This is how your first

simplex table will look like. Because every constraint is an equation and every

constraint has an eta or a rho, simply starting with eta1, eta2, eta3, the eta’s will always

qualify to be initial basic variables and eta’s will have an identity matrix associated

among themselves. For example, if you can have eta1 1 0 0, 0 1 0, 0 0 1 you can do

that. Then your first simplex table will look like this, with a 1 for eta1, with a 1 for

eta2 and 0 for eta3, with value equal to 40 here on the right hand side and then all these

are 0s. You calculate your Cj minus Zj or Zj minus Cj; you could calculate any one of

them. But you should remember that it is a minimization problem and also remember

that we have not converted it to a maximization problem. We are solving the

minimization problem as it is.

If you evaluate Cj minus Zj the usual way, you will get 1 into 1, 1. So this will become

minus 1, this will also become minus 1, this will become minus 1, this will also

become minus 1, this will become 0, this will become 0, this will also become 0. You

will get a plus 1 here, you will get a plus 1 here and you will get a 1 here and 40. It is

a minimization problem; you have calculated Cj minus Zj. So for a minimization

3

problem what will happen is, a negative Cj minus Zj will enter. You could enter either

this or this or this or this and so on and may be you can start with this and then

compute your thetas and proceed in your simplex iteration, till you reach the optimum

solution.

For want of time and because of our own familiarity, we will not go through the

simplex iterations. We will only give you the optimum table and then see something

interesting from the optimum table. The optimum table alone will look like this. This

will actually happen after three iterations and you will finally get something like this.

You will have X1, Y1, X2, with 0 0 and 0. You will have 1 0 0; Y1 you will have 0 1 0,

X2 you have 0 0 1, Y2 minus 3 by 4, plus 3 by 4 and 1, eta1 0 1 0, eta2 minus 3 by 4, 3

by 4, 1, eta3 1 by 4, minus 1 by 4, 0. Rho1 will be 0, minus 1, 0; rho2 3 by 4, minus 3

by 4, minus 1 and rho3 minus 1 by 4, 1 by 4, 0; 15 by 2, 25 by 2 and 20 with Z equal

to 0.

The Cj minus Zj values will be 0 0 0. For Y2 it is also 0 because, all this will be 0; this

will be 1 1 0 0 0 1. This is all you will get because, now all your basic variables have

0, so automatically the Cjs will repeat. There is no negative Cj minus Zj, the present

solution is optimal. Basically, the purpose of solving the first problem is to verify that

there is a feasible region associated with the rigid constraints. If there is no feasible

region associated with rigid constraints, then you will not have the 0 coming here. The

presence of the 0, the optimal value of the objective function being 0, indicates that,

there is a feasible region. If there is no feasible region, then you will get some other

number that comes here. So this happens after three iterations. It turns out it happens

after three iterations here, so all three of them go away.

One way to do is to start the problem in the normal traditional simplex way, by

looking at the positive slack variables, as the basic variables and then, one could

proceed starting from this 40, till you get this 0 and then understand that the first

phase of the problem is solved optimal. But if you look at this problem very carefully,

you could have started with three other variables which have an identity. You could

have started with Y1 right at the beginning. Instead of eta1, eta2, eta3, you could have

started with Y1, Y2 and eta3, which has 1 0 0, 0 1 0, 0 0 1, which have an associated

identity matrix. If you had started with Y1, Y2 and eta3, then straight away you will

get Z equal to 0 here, because Y1, Y2 and eta3 have 0 contributions. So straight away

4

your Z will be 0 here and because they have 0 contributions, you would have the same

Cj minus Zj appearing. Such a thing is possible only when you look at the problem in

little more detail and try to choose the correct set of basic variables. If you normally

solve the problem the way you are used to, you would end up taking the slack

variables or the positive deviation variables as your starting basic variables and then

end up performing three or four iterations till it comes. So either you can do this or

you could have just straight away said I will start with Y1, Y2, eta3 to get Z equal to 0.

Now that we have got this, let us take this solution and proceed further. We assume

that, we started with the actual thing and then we have solved this, we have got this

optimal solution for the first phase and from this we will proceed. The 0 indicates we

are doing all right, which means we have a feasible region which is symbolized by the

Z equal to 0.

(Refer Slide Time: 10:25)

Look at this solution now; the solution for you is X1 equal to 15 by 2, X2 equal to 20

and Y1 equal to 25 by 2. The rest of them are all zeroes, which means, your eta1, eta2,

eta3, rho1, rho2, rho3 are all zeroes here. Remember that you have already solved up to

this. These things are non-basic and they are not going to appear in your solution.

They do not appear in the subsequent constraints. The eta1, eta2, eta3, rho1, rho2, rho3

do not appear in the subsequent constraints and they are at 0 in the iteration. You can

eliminate all these variables from now on. So you can eliminate eta1, eta2, eta3, rho1,

5

rho2, rho3; you can do that and then you need to keep the Y2 because Y2 appears later.

You cannot eliminate Y2. Right now, Y2 is at 0 but you cannot eliminate the variable

Y2 because it appears in the subsequent constraint. So you will keep this. Your next

table will only have this portion.

(Refer Slide Time: 11:46)

It will start with X1, X2, Y1, Y2. It will not have eta1, eta2, eta3, rho1, rho2 rho3, all of

them are non-basic and they do not appear; they are at 0. Therefore your minimize

eta1 plus eta2 plus rho3 is 0. You look at the next constraint. The next constraint

contains eta4 and rho4. So just add them, eta4 and rho4 and then put your right hand

side values here. Now repeat this portion of the table into that, at the same time you

have to add this also. Repeat this; somewhere you may have five constraints; so you

will have to have a five row simplex table right. You have taken the first three, so

repeat from this table, whatever is relevant here. So X1, Y1 and X2 and you will repeat

1 0 0 minus 3 by 4, 15 by 2. Y1 has 0 0 1, 3 by 4, 25 by 2. This is 0 1 0, 1 and 20. You

have 0 0 0 0 0 0. Now this constraint has to be written 4 Y1 plus 3 Y2 plus eta4 minus

rho4 equal to 20.

Let us see if we can straight away write it here. You have eta4, so you have 4 Y1 plus

3 Y2 plus eta4 minus rho4. Try writing equal to 20. You cannot directly write it

because you will lose your identity structure on this. You have to write Y1 which is

6

presently a basic variable. You have to substitute for Y1 in terms of the non basic

variable and then retain the identity column for Y1. What you need to do is this.

(Refer Slide Time: 14:30)

The constraint now becomes 4 Y1. The constraint is 4 Y1 plus 3 Y2 plus eta4 minus

rho4 equal to 20. Now Y1 has to be written from this. So 4 times 25 by 2 minus 3 by 4

Y2 plus 3Y2 plus eta4 minus rho4 equal to 20. This becomes 50 minus 3Y2 plus 3Y2

plus eta4 minus rho4 equal to 20. This gives you eta4 minus rho4 equal to minus 30.

The Y1 becomes 0 here, Y2 also becomes 0 here; eta4 minus rho4 is equal to minus 30,

with Cj minus Zj retained at 0 0 0 and 0 here. Under Y2 you have a 0. Before that we

need to write this; we have 0 0 0 0. The second objective is to minimize rho4. So you

will have a plus 1 here; so you will have 1, these are all 0 0 0 and 0, so you will have

1 coming in here and the right hand side value is 0. There is one more thing before we

do this. Remember again, right here at this iteration, this is not a unique optimum. It is

not a unique optimum because Y2 is non basic and can enter and so on. That is

precisely the reason why, if you had chosen as I said here, Y1, Y2 and eta3, you would

have still got an optimum. That is the alternate optimum; there could be many, that is

one of them. So irrespective of what you start it is perfectly fine.

Instead of doing three iterations to get this, if you had started with Y1, Y2 and eta3,

you have got an optimum table right here, but you cannot eliminate the variable eta3

here. Eta3 would have got a value, so eta3 column will keep coming again. Only those

7

that are non basic at that stage and not repeating can be eliminated. So depending on

how you do it, you may have the advantage of fewer variables or fewer iteration. It is

common sense to take the advantage of fewer iteration than fewer variables, but then

you have to be aware of that. If you had chosen Y1, Y2 and eta3, then eta3 will appear

here. That is number one.

Number two is, this solution is optimum already, so you add a constraint here. When

you add a constraint, the only thing that will happen is the constraint may be satisfied,

the constraint may be violated. If the constraint is satisfied then straight away this

would be optimum. What you should do even before writing this is, you should look

at the value of X1 equal to 15 by 2, Y1 equal to 25 by 2, X2 equal to 20. Substitute it

here. If we had substituted X1 equal to 15 by 2, it is okay; Y1 equal to 25 by 2, so, that

becomes 50. 50 and 20 here is violated, therefore this constraint becomes binding and

you need to do an iteration. Go back to the basics; if I have an optimum solution and I

add a constraint, in sensitivity analysis, the first thing you did was to check whether

the constraint is satisfied or violated. If it is satisfied, then you will not take the

trouble of carrying out another simplex iteration. Only when it is violated you will

carry out the simplex iteration and when it is violated it is always indicated by

infeasibility of our right hand side but the optimality condition will be satisfied.

Now when you realize that it is violated and then, you go back and write this. You

realize now that the feasibility is violated, so you get a minus here, which is

infeasible; the optimality condition remains intact. What you should do is a dual

simplex iteration on this and try to get the next iteration. Leave out this fellow, now

go back and do a dual simplex iteration. Remember again, a dual simplex iteration

should have a negative pivot. As there is only one negative pivot here, you do not

have to add a theta row; so straight away this is your entering variable and that is your

leaving variable.

8

(Refer Slide Time: 19:50)

Complete your dual simplex iteration here. With variable rho4 replacing eta4 you will

have X1, Y1, X2. You now have 0 0 0 and 1. Rho4 comes in into the basis with 1.

What will happen is, first divide by the pivot element here, so you get 0 0 0 0 minus 1,

1 and 30 and luckily for you all of them are 0s here. You just have to write the same

thing again. When you write the same thing again, you get 1, 0, 0, minus 3 by 4, 0, 0,

15 by 2, 0, 0, 1, 3 by 4, 0, 0, 25 by 2, 0, 1, 0, 1, 0, 0, 20. You actually do not have to

calculate the Cj minus Zj .The reason being, the moment primal becomes feasible it is

optimal in a dual simplex iteration. In a dual simplex iteration the moment primal

becomes feasible, it is optimal. The optimality condition will any way be maintained.

Just for the sake of completeness, you just put Cj minus Zj here. So I get 0 here 0 0 0.

This is the 1 place, this is 0; I get a plus 1 here, this is a 0 and I get 30.

I have got the optimal solutions here and the optimal solution is X1 equal to 15 by 2,

Y1 equal to 25 by 2, X2 equal to 20 and rho4 equal to 30. I have solved the problem up

to this and the 4th constraint. Now what do I observe? I observed that at the optimum

the objective function is not 0. If the objective function value is not 0, it implies that I

need already a deficit here somewhere. I am not able to get that rho4 equal to 0;

therefore, I stop. I do not proceed to include the other objectives and constraints and

optimize further.

9

The moment I realize that I do not have a 0 here, I stop the algorithm and I only

evaluate the effect of the solution on the subsequent objective functions and

constraints. So I go back and look at my solution.

(Refer Slide Time: 22:29)

My solution is X1 equal to 15 by 2, Y1 equal to 25 by 2 and X2 equal to 20. I go back

and substitute here in the last one. So I have 7 X1, which is 105 by 2 plus 160 plus 6

Y1. What do I get? 7 X1 is 105 by 2 plus 8 X2 is 160 plus 6 Y1, which is 75 plus eta5

minus rho5 equal to 200. This would mean that, this is 235; 235 plus 52.5, which is

287.5. 287.5 plus eta5 minus rho5 is equal to 200, would give me rho5 equal to 87.5.

This would give me rho5 equal to 87.5.

Remember always eta5 and rho5 have to be greater than or equal to 0. So you will get

rho5 equal to 87.5. So straight away I realise that I will have an eta5 equal to 0 here,

but I will be having a rho5 equal to 87.5. Now the value of the objective function here

would be 0, 30, 0. The first objective is completely satisfied. Right here I have a

deviation of 30, so I stop here and I just evaluate the subsequent ones. It turns out that

I still get eta5 equal to 0; that is fine. The present solution is able to satisfy the

condition or the requirement on the eta4. So the algorithm stops or terminates. This is

how you solve a goal programming problem using linear programming.

What we have seen, I will just quickly summarize and then move to the next topic.

Under the section of goal programming, we first understood that optimization

10

problems may have more than one objective. Sometimes the constraints may be rigid,

sometimes the constraints may be flexible, they may not be very rigidly defined.

Constraints may have priorities that are given. So rigid constraints will always occupy

the first priority and the rest of them will occupy priorities as listed or defined in the

problem. Let us do the goal programming formulation, where every constraint is

represented as an equation with positive or negative deviations and depending on the

nature of the requirement you will get an objective function which will typically look

like this. It will be a set of etas and rhos which represent the rigid constraints. The

non-rigid goals or objectives will come as indicated in the problem or as required by

the person who is going to use it and then you get a formulation like this.

If it has only two variables, you can solve two decision variables. You can solve using

the graphical method. If you have more than two decision variables, you can solve

using the simplex method in the way we have indicated. Now this is one of the ways

of modeling or formulating a problem with multiple objectives. Goal programming, as

it is, is only one among the many. There are other ways of solving multiple objective

problems, which we are not looking at in this course. Within the goal programming,

what we have done is called Lexicographic goal programming. That is, we take the

objectives as indicated in a certain order of priority and try to solve. We do not attach

weights to the objectives but instead we attach priorities to the objectives and then

solve the objectives in the order of priorities. The moment a particular priority is not

met, which is indicated by a non-zero value in the objective function, we realise that

we do not try and optimize for the rest of the priorities. At that point we stop the

algorithm and we go back and evaluate the other objectives for the optimal solution

currently available, which is what we did here. Here we realized that this objective in

not met in totality. The desirable 0 has now become 30. So we look at this solution

and treat this as the best solution and only evaluate the rest of the objectives for this to

get 0, 30 and 0 respectively.

There are other ways. For example, one could think of assigning weights to each one

and then solving it directly, as a single objective problem. There are many such ways.

But what we have covered in two or three lectures is a very small portion of an

otherwise large field called multiple objective programming. What we have tried to

do is to just give an introduction to it, in terms of a couple of examples and

11

formulation and the same example is solved by more than one way so that you can get

a feel of how multiple objective problems are formulated and solved.

Now with this, we will move to the next part of the topics in linear programming,

which is this. We will look at something called how fast is the simplex method?

(Refer Slide Time: 28:14)

We will try to address this question now and perhaps continue the discussion in the

next class. The speed or the time taken for a simplex algorithm depends on two

things. It depends on time per iteration and it also depends on the number of

iterations. There is an additional dimension in terms of goodness of the algorithm,

which is also what is the memory required for this simplex algorithm. We will first try

to look at this time taken per iteration and number of iterations. Let us also

somewhere write down the memory. If we go back and see what all we had covered

before the goal programming, we started with the revised simplex algorithm and then

we did a column generation. Then we did a bounded upper bounded simplex and then

we did a decomposition. Now all these four essentially have tried to address this

problem, the first problem in a certain way.

The revised simplex would look at this. In a normal tabular form, we said we are

using Gauss Jordan method, to invert a matrix or solve for the basic variables. We

looked at the revised simplex algorithm which used the eta factorization method, so

that for very large problems the eta factorization method works faster per iteration

12

than the Gauss Jordan. It is not for very small problems but for large problems. We

did not prove that result, but then we kind of said it or mentioned or indicated that the

revised simplex with the product form or the eta matrix is faster than the normal

simplex per iteration, if for example, the number of constraints exceeds 1000 or of

that order. That tried to address this problem of time per iteration. Revise simplex

algorithm also address the problem of memory, because we realize that you store less.

You store less in the revised simplex algorithm therefore it is better in terms of

memory.

From now on you can assume that, all other forms that we have read, we will now use

the revised simplex idea to invert. The upper bounded simplex helped us save a little

bit of memory but more importantly time because if there is a bounded variable, the

advantage by taking it outside of the iteration would automatically reduce the size of

the matrix that we are inverting. Therefore, the time is saved per iteration of the

simplex algorithm.

Column generation is primarily a method which concentrates a little more on space

rather than time. Column generation would mean you do not save or store the entire

coefficient matrix. Instead you store only the B inverse part of it. So instead of storing

an m into n, you store an m into m, and even that m into m, if you use revise simplex

you store it in a more efficient way. Therefore, for long coefficient matrices n is very

large compared to m. The column generation is the way by which you save on

memory and may be compromise on time. Because you solve a sub problem every

time, it may increase the time a little bit but as a method it helps.

Decomposition is clearly a case where you save on time because you have a bigger

problem which can be broken into sub problems and therefore it is easier to invert.

Typically the example that we saw, had 6 constraints which had 2 sub problems of 2

constraints each. If you solved it as an original problem, it would be to invert a 6 by 6

matrix at every iteration, but with the sub problems we ended up inverting a 2 by 2, a

2 by 2 and a 3 by 3, which should be faster. All this effort was concentrating on time

per iteration.

13

Then we have to look at the next one. What is the number of iterations a simplex

algorithm will take before it terminates? There are a couple of pointers to it. If we go

back to the first course, fundamentals of operations research course, we started with

what is called the algebraic method.

(Refer Slide Time: 33:10)

Now in the algebraic method, we said that, we always evaluate n Cm or n Cn-m, as the

case may be, if there are n variables and m constraints, out of which, some of them

could be infeasible, etc., and some of them need not give progressively better

solutions and so on. Essentially, the point that we tried to address there is, if we want

to do an exhaustive enumeration, then we end up doing n Cm number of iterations,

some of which may be useful, some of which may not be useful. Now this nCm is not

a polynomial number. nCm increases exponentially with increase in n and m, and

something like m tends to n by 2, it reaches a very large value and so on.

In some sense the algebraic method indicated that, if you look at solving a linear

programming problem using an enumeration algorithm, then that enumeration

algorithm turns out to be exponential in nature and will have a lot of iterations. Then

we moved on to the simplex method and said that, at least some of the things that are

undesirable in this exhaustive enumeration algorithm can be avoided. The undesirable

ones being the infeasible solution, the undesirable thing being not able to get a better

solution in the next iteration; these are the two things that we tried to eliminate. We

14

tried to eliminate these two things using two important aspects of simplex, which is

the choice for leaving variable and entering variable. Choice of leaving variable

ensured that the feasibility is maintained. Choice of entering variable ensured that in

some sense optimality is maintained or progressively you move towards optimality.

We also saw one more thing that in a simplex algorithm it is always possible for a

variable that leaves in an earlier iteration to re-enter. The moment a variable that

leaves can re-enter, we do not have something like a polynomial limit on the number

of iterations. If for example, we said that a variable once leaves cannot enter,

automatically we know that simplex has to terminate in n minus m iterations; that

does not happen unfortunately. Now the choice of the entering variable was trying to

dictate the rate or speed or the way in which we approach the optimal solution.

Earlier we had seen four things or four ways of entering a variable into the basis. We

will make a quick recap of that. The largest coefficient rule, largest increase rule, first

positive rule, random - these are the four rules that we saw. In all the hand

calculations, in all the book examples, we will always do this largest coefficient rule,

largest Cj minus Zj rule, the rate of increase being large. The largest increase rule, you

are aware of, is like you look at every positive Cj minus Zj, find out the corresponding

theta; product of Cj minus Zj and theta is the extent of increase from this iteration. So

enter that Cj minus Zj which has the largest value of the product.

This is a typically greedy way of looking at it. It is something like the method of

steepest ascent. If we are starting at 0 and you want to reach the optimum for a

maximization problem, at every point then I try to jump the farthest, hoping that I will

reach my destination at the earliest. Particularly when solving large problems, these

two involve a certain amount of computation. Because to find the largest, you need to

sort them; to find this out you need the product and store it and then try to sort it and

get it. These two basically do not do that. All you need is to look at the Cj minus Zj

and the first one that is positive will enter. Now this is commonly used in

implementation where we just try to look at the first positive, do not spend that much

time and quickly enter a variable. Last but not the least is random and random is you

just pick a random Cj minus Zj, if it is positive it enters.

15

Among these four, this is considered to be the best and it is used very widely and

extensively. The reason being, based on a lot of experimentation, different researchers

carried out experimentation and tried to find out for the same set of problems or for

problems that have been defined in a particular order. For example, in randomly

generated problems, following certain distributions, with all the problems being

generated out of a certain order, they tried it on say 10,000, hundred thousand

problems and then tried all the four rules. They tested it on problems of different

sizes, different values of number of constraints, number of variables, something like

starting from a 5 by 5 to 100 by 100 or even more, for different problem sizes,

combinations of problem sizes; all the coefficients, that is the right hand side, the

objective function and the constraint coefficients randomly generated out of certain

distributions, the range of values being defined and consistent. Which means,

effectively they tested the same problem using all these four and came to the

conclusion that, the largest coefficient rule, actually fairs better in terms of average

number of iterations per problem. One can argue by saying that if they had chosen a

different distribution or if they had done something else, may be some other thing

would have dominated. But it is an accepted fact that largest coefficient rule, which is

the Cj minus Zj rule, is expected to give a minimum number of iterations in general,

based on experimentation.

 For a particular problem, it may turn out that this is inferior and this is superior. But

in general this is considered to be a very good rule. Now this was followed

extensively as a rule for entering variable till something called the Klee and Minty

problems were proposed.

16

(Refer Slide Time: 40:00)

Two people called Klee and Minty came up with a set of problems which looked like

this. Klee and Minty in 1972, said maximize….(Refer slide time:40:30). This is the

generic class of the Klee and Minty problem and for example for n equal to 3, the

Klee and Minty problem will look like this.

(Refer Slide Time: 41:18)

Maximize 100 X1 plus 10 X2 plus X3; X1 less than or equal to 1. 20 X1 plus X2 less

than or equal to 100, 200 X1 plus 20 X2 plus X3 less than or equal to 10,000; Xj

greater than or equal to 0. This is the Klee and Minty problem where n equal to 3. The

17

Klee and Minty problems were defined from n equal to 3 onwards. So n equal to 4,

problem will look like 1000 X1 plus 100 X2 plus 10 X3 plus X4, subject to something

X1 less than equal to 1. This, this, this and 2000 X1 plus 200 X2 plus 20 X3 plus X4

less than or equal to something; 10,000 into 100, which would be what 10 lakhs or

whatever. This is the Klee and Minty problem. Let us do one iteration with the Klee

and Minty problem and then see what happens when we try to solve this. We will just

do one iteration to understand this.

(Refer Slide Time: 42:40)

We start with X1, X2, X3; we will assume X4, X5, X6 as the slack variables and then,

you have a right hand side. You will have 100 X1 plus 10 X2 plus X3 0 0 0. You start

with X4, X5, X6; 1 0 0 1 0 0 1; 20 1 0 0 1 0 100; 200, 20, 1 0 0 1 with 10000; With Cj

minus Zj 0 0 0 100, 10, 1 0 0 0 and 0. This is how your simplex will begin. Now the

largest Cj minus Zj is here, so you will enter this and if you go back and compute the

thetas, you get a 1 here, you get a 5 here, you get a 50 here. The first iteration will

happen with this as leaving variable, this as the pivot and so on till you will reach the

optimum. The optimum for this problem is X4 equal to 1, X5 equal to 100, X3 equal to

10,000 with Z equal to 10,000.

Number one, what is wrong? It is like any linear programming problem. I can just

solve it till I get 10,000. Only problem is, if you start with X4, X5, X6 and proceed the

way we are used to, by using the largest coefficient rule always enter the most

18

positive Cj minus Zj; this problem will take 7 iterations till it reaches the optimum. In

general, any Klee and Minty problem will take 2 to the power n minus 1 iteration till

it reaches the optimum. That is where the problem is. Now 2 to the power n is not a

polynomial number. So you will end up getting a very, very large number and

exponential number of iterations. There are many things about it.

Number one, you can always go back and look at this problem and say why should I

start with X4, X5, X6? Might as well start it with X4, X5 and X3; X3 with a 0 0 1

qualifies. The moment I start with X4, X5 and X3, I have the optimum right in the first

iteration because, the optimum is 10,000. So I would start with X3 equal to 10,000; Z

equal to 10,000.

Second, I do not look at 2 to the power n minus 1, I could have just done it in one

iteration. If I use the largest increase rule instead of the largest coefficient rule, look at

the largest increase rule. The largest increase rule would give me 100 and 1 which is

100. If I enter this 10, I would get 100 and some other number. So minimum theta

would be 10 into 100, which is 1000. If I enter here, I would get 1 into 10,000, which

is 10,000. X3 will straight away enter if I use the largest increase rule instead of the

largest coefficient rule. It will go; that is also possible. In one iteration, I will get the

answer. If I scale the variables in such a way that I define a Y1, Y2, Y3, such that, Y3

is 0.0001X3, Y2 equal to 0.01X2, Y1 equal to X1 and solve it. Using the largest

coefficient rule in one iteration, I will get the answer because, somewhere here ….

10,000; I will have to scale it in such a way that 10,000 appears here.

There are multiple ways by which you can show that I can get the answer in one

iteration but that is not what theory is all about. Theory would close its eyes to all its

arguments and tell you that look if I start the simplex the way I know, which is X4, X5

and X6, starting with the slack variable, I get 2 to the power n minus 1 iterations. So

Klee and Minty problems, in some sense, they did not challenge anything but they

brought out the fact that simplex can be worst case exponential algorithm, which

means simplex is not a very good algorithm; it is a worst case exponential algorithm.

But any amount of experimentation always proved that simplex is a fantastic

algorithm when it comes to average case. When it comes to trying out different

problems and trying to see the number of iterations on an average, simplex was doing

exceedingly well. The average number of iterations were always close to 3 m by 2,

19

where m is the number of constraints in the problem, rarely exceeding up to 3 m it

never went beyond 3 m. So simplex was a very good algorithm when it came to

average case and a very poor algorithm when it came to worst case. What people did

to overcome this, we will see that in the next lecture.

